
embarcadero:1

Species distribution modelling with Bayesian2

additive regression trees in R3

Colin J. Carlson1,†
4

1Department of Biology, Georgetown University, Washington, D.C. 20057, USA.5
†Correspondence should be directed to cjc322@georgetown.edu.6

Submitted to Methods in Ecology and Evolution on September 18, 20197

Abstract8

1. Classification and regression tree methods, like random forests (RF) or9

boosted regression trees (BRT), are one of the most popular methods of10

mapping species distributions.11

12

2. Bayesian additive regression trees (BARTs) are a relatively new alterna-13

tive to other popular regression tree approaches. Whereas BRT iteratively14

fits an ensemble of trees each explaining smaller fractions of the total vari-15

ance, BART starts by fitting a sum-of-trees model and then uses Bayesian16

backfitting with an MCMC algorithm to create a posterior draw. So far,17

BARTs have yet to be applied to species distribution modeling.18

19

3. embarcadero is an R package of convenience tools for researchers in-20

terested in species distribution modeling with BARTs. It includes function-21

ality for spatial prediction, an automated variable selection and importance22

procedure, and other functionality for rapid implementation and data visu-23

alization.24

25

4. To show how embarcadero can be used by ecologists, we re-map the distri-26

bution of Crimean-Congo haemorrhagic fever and a likely vector, Hyalomma27

truncatum, in Africa.28

29
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ing, ecological niche modeling, Crimean Congo haemorrhagic fever31
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1 Introduction32

In the last two decades, over a dozen statistical and machine learning methods have33

been proposed for species distribution modeling (SDM). Over time, a handful of34

methods have risen to predominance due to ease of implementation, computational35

speed, and strong predictive performance in rigorous cross-validation. Some meth-36

ods are especially popular for specific applications, mostly because of disciplinary37

tradition. For example, maximum entropy (MaxEnt) models are widely popular38

for studies of global ecological responses to climate change. (VanDerWal et al.,39

2013; Warren et al., 2013) In disease ecology, boosted regression trees (BRTs) have40

become the dominant tool for mapping vectors, reservoirs, and transmission risk of41

infectious zoonoses and vector-borne diseases (Carlson et al., 2019; Pigott et al.,42

2014; Messina et al., 2016), largely due to an influential 2013 paper on dengue43

virus. (Bhatt et al., 2013)44

Boosted regression trees are easily implemented as an out-of-the-box machine45

learning method, are powerful for ecological inference, and consistently perform46

well in rigorous tests of SDM performance. The classification tree approach is also47

more intuitive than the complex fitting procedures “under the hood” of MaxEnt48

or Maxlike methods. However, BRTs also have downsides: they can be prone49

to overfitting, and fitting procedures are largely handed down as anecdotal best50

practices, with most studies choosing learning rates and tree depth based on the de-51

fault settings recommended by early work (Elith et al., 2008), with very few studies52

selecting parameters from formal cross-validation with packages like caret. Fur-53

thermore, uncertainty is usually measured by generating an unweighted ensemble54

of BRT submodels over subsetted training data, generating a confidence interval55

from data permutations rather than formal assumptions about model uncertainty.56

In this paper, we propose the use of a Bayesian alternative to boosted regression57

trees, called Bayesian additive regression trees (BARTs), for the problem of species58

distribution modeling. In computer science, BARTs are used for everything from59

medical diagnostics to self-driving car algorithms (Sparapani et al., 2018; Tan60

et al., 2018); however, they have yet to find any widespread application in ecology.61

A study from 2011 used BARTs as a tool to examine habitat selection data on62

birds (Yen et al., 2011); a 2017 study used BARTs to evaluate performance data of63

other species distribution modeling methods. (Farley, 2017) But so far, they have64

not been used for the purpose of predicting species distributions. We introduce an65

R package, embarcadero, as a convenience tool for running SDMs with BARTs.66
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2 Bayesian additive regression trees67

Whereas BRTs fit an ensemble of trees each explaining smaller fractions of unex-68

plained variance, BART starts by fitting an initial sum-of-trees model, and then69

uses Bayesian backfitting with an MCMC algorithm to create a posterior draw.70

The Bayesian component of BART is designed to have minimal user input, making71

it an unusually out-of-the-box algorithm as Bayesian SDM methods go. The priors72

set for covariates and for the distribution of splitting rules are both uniform by73

default. (Chipman et al., 2010) The remaining priors, which govern tree depth and74

the error distribution, are given a set of default hyperparameters that are robust75

enough for the developers of the method to have recommended automated tuning.76

The number of trees is the main free parameter; a default of 200 is recommended,77

though cross-validation can be used to tune this very easily.78

3 SDMs with BARTs79

3.1 Using dbarts and embarcadero80

At least four R packages currently exist that can implement BARTs: BayesTree81

(Chipman & McCulloch, 2016), bartMachine (Kapelner & Bleich, 2013), BART82

(McCulloch et al., 2018), and dbarts (Chipman et al., 2014). Their functionality83

differs in important ways, and not all of them are currently capable of important84

features like partial dependence plots that are important for SDMs. Our package85

is an SDM-oriented workflow wrapper for dbarts, which includes most of the86

basic functionality needed for species distribution modeling: BART models with87

binary response variables, multithread model training, easy generation of partial88

dependence surfaces (including two-predictor plots and spatial projections), and89

simple prediction including full posteriors. Compared to other packages, dbarts90

only has one major limitation. In future versions, we hope to make embarcadero91

flexible for work with any underlying engine.92

3.2 Variable selection93

Variable importance can be measured in BART models by counting the number94

of times a given variable is used by a tree split across the full posterior draw of95

trees. (This is similar to variable importance in BRTs, which is calculated from96
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the number of tree splits and the corresponding improvement they cause in the97

model.) Because the trees are weak learners, in models with higher numbers of98

trees, the difference in variable importance becomes less pronounced, and less in-99

formative variables become more commonly represented. Consequently, variable100

selection can be performed by observing variable importance in models with pro-101

gressively fewer trees, and selecting variables that have improved performance in102

progressively smaller ensembles. (Chipman et al., 2010) In our package, variable103

importance can be calculated with varimp, and variable selection diagnostic plots104

can be generated with varimp.plot.105

As a way to standardize inclusion rules across workflows, we implemented an106

automatic variable elimination procedure in variable.step, which (1) fits a full107

model with all predictors and a small tree ensemble (default m = 10), a fixed108

number of times (n = 50); (2) eliminates the least informative variable across all109

50 runs; (3) re-runs the models again (n = 50), recording the root mean square110

error; (4) repeats steps 2 and 3 until there are only three covariates left; and (5)111

finally selects the model with the lowest average RMSE is selected. The variable112

sets recommended by this procedure are almost always nearly identical to the sets113

generated from a subjective reading of the diagnostic plots.114

We recommend careful analysis of all diagnostic information, but include a115

full automated variable selection pipeline in bart.var, which (a) produces the116

initial multi-m diagnostic plot, (b) runs automated variable selection, (c) returns117

a model trained with the optimal variable set, (d) plots variable importance in the118

final model, and (e) calculates the AUC of the final model. Despite automation,119

this procedure is not a fail-safe against the inclusion of uninformative predictors,120

or false inference on them; this is true of almost all methods, and predictors121

should always be chosen based on at least some expert opinion about biological122

plausibility. (Fourcade et al., 2018) Similarly, validation of partial depencence123

curves against biological knowledge should be treated as an additional level of124

model validation, potentially more informative than measuring predictive accuracy.125

(Warren et al., 2019)126

3.3 Visualizing model results127

BART model predictions can be visualized several ways using embarcadero. Un-128

fortunately dbarts::bart.predict cannot handle spatial data in its native for-129

mat. For spatial prediction, we provide bart.map as a wrapper, which can also130
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pull the 5% and 95% credible interval layers from the posterior distribution. These131

raster layers can be exported to other spatial data packages in R, or external soft-132

ware like ArcGIS or QGIS, for more professional visualization.133

We include several methods for generating partial dependence plots. The func-134

tion partial is written as a wrapper for dbarts::pdbart, and can be used to135

generate partial dependence plots with a customizable aesthetic, including multi-136

ple ways of visualizing uncertainty. (As with overall predictions, credible intervals137

on partial plots are true Bayesian credible intervals.) Two-dimensional partial de-138

pendence plots (interactions among two predictor variables) can also be generated139

using dbarts::pd2bart. Finally, we designed a new visualization called spatial140

partial dependence plots, which reclassify predictor rasters based on their partial141

dependence plots, and show the relative suitability of different regions for an in-142

dividual covariate. The spartial function can be used to generate these maps,143

and answer questions like “What desert regions are too arid, even in their wettest144

month, for spadefoot toads?” or “Where are the soils with the best pH for redwood145

growth?” We illustrate some of these visualization options in Figure 1.146

3.4 Notes on model performance147

The strength of a given SDMmethod is very rarely resolved in a single study, and is148

challenging to understand in the context of “real world” datasets. Simulation stud-149

ies have become common practice as a way to unpack model performance relative150

to confounding factors, such as sample size and bias, pseudoabsence design, and151

colinearity among predictors; each of these is usually worth testing in isolation.152

Moreover, the definition of “performance” is subjective, and SDMs are used for153

several (sometimes conflicting) purposes in ecology (Guillera-Arroita et al., 2015);154

for example, methods that usually perform well in overall accuracy may not nec-155

essarily handle variable importance well. (Smith & Santos, 2019) Ultimately, the156

most comprehensive “bake-off” studies, with dozens of methods tested by dozens157

of authors, have usually found that more recent and popular methods like MaxEnt158

or BRTs are more sensitive to poor calibration than they are discrepant with each159

other. (Norberg et al., 2019)160

In this descriptor, we did not compare the performance of BARTs to other161

methods using AUC or comparable accuracy metrics, because our aim was not162

to produce a method that universally outperforms gbm or more distantly related163

methods. Instead, we aimed to produce an accessible environment for explor-164
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ing BARTs, and to propose their use for SDMs as an approach with different165

conceptual strengths than existing methods. BART is a nice compromise be-166

tween Bayesian prediction—which works well in SDM, but has yet to become167

widely popular—and the conceptual familiarity and strengths of regression tree168

approaches like BRTs. Some other Bayesian methods for SDMs have been pro-169

posed, but are not widely adopted (Golding & Purse, 2016; Redding et al., 2017),170

possibly due to the dominance of more familiar model families. Most importantly,171

BARTs handle uncertainty with formal Bayesian logic, and generate a posterior172

from a single model implementation. We argue this is more coherent than how173

uncertainty is usually generated for BRTs, with several hundred BRTs trained174

as a usually-unweighted ensemble on randomly-subsetted training data. This in-175

herently reduces the training sample size and amplifies within-sample biases (es-176

pecially geographic biases) fed into every submodel, and produces a “confidence177

interval” that lacks a formal statistical definition as such. We believe the structure178

of BART makes it easier to include uncertainty in applied tasks using SDMs, like179

estimating the population at risk from a given pathogen.180

4 Example: Crimean-Congo Haemorrhagic Fever181

Crimean-Congo haemorrhagic fever virus (CCHFV) is a tick-borne Bunyavirus182

that causes extremely severe, and often fatal, illness in humans. Very little is183

known about CCHFV, compared to other cosmopolitan tick-borne illnesses like184

Lyme disease or tularemia. The definitive reservoir of CCHFV is unknown but185

likely ungulates (Babayan et al., 2018); outbreaks frequently affect sheep and other186

domestic ruminants, and other members of the Nairoviridae infect similar hosts.187

The vectors of CCHFV are better known, and are presumed to almost always be188

Hyalomma ticks, which are widespread throughout Africa and Eurasia; other tick189

vectors have been suspected, but evidence for their competence is limited. (Papa190

et al., 2017) In Africa, Hyalomma truncatum in particular is common throughout191

rangeland and is one of the strongest candidates for a primary vector. (Logan192

et al., 1989; Wilson et al., 1991)193

A global map of Crimean-Congo haemorrhagic fever has been previously been194

produced with boosted regression trees; a significant amount of the Black Sea195

region was suitable, while areas outside had highly localized predictions of suit-196

ability, presumably because of data sparsity in Africa especially. (Messina et al.,197
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2015b) However, some major areas of presence appeared under-predicted, such as198

the western Congo Basin. To demonstrate the use of BARTs, we re-mapped trans-199

mission risk in Africa using the same original CCHF occurrence dataset (Messina200

et al., 2015a). Just as studies of dengue have included suitability for Aedes aegypti201

as a covariate, our model included a suitability layer for Hyalomma truncatum,202

which we created using the canonical dataset on African tick distributions. (Cum-203

ming, 1998); all code for these models and their visualization is available as a204

detailed 30-page vignette with the package.205

Both the Hyalomma model and the CCHF model were also run with 11 envi-206

ronmental covariates: eight average and monthly variables from WorldClim (BIO207

1, 2, 5, 6, and 12–15; Hijmans et al. 2005), layers for mean and amplitude of208

NDVI previously used to map anthrax (Carlson et al., 2019), and a layer of per-209

centage cropland. (Ramankutty et al., 2010) For both models we ran a BART210

with default dbarts settings using the full variable set. We then ran automated211

variable set reduction, made spatial predictions using the recommended variables,212

and recorded the accuracy (Hyalomma: AUC = 0.911; CCHF: AUC = 0.898).213

Our final model of Crimean-Congo risk included six variables: H. truncatum suit-214

ability, mean and amplitude of NDVI, mean annual precipitation (BIO12), and215

precipitation of wettest month (BIO13). The variable importance diagnostic for216

the CCHF model is shown in Figure 2.217

Our model predicts that the distribution of CCHF may be more geographically218

expansive than previous studies have indicated (Figure 3). Areas of the highest219

risk are still heavily concentrated in Sahel rangeland and east African highlands,220

but also far more extensive in southern Africa and along the Atlantic coast than221

previously believed. Although H. truncatum had a high importance in the final222

model, and scaled positively with CCHF risk, our model still predicted some areas223

outside of its range. In particular, our final CCHF map captured an area in224

Gabon and the western Congo basin where occurrences have been recorded but H.225

truncatum is likely absent, and another vector may be involved. This may raise226

some interesting questions for future research.227

5 Next steps228

The embarcadero package is designed as a beginning framework for using BART229

as a species distribution modeling method. Currently, embarcadero version 1.0.1230
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is available open source on Github, at github.com/cjcarlson/embarcadero and soon231

it will be available on CRAN. We hope to continue to expand the package based232

on user input and collaborative coding. The top priority for development is faster233

(multithread) prediction, which remains computationally limiting for global map-234

ping projects.235
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Figures242

Figure 1: Partial dependence plots from the CCHF model (see Section 4), as
examples of four different model visualization styles. (A) Partial dependence plot
for Hyalomma truncatum suitability, blue bars show 95% posterior CI; (B) partial
plot for BIO2 (mean diurnal range), where individual traces show every posterior
draw; (c) a two-predictor partial plot for mean and amplitude of NDVI; and (d) a
“spartial” plot for BIO12 (annual precipitation).

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


0.050

0.075

0.100

0.125

hytr

ndvi.a
mp

bio2

ndvi.m
ean

bio12
bio1

bio13
bio5

cro
p

bio6
bio15

bio14

Variables dropped

R
el

at
iv

e 
co

nt
rib

ut
io

n trees

10

20

50

100

150

200

Figure 2: The variable selection diagnostic plot for the CCHF model, in the style
of Chipman et al. (2010). Variables that are included more often in decision splits
(the relative contribution) as the number of trees becomes smaller are more likely
to be influential, real predictors. Variables that have increasing contributions as
the number of trees increases, on the other hand, should be dropped.

Figure 3: (A) Final posterior mean map of suitability for Hyalomma truncatum.
(B) Final posterior mean map of suitability for Crimean-Congo haemorrhagic fever
virus. (C) The 95% posterior credible interval width for the CCHF model.
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