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Abstract8

1. embarcadero is an R package of convenience tools for species distribution mod-9

elling with Bayesian additive regression trees (BART), a powerful machine learning10

approach that has been rarely applied to ecological problems.11

12

2. Like other classification and regression tree methods, BART estimates the prob-13

ability of a binary outcome based on a set of decision trees. Unlike other methods,14

BART iteratively generates sets of trees based on a set of priors about tree structure15

and nodes, and builds a posterior distribution of estimated classification probabili-16

ties. So far, BARTs have yet to be applied to species distribution modelling.17

18

3. embarcadero is a workflow wrapper for BART species distribution models, and19

includes functionality for easy spatial prediction, an automated variable selection20

procedure, several types of partial dependence visualization, and other tools for eco-21

logical application. The embarcadero package is available open source on Github22

and intended for eventual CRAN release.23

24

4. To show how embarcadero can be used by ecologists, I illustrate a BART workflow25

for a virtual species distribution model. The supplement includes a more advanced26

vignette showing how BART can be used for mapping disease transmission risk,27

using the example of Crimean-Congo haemorrhagic fever in Africa.28

29

Keywords: Bayesian additive regression trees, species distribution modelling, eco-30

logical niche modelling, Crimean-Congo haemorrhagic fever31
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1 Introduction32

In the last two decades, over two dozen statistical and machine learning methods have33

been proposed for species distribution modelling (SDM) (Norberg et al., 2019). Over34

time, a handful of methods have risen to predominance due to ease of implementation,35

computational speed, and strong predictive performance in rigorous cross-validation.36

Some methods are especially popular for specific applications, mostly because of disci-37

plinary tradition. For example, maximum entropy (MaxEnt) models are widely popular38

for studies of global ecological responses to climate change (VanDerWal et al., 2013;39

Warren et al., 2013). In disease ecology, boosted regression trees (BRTs) have become40

the dominant tool for mapping vectors, reservoirs, and transmission risk of infectious41

zoonoses and vector-borne diseases (Carlson et al., 2019; Pigott et al., 2014; Messina42

et al., 2016), largely due to an influential 2013 paper on dengue virus (Bhatt et al.,43

2013). SDMs are used for several—sometimes conflicting—purposes in ecology, and pop-44

ular methods are sometimes used despite known shortcomings (Guillera-Arroita et al.,45

2015; Smith & Santos, 2019). In particular, most popular methods have a limited frame-46

work for handling uncertainty, and conspicuously few popular methods are Bayesian (and47

vice versa).48

In this paper, I discuss a new Bayesian approach to classification and regression49

trees (CART), one of the most popular families of machine learning methods used in50

ecology. Models in this family estimate the probability of a given output variable (in this51

case, a binary classification of habitat suitability or species presence) based on decision52

“trees” that split predictor variables with nested, binary rule-sets. The precise rules53

for generating these trees vary across implementations. For example, in random forest54

models, an ensemble of trees is generated, where each tree is independently generated55

based on a boostrap of the original dataset; trees grow to the maximum possible depth56

(the longest chain of splitting rules), with no pruning (trees are never post hoc reduced).57

In the boosted regression trees approach (BRT), shallower trees with a constrained depth58

(“weak learners”) are constructed iteratively that explain the residuals left by previous59

trees; this adds bias, but allows the model to focus on unusual cases at the potential60

expense of overfitting (Elith et al., 2008; Vezhnevets & Barinova, 2007). CART methods61

have many strengths for species distribution modelling; they consistently perform well62

in model comparisons (Elith et al., 2006; Mainali et al., 2015; Redding et al., 2017; Wisz63

et al., 2008), and the tree-based approach is often more intuitive than the complex fitting64

procedures “under the hood” of MaxEnt or Maxlike methods (Elith et al., 2011; Merow65

et al., 2013; Merow & Silander, 2014).66

Bayesian additive regression trees (BART) are an exciting and new alternative to67

other popular classification tree methods. As in other approaches, BART generates a set68
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of decision trees that explain different components of variance in the outcome variable.69

Unlike random forests or boosted regression trees, the formulation of BART is Bayesian,70

with the posterior probability of a model shaped by priors P (trees) on how trees should71

look (i.e., the parameters used to generate those trees):72

P (trees|data) α P (data|trees)P (trees) (1)

Like boosted regression trees, BART introduces variance by fitting a set of many shallow73

“weak learner” trees, but unlike BRT, this is explicitly controlled by three prior distribu-74

tions: the probability a tree stops at a node of a given depth, the probability of a given75

variable being drawn for a splitting rule, and the probability of splitting that variable at76

a particular value. The latter two are usually treated as uniformly distributed (splits are77

randomly constructed by variable, and within each variables’ range), while the first is78

usually specified as a negative power law, constraining tree depth and penalizing overfit-79

ting. Using these priors, a specified number of trees m are generated with no splits, and80

then updated randomly in an MCMC process that allows them to be expanded, rear-81

ranged, or pruned. Each model instance is a sum-of-trees model, unlike random forests,82

which average predictions across trees; to create the sum-of-trees model, each tree is ad-83

justed to the residuals of the sum-of-remaining-trees. This process superficially resembles84

how boosting works within boosted regression trees, but because trees are tuned to the85

ensemble, they rarely overfit to particular cases within the residuals. (Chipman et al.,86

2010) After dropping a burn-in period, the full set of sum-of-trees models from different87

points in the Markov chain is treated as a posterior distribution, and used to generate88

the posterior distribution of predictions. (For a more in-depth explanation, including a89

visualization of tree structure in the MCMC process, see Tan & Roy (2019).)90

In computer science, BARTs are used for everything from medical diagnostics to self-91

driving car algorithms (Sparapani et al., 2018; Tan et al., 2018); however, they have92

yet to find any widespread application in ecology. A study from 2011 used BART as93

a tool to examine habitat selection data on birds (Yen et al., 2011); a 2017 study used94

BART to evaluate performance data of other species distribution modelling methods95

(Farley, 2017). But so far, they have not been used for the purpose of predicting species96

distributions. This reflects a broader deficit of Bayesian models in the SDM literature:97

several elegant Bayesian SDM methods have been previously proposed (Golding & Purse,98

2016; Redding et al., 2017), but none are particularly widely adopted, possibly because99

advanced Bayesian models may seem discouraging or unintuitive.100

BART brings the conceptual familiarity and strengths of classification tree meth-101

ods, but adds a relatively simple Bayesian component that inherently and intuitively102

handles model uncertainty. This might make it a promising alternative not just to ex-103
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isting Bayesian approaches but also popular classification tree methods, in particular104

boosted regression trees. BRT has several easy to use out-of-the-box implementations,105

is powerful for ecological inference, and consistently performs well in rigorous tests of106

SDM performance. However, BRT also has downsides: it can be prone to overfitting,107

and fitting procedures are largely handed down as anecdotal best practices, with many108

studies choosing hyperparameters based on software defaults; very few studies select pa-109

rameters from formal cross-validation as early work recommended (Elith et al., 2008).110

Furthermore, uncertainty is usually measured by generating an unweighted ensemble of111

BRT submodels over subsetted training data, generating a confidence interval from data112

permutations (like random forests) rather than formal assumptions about model uncer-113

tainty. In contrast, the formal Bayesian structure of BART captures uncertainty within114

a single model, which is more coherent and intuitive than how uncertainty is usually115

generated in BRT ensembles. BART also shares many of the strengths of BRT, like easy116

out-of-the-box implementation and easy visualization of “black box” model components,117

and outperforms other CART methods in model comparisons. (Chipman et al., 2010)118

This paper introduces an R package, embarcadero, as a convenience tool for running119

SDMs with BARTs. Throughout, I use a simulated “virtual species” (see Appendix 1) to120

illustrate the workflow and the major features of the package, including model selection,121

visualization, and diagnostics. Because boosted regression trees are the most popular122

method of species distribution modelling in medical geography, the supplement includes123

a second, more detailed vignette using BART to map Crimean-Congo haemorrhagic fever124

(CCHF) in Africa, based on the distribution of the tick Hyalomma truncatum, a presumed125

vector. This is a more challenging and computationally-intensive implementation, and126

takes several hours to run on most machines, but highlights some of the strength of the127

approach for applied scientific questions.128

2 SDMs with BARTs129

2.1 Implementing BART with binary classification130

At least four R packages currently exist that can implement BARTs: BayesTree (Chipman131

& McCulloch, 2016), bartMachine (Kapelner & Bleich, 2013), BART (McCulloch et al.,132

2018), and dbarts (Chipman et al., 2014). Their functionality differs in important ways,133

and not all of them are currently capable of important features like partial dependence134

plots that are important for SDMs. This package is an SDM-oriented workflow wrapper135

for dbarts, which includes most of the basic functionality needed for species distribution136

modelling, including a simple implementation of BART with binary outcomes. A list of137

the functions made available in embarcadero, versus their counterparts and additional138
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useful functions in dbarts, is given in Table 1.139

In the original notation of Chipman et al. (2010), BART consists of tree structures T140

and terminal nodes (leaves)M , as an ensemble (T1,M1), ..., (Tn,Mn). Each tree generates141

a predictive function g(·), with a sum of trees function f(·) given as142

f(·) =
m∑
j=1

g(·;Tj ,Mj) + ε; ε ∼ N (0, σ2) (2)

A set of posterior draws of f∗, generated by the MCMC process described above, create143

the posterior distribution for p(f |y) ≡ p(trees|data). Given the assumption of normality,144

BART handles binary classification problems (like species distribution modelling) using145

a logit link, where Φ is the standard normal c.d.f. and:146

f(·) = Φ
[ m∑
j=1

g(·;Tj ,Mj)
]

(3)

Binary classification is run by dbarts::bart automatically when supplied with a binary147

outcome. However, the returned predictions are untransformed back into probabilities,148

a problem solved in embarcadero with a predict wrapper. (This also allows prediction149

on raster datasets, a key piece of SDM workflow.)150

2.2 An example of a BART SDM151

To see how BART works, we can generate a virtual species on a hypothetical landscape152

which responds to climate variables X1 through X4, but is uninfluenced by variables153

X5 to X8 (see Appendix 1). Like most other SDM methods in R, the BART model154

itself is run on a data frame of presence-absence or presence-pseudoabsence points, and155

associated environmental covariates. For example, with a RasterStack called climate156

and an occurrence dataset called occ.df, the basic workflow is157

library(embarcadero)158

xnames <- c(‘x1’,‘x2’,‘x3’,‘x4’,159

‘x5’,‘x6’,‘x7’,‘x8’)160

## Run the BART model161

sdm <- bart(y.train=occ.df[,‘Observed’],162

x.train=occ.df[,xnames],163

keeptrees = TRUE)164

## Predict the species distribution165

map <- predict(sdm, climate)166

## Visualize model performance167
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summary(bart)168

This last line returns a brief model diagnostic including the optimal cutoff for thresh-169

olding classifications and some measures of performance, like the area under the receiver-170

operator curve (AUC):171

Call: bart occ.df[, xnames] occ.df[, "Observed"] TRUE172

Predictor list:173

x1 x2 x3 x4 x5 x6 x7 x8174

Area under the receiver-operator curve175

AUC = 0.91176

Recommended threshold (maximizes true skill statistic)177

Cutoff = 0.42178

TSS = 0.71179

Resulting type I error rate: 0.078180

Resulting type II error rate: 0.21181

Additionally, summary returns a diagnostic figure (Figure 1), summarizing the perfor-182

mance of the classifier on the training data.183

The primary appeal of BART, compared to other CART methods, is a formal way of184

measuring model uncertainty within any individual implementation. Pulling uncertainty185

out of BART predictions is easy with embarcadero; for example, to pull a 95% credible186

interval, a user can specify:187

map <- predict(sdm, climate, quantiles=c(0.025, 0.975))188

Mapping the difference between these two rasters gives the credible interval width, which189

provides a native measure of spatial uncertainty, analogous to how the coefficient of190

variation can be used to measure spatial uncertainty across an ensemble of BRT runs191

(Carlson et al., 2019). When running tasks especially with several quantiles, or large192

rasters, prediction runtime grows quickly and memory can become limiting; predict()193

has a “splitby” option that breaks the task into pieces, which minimizes memory conflicts,194

adds a progress bar, and allows estimation of total runtime based on the first chunk:195

map <- predict(sdm, climate, quantiles=c(0.025, 0.975), splitby=10)196

3 Variable selection197

Variable importance (calculated by varimp()) is usually measured in BART models198

by counting the number of times a given variable is used by a tree split across the199
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full posterior draw of trees. (This is similar to variable importance in BRTs, which200

is calculated from the number of tree splits and the corresponding improvement they201

cause in the model.) In models with higher numbers of trees, the difference in variable202

importance becomes less pronounced, and less informative variables receive a higher203

number of splitting rules. Conversely, variable selection can be performed by running204

models with a small number of trees (m = 10 or 20), and observing which variables205

stop being included in trees. (Chipman et al., 2010) This diagnostic is generated in206

embarcadero by varimp.diag() (see an example in Figure 2).207

Analysis of this diagnostic plot is still subjective and informal. As a way to stan-208

dardize variable set reduction rules across workflows, embarcadero includes an automatic209

variable selection procedure in variable.step():210

I. Fit a full model with all predictors and a small tree ensemble (default m = 10), a211

fixed number of times (default n = 50)212

II. Eliminate the least informative variable across all 50 runs;213

III. Re-run the models again minus the least informative variable (n = 50 times again),214

recording the root mean square error (on the training data);215

IV. Repeat steps 2 and 3 until there are only three covariates left;216

V. Finally, select the model with the lowest average root mean square error (RMSE).217

Anecdotally, this procedure almost always recommends dropping every variable with218

decreasing importance in models with fewer trees, and conserves every variable with219

increasing importance. In our virtual species case, for example, the diagnostic shows220

that X1 through X4 have much higher performance than X5 through X8 (Figure 2),221

and the automated procedure recommends dropping X5 through X8:222

varimp.diag(occ.df[,xnames],223

occ.df[,"Observed"],224

iter=50)225

step.model <- variable.step(x.data=occ.df[,xnames],226

y.data=occ.df[,"Observed"])227

step.model228

[1] "x1" "x2" "x3" "x4"229

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


This largely matches original work which found that BART is highly effective at identi-230

fying informative subsets of predictors (see section 5.2.1 of Chipman et al., 2010).231

I recommend careful analysis of all diagnostic information, but include a full auto-232

mated variable selection pipeline in bart.step, which (a) produces the initial multi-m233

diagnostic plot, (b) runs automated variable selection, (c) returns a model trained with234

the optimal variable set, (d) plots variable importance in the final model, and (e) returns235

the summary of the final model. Despite automation, this procedure is not a fail-safe236

against the inclusion of uninformative predictors, or false inference on them; this is true237

of almost all methods, and predictors should always be chosen based on at least some238

expert opinion about biological plausibility (Fourcade et al., 2018). Similarly, validation239

of partial depencence curves against biological knowledge should be treated as an addi-240

tional level of model validation, potentially more informative than measuring predictive241

accuracy (Warren et al., 2019).242

4 Visualizing model results243

embarcadero includes several methods for generating partial dependence plots. The244

function partial is written as a wrapper for dbarts::pdbart, and can be used to gen-245

erate partial dependence plots with a customizable, ggplot2-based aesthetic, including246

multiple ways of visualizing uncertainty. (As with overall predictions, credible intervals247

on partial plots are true Bayesian credible intervals.) Posteriors can be visualized with248

traceplots of individual draws, or bars for a credible interval of a specified width (by249

default 95%):250

partial(sdm, x.vars=c("x4"),251

smooth=5,252

equal=TRUE,253

trace=FALSE)254

## VERSUS, for comparison,255

gbm1 <- dismo::gbm.step(data=occ.df,256

gbm.x = 2:5, gbm.y = 1,257

family = "bernoulli",258

tree.complexity = 5,259

learning.rate = 0.01,260

bag.fraction = 0.5)261

dismo::gbm.plot(gbm1, variable.no=4, rug=TRUE,262

plot.layout=c(1,1))263

This visualizes uncertainty much clearer than, for example, dismo::gbm.plot can in264
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a single instance (Figure 3). Two-dimensional partial dependence plots (interactions265

among two predictor variables) can also be generated using dbarts::pd2bart.266

Finally, embarcadero a new visualization called spatial partial dependence plots, which267

reclassify predictor rasters based on their partial dependence plots, and show the relative268

suitability of different regions for an individual covariate. The spartial function can269

be used to generate these maps, and answer questions like “What desert regions are too270

arid, even in their wettest month, for spadefoot toads?” or “Where are the soils with271

the best pH for redwood growth?” These visualization options are illustrated in greater272

depth in the advanced vignette.273

5 An advanced vignette274

To demonstrate applications to disease transmission mapping, the supplement includes an275

advanced tutorial on embarcadero focused on updating an African risk map for Crimean-276

Congo haemorrhagic fever virus (CCHF). CCHF is a tick-borne Bunyavirus that causes277

extremely severe, and often fatal, illness in humans. Very little is known about CCHF,278

compared to other cosmopolitan tick-borne illnesses like Lyme disease or tularemia. The279

definitive reservoir of CCHF is unknown but likely ungulates (Babayan et al., 2018);280

outbreaks frequently affect sheep and other domestic ruminants. The vectors of CCHF281

are better known, and are presumed to almost always be Hyalomma ticks, which are282

widespread throughout Africa and Eurasia; other tick vectors have been suspected, but283

evidence for their competence is limited. (Papa et al., 2017) In Africa, Hyalomma trun-284

catum in particular is common throughout rangeland and is a strong candidate for a285

primary vector. (Logan et al., 1989; Wilson et al., 1991) A global map of Crimean-286

Congo haemorrhagic fever has been previously been produced with boosted regression287

trees; a significant amount of the Black Sea region was suitable, while areas outside had288

highly localized predictions of suitability, presumably because of data sparsity in Africa289

especially. (Messina et al., 2015b) However, some major areas of presence appeared290

under-predicted, such as the western Congo Basin.291

The advanced vignette shows how BART can be used to map CCHF in Africa, using292

the same occurrence dataset as previous mapping efforts have (Messina et al., 2015a).293

Just as studies of dengue risk have included suitability for the Aedes aegypti mosquito as294

a covariate, the new model includes a suitability layer for Hyalomma truncatum, created295

from the canonical dataset on African tick distributions. (Cumming, 1998). The updated296

map predicts that the distribution of CCHF may be more geographically expansive than297

previous studies have indicated (Figure 4). Areas of the highest risk are still heavily298

concentrated in Sahel rangeland and east African highlands, but also far more extensive299

in southern Africa and along the Atlantic coast than previously believed. A detailed300
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tutorial is provided showing this workflow in the Supplementary Materials of this paper,301

and all data are available online (github.com/cjcarlson/pier39).302

6 Discussion303

Because BART is a comparatively new method, many of the basic use case questions304

remain mostly unaddressed: Do pseudoabsences perform notably worse than absences?305

Is there a minimum sample size? Does collinearity inflate or distort variable importance?306

Users may wish to explore some of these points using virtual species before working with307

BART on their data, or to compare BART results to other methods as a sense check.308

Furthermore, as with any other Bayesian method, out of the box implementation309

can make it easy to neglect or underconsider prior selection. More advanced users may310

be interested in going more in depth within the BART literature to set better priors.311

For example, using a uniform prior on covariate importance can be unhelpful—especially312

in high-dimensionality data with only a few valid predictors, where the model tends to313

converge on the variable importance prior. (Tan et al., 2018; Rocková & van der Pas,314

2017) Instead, setting a Dirichlet distribution for the prior can significantly improve315

model performance and variable selection. (Linero, 2018)316

Finally, it is worth mentioning that BART is a growing topic of interest in ma-317

chine learning, and new extensions may expand applications within SDM work and more318

broady in spatial ecology. For example, the random intercept BART (riBART) model is319

a framework for handling cases of structure within outcome data; this framework might320

be useful for cases where sampling bias has categorical structure (e.g., different levels of321

sampling across country or state borders). (Tan et al., 2018) Similarly, causal inference322

using the BART framework has become especially popular (Hahn et al., 2017), which323

may be an interesting direction for modelling given recent work proposing causal infer-324

ence as a new priority for mapping infectious diseases. (Kraemer et al., 2019) Expanding325

work along these lines will help establish better best practices for using BARTs in SDM326

applications.327
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Appendix 1. Generating a virtual species for modelling.336

For this example, we create a virtual landscape of eight Gaussian “climate variables” on337

a 150 by 150 cell grid (with NLMR), create a virtual species inhabiting that landscape but338

only depending on four of eight total “climate variables” (with virtualspecies), and339

then extract a presence-absence dataset for modelling (with embarcadero).340

library(NLMR, quietly = T)341

library(virtualspecies, quietly = T)342

set.seed(12345)343

344

## Random landscape345

onelandscape <- function(x) {NLMR::nlm_gaussianfield(nrow = 150,346

ncol = 150,347

rescale = FALSE)}348

climate <- stack(lapply(c(1:8), onelandscape))349

names(climate) <- c("x1","x2","x3","x4","x5","x6","x7","x8")350

351

## Generate the species’ climatic niche from X1 through X4352

random.sp <- generateRandomSp(climate[[1:4]],353

approach="pca",354

relations="gaussian",355

species.prevalence=0.5,356

realistic.sp = TRUE,357

PA.method="threshold")358

359

## Generate some presences, and some absences360

sp.points <- sampleOccurrences(random.sp,361

n=250,362

type = "presence-absence")363

364

## Extract the associated climate values365

occ <- SpatialPoints(sp.points$sample.points[,c("x","y")])366

occ.df <- cbind(sp.points$sample.points,367

raster::extract(climate, occ))368

369

## Finally, let’s drop the long-lats and the "Real" presence-absence370

## values and just leave behind an "Observed" and the climate data371

occ.df <- occ.df[,-c(1:3)]372
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If we were to run head(occ.df) it should return a data frame that looks like this:373

Observed x1 x2 x3 x4 x5 x6 x7 x8374

1 0 1.9 0.093 -3.935 0.45 -1.90 0.16 4.97 -1.23375

2 1 1.4 -1.396 1.825 -1.43 2.27 -1.48 1.19 3.96376

3 0 3.9 -1.202 -0.964 2.15 -2.24 5.85 1.46 5.12377

4 0 1.7 -1.624 -2.984 2.75 3.08 3.84 -1.93 0.97378

5 1 2.5 1.362 0.089 -4.69 -0.96 0.28 0.66 2.61379

6 0 1.4 3.856 -1.720 0.70 -0.54 -2.50 -0.92 6.05380
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Figures and Tables381
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Figure 1: The model diagnostic returned by summary().
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Figure 2: The model diagnostic returned by varimp.diag().
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A.

B.

Figure 3: Partial dependence curves generated by single-instance BART implementations
(A) show uncertainty with more transparency and clarity than those generated from
single-instance BRT implementations (B).
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Figure 4: A map of Crimean-Congo haemorrhagic fever transmission risk, constructed
using ecological niche modelling with BART (see Supplementary Materials).
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Core modelling functionality

bart (in dbarts) Runs a binary BART classification model.

bart.step
Full implementation of a BART model with built-in variable
set reduction (a wrapper for dbarts:::bart, variable.step,
varimp, varimp.diag, and summary).

predict
Predict species distributions with a BART model and
a RasterStack of environmental layers (a wrapper for
dbarts:::predict.bart).

summary
Returns a summary of call, performance, and diagnostic plots
for a BART model object.

Variable diagnostics

variable.step Stepwise variable set reduction algorithm.

varimp Returns variable importance, with optional plots.

varimp.diag Diagnostic of variable importance at different m values.

Visualization

partial
Partial dependence plots for single variables (a ggplot2-based
wrapper for dbarts::pdbart).

pd2bart (in dbarts) Two-predictor, three-dimensional partial dependence plots (no
wrapper implented yet).

plot.mcmc

Visualize each posterior draw’s prediction and the running av-
erage of those predictions. Can be used with the animation
package to create GIFs of how the posterior draw learns to fit
the data (especially interesting for the burn-in of models with
small number of trees).

spartial
Spatial projection (maps) of partial dependence plots onto raw
environmental covariates.

Convenience tools

bigstack
Fast aggregation of an environmental layer RasterStack for
quick prediction, using the velox package.

Table 1: Functions available in embarcadero and additional functions in dbarts of im-
portance.

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


References382

Babayan, S.A., Orton, R.J. & Streicker, D.G. (2018) Predicting reservoir hosts and383

arthropod vectors from evolutionary signatures in RNA virus genomes. Science, 362,384

577–580.385

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake,386

J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O. et al. (2013) The global distribution387

and burden of dengue. Nature, 496, 504.388

Carlson, C.J., Kracalik, I.T., Ross, N., Alexander, K.A., Hugh-Jones, M.E., Fegan, M.,389

Elkin, B.T., Epp, T., Shury, T.K., Zhang, W. et al. (2019) The global distribution390

of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife.391

Nature Microbiology, p. 1.392

Chipman, H., McCulloch, R. & Dorie, V. (2014) dbarts: Discrete Bayesian Additive393

Regression Trees Sampler. R package version 0.8-5.394

Chipman, H. & McCulloch, R. (2016) BayesTree: Bayesian Additive Regression Trees.395

R package version 0.3-1.3.396

Chipman, H.A., George, E.I., McCulloch, R.E. et al. (2010) BART: Bayesian additive397

regression trees. The Annals of Applied Statistics, 4, 266–298.398

Cumming, G. (1998) Host preference in African ticks (Acari: Ixodida): a quantitative399

data set. Bulletin of Entomological Research, 88, 379–406.400

Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans,401

R., Huettmann, F., R. Leathwick, J., Lehmann, A. et al. (2006) Novel methods improve402

prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.403

Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression404

trees. Journal of Animal Ecology, 77, 802–813.405

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statis-406

tical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.407

Farley, S.S. (2017) A General Framework for Predicting the Optimal Computing Config-408

urations for Climate-driven Ecological Forecasting Models. Ph.D. thesis.409

Fourcade, Y., Besnard, A.G. & Secondi, J. (2018) Paintings predict the distribution of410

species, or the challenge of selecting environmental predictors and evaluation statistics.411

Global Ecology and Biogeography, 27, 245–256.412

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


Golding, N. & Purse, B.V. (2016) Fast and flexible Bayesian species distribution mod-413

elling using Gaussian processes. Methods in Ecology and Evolution, 7, 598–608.414

Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini,415

P.E., McCarthy, M.A., Tingley, R. & Wintle, B.A. (2015) Is my species distribution416

model fit for purpose? Matching data and models to applications. Global Ecology and417

Biogeography, 24, 276–292.418

Hahn, P.R., Murray, J.S. & Carvalho, C. (2017) Bayesian regression tree models for419

causal inference: regularization, confounding, and heterogeneous effects. arXiv preprint420

arXiv:170609523.421

Kapelner, A. & Bleich, J. (2013) bartMachine: Machine learning with Bayesian additive422

regression trees. arXiv preprint arXiv:13122171.423

Kraemer, M.U., Reiner Jr, R.C. & Bhatt, S. (2019) Causal inference in spatial mapping.424

Trends in Parasitology, 35, 743–746.425

Linero, A.R. (2018) Bayesian regression trees for high-dimensional prediction and variable426

selection. Journal of the American Statistical Association, 113, 626–636.427

Logan, T.M., Linthicum, K.J., Bailey, C.L., Watts, D.M. & Moulton, J.R. (1989) Exper-428

imental transmission of Crimean-Congo hemorrhagic fever virus by Hyalomma trun-429

catum Koch. The American Journal of Tropical Medicine and Hygiene, 40, 207–212.430

Mainali, K.P., Warren, D.L., Dhileepan, K., McConnachie, A., Strathie, L., Hassan,431

G., Karki, D., Shrestha, B.B. & Parmesan, C. (2015) Projecting future expansion432

of invasive species: comparing and improving methodologies for species distribution433

modeling. Global Change Biology, 21, 4464–4480.434

McCulloch, R., Sparapani, R., Gramacy, R., Spanbauer, C. & Pratola, M. (2018) BART:435

Bayesian additive regression trees. R package version 1.0.436

Merow, C. & Silander, J.A. (2014) A comparison of maxlike and maxent for modelling437

species distributions. Methods in Ecology and Evolution, 5, 215–225.438

Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to maxent for modeling439

species’ distributions: what it does, and why inputs and settings matter. Ecography,440

36, 1058–1069.441

Messina, J.P., Kraemer, M.U., Brady, O.J., Pigott, D.M., Shearer, F.M., Weiss, D.J.,442

Golding, N., Ruktanonchai, C.W., Gething, P.W., Cohn, E. et al. (2016) Mapping443

global environmental suitability for Zika virus. eLife, 5, e15272.444

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


Messina, J.P., Pigott, D.M., Duda, K.A., Brownstein, J.S., Myers, M.F., George, D.B. &445

Hay, S.I. (2015a) A global compendium of human Crimean-Congo haemorrhagic fever446

virus occurrence. Scientific Data, 2, 150016.447

Messina, J.P., Pigott, D.M., Golding, N., Duda, K.A., Brownstein, J.S., Weiss, D.J.,448

Gibson, H., Robinson, T.P., Gilbert, M., William Wint, G. et al. (2015b) The global449

distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society450

of Tropical Medicine and Hygiene, 109, 503–513.451

Norberg, A., Abrego, N., Blanchet, F.G., Adler, F.R., Anderson, B.J., Anttila, J., Araújo,452

M.B., Dallas, T., Dunson, D., Elith, J. et al. (2019) A comprehensive evaluation of453

predictive performance of 33 species distribution models at species and community454

levels. Ecological Monographs, p. e01370.455

Papa, A., Tsergouli, K., Tsioka, K. & Mirazimi, A. (2017) Crimean-congo hemorrhagic456

fever: tick-host-virus interactions. Frontiers in Cellular and Infection Microbiology, 7,457

213.458

Pigott, D.M., Golding, N., Mylne, A., Huang, Z., Henry, A.J., Weiss, D.J., Brady, O.J.,459

Kraemer, M.U., Smith, D.L., Moyes, C.L. et al. (2014) Mapping the zoonotic niche of460

Ebola virus disease in Africa. eLife, 3, e04395.461

Redding, D.W., Lucas, T.C., Blackburn, T.M. & Jones, K.E. (2017) Evaluating Bayesian462

spatial methods for modelling species distributions with clumped and restricted occur-463

rence data. PloS One, 12, e0187602.464

Rocková, V. & van der Pas, S. (2017) Posterior concentration for bayesian regression465

trees and forests. Annals of Statistics (In Revision), pp. 1–40.466

Smith, A.B. & Santos, M.J. (2019) Testing the ability of species distribution models to467

infer variable importance. bioRxiv, p. 715904.468

Sparapani, R., Dabbouseh, N., Gutterman, D., Zhang, J., Chen, H., Bluemke, D., Lima,469

J., Burke, G. & Soliman, E. (2018) Novel electrocardiographic criteria for the diagnosis470

of left ventricular hypertrophy derived with Bayesian additive regression trees: the471

multi-ethnic study of atherosclerosis. Circulation, 138, A10908–A10908.472

Tan, Y.V., Flannagan, C.A. & Elliott, M.R. (2018) Predicting human-driving behavior473

to help driverless vehicles drive: random intercept Bayesian additive regression trees.474

Statistics and Its Interface, 11, 557–572.475

Tan, Y.V. & Roy, J. (2019) Bayesian additive regression trees and the general bart model.476

arXiv preprint arXiv:190107504.477

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/


VanDerWal, J., Murphy, H.T., Kutt, A.S., Perkins, G.C., Bateman, B.L., Perry, J.J. &478

Reside, A.E. (2013) Focus on poleward shifts in species’ distribution underestimates479

the fingerprint of climate change. Nature Climate Change, 3, 239.480

Vezhnevets, A. & Barinova, O. (2007) Avoiding boosting overfitting by removing confus-481

ing samples. European Conference on Machine Learning, pp. 430–441. Springer.482

Warren, D.L., Matzke, N.J. & Iglesias, T.L. (2019) Evaluating species distribution mod-483

els with discrimination accuracy is uninformative for many applications. BioRxiv, p.484

684399.485

Warren, R., VanDerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas,486

J., Osborn, T.J., Jarvis, A., Shoo, L.P., Williams, S.E. et al. (2013) Quantifying the487

benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate488

Change, 3, 678.489

Wilson, M., Gonzalez, J.P., Cornet, J.P. & Camicas, J.L. (1991) Transmission of490

Crimean-Congo haemorrhagic fever virus from experimentally infected sheep to491

Hyalomma truncatum ticks. Research in Virology, 142, 395–404.492

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C., Guisan, A. & NCEAS493

Predicting Species Distributions Working Group (2008) Effects of sample size on the494

performance of species distribution models. Diversity and Distributions, 14, 763–773.495

Yen, J.D., Thomson, J.R., Vesk, P.A. & Mac Nally, R. (2011) To what are woodland496

birds responding? Inference on relative importance of in-site habitat variables using497

several ensemble habitat modelling techniques. Ecography, 34, 946–954.498

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2019. ; https://doi.org/10.1101/774604doi: bioRxiv preprint 

https://doi.org/10.1101/774604
http://creativecommons.org/licenses/by/4.0/

