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Abstract
Taste processing is an essential ability in all animals signaling potential harm or benefit
of ingestive behavior. Although the peripheral taste coding is well understood, current
evidence  for  central  taste  processing  remains  contradictory.  To  address  this  issue,
human participants judged pleasantness and intensity of  low and high-concentration
tastes  (salty,  sweet,  sour,  bitter)  in  two fMRI-experiments.  High-resolution  fMRI  and
multivariate  pattern  analysis  were  used  to  characterize  taste-related  informational
content in human gustatory cortex (GC). Clusters within GC were narrowly tuned to
specific tastants consistently across tasks. Importantly, taste concentrations completely
altered the spatial layout of putative taste-specific maps with distinct, non-overlapping
patterns for each taste category at different concentration levels. Together, our results
point at population-level representations in human GC as a complex function of taste
category and concentration. 
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Introduction

In mammals, taste identification constitutes a critical ability to ensure survival through

selection  of  nutritional  versus  potentially  harmful  food.  Although  humans  have

developed a fine ability to distinguish different tastes and taste compounds, it  is yet

unclear how basic and complex tastes are distinctively represented in the gustatory

cortex (GC).

Other  sensory  cortices  are  traditionally  characterized  by  specific  topological

organizations of  neurons  arranged  into  specialized functional  maps,  e.g.  orientation

maps in the primary visual  cortex or tonotopic maps in the primary auditory cortex.

Hence,  one  might  hypothesize  that  there  is  a  functional  map  type  of  organization

(Wilson and Bednar,  2015) in chemosensory cortices as well,  based on basic  taste

categories. Yet,  it  still  needs to be proven whether any general  topological  principle

applies to gustatory cortices (see Giessel and Datta, 2014 for olfaction).

Only recently have putative gustotopic maps been observed in rodents  (e.g. Chen et al.,

2011). There, pools of neurons were characterized by direct associations with specific

taste qualities (salty, sweet, bitter and umami) within specialized sub-regions of mouse’s

insular cortex. In clear contradistinction however, the majority of animal studies reported

overlapping clusters  of  neurons broadly  tuned to  distinct  tastes  (e.g.  Accolla  et  al.,

2007).  For  instance,  Fletcher  and  colleagues  (Fletcher  et  al.,  2017) showed  that

neurons  were  preferentially  tuned  to  specific  tastes  or  combination  of  tastes;

nonetheless such neurons were intermingled with neurons tuned to different tastes, in

line with  the notion of  a non-topological  gustatory organization in other species (for

similar results in non-human primates, see Scott and Plata-Salamán, 1999).
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In humans, to date, the organization of the GC remains poorly understood. The putative

human GC, located in anterior to middle insula (Iannilli et al., 2014; Veldhuizen et al.,

2011), is inherently a multisensory area which exhibits a wide range of responses not

exclusively related to gustatory stimuli (e.g. somatosensory, thermal responses). This

organization makes particularly challenging to isolate activity elicited by taste stimuli

from other influences, e.g. somatosensory responses.

In  accord with  the vast  majority  of  animal  data,  most  human imaging studies have

reported a scattered organization of  neuronal  populations  broadly tuned to  different

taste categories, with no actual evidence of dedicated taste-specific maps. Only few

fMRI-studies (Prinster et al., 2017; Schoenfeld et al., 2004) have reported taste-specific

clusters  of  voxels  which  may resemble  a  gustotopic  type of  organization  based on

mass-univariate analyses. However, both studies were penalized by small sample sizes,

passive tasting (i.e. lack of task) and presentation of only one intensity per taste. The

latter two points strongly limit the generalizability of these findings as intensity variations

can dramatically alter population responses to tastes (Canna et al., 2019; Small et al.,

2003) as can the task at hand (Grabenhorst et al., 2008). Moreover, studies exclusively

relying on mass-univariate analyses suffer from the common inability to discriminate

spatial patterns predicting specific taste categories, tasks and intensities and thus the

ability to assess the informational content within activated clusters. To overcome this

impasse,  Chikazoe  and  colleagues  (2019) have  recently  adopted  a  multivariate

approach to classifying basic taste categories as well as different chemical compounds

of  the  same  taste  categories.  While  these  authors  were  able  to  identify  common

patterns  of  activities  in  the  insular  cortex  associated  with  basic  taste  qualities,
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irrespective of chemical compounds, the lack of variation in tastant concentration and

task compromises the conclusion that a taste-specific map indeed exists. Moreover, the

absence of  an  adequate  measure  to  quantify  the  selectivity  of  specific  patterns  for

particular  taste categories  further  impairs  their  interpretation.  Hence,  the  aim of  the

present study was to test for a general gusto-topic organization and, more specifically,

to  provide  a  comprehensive  characterization  of  the  human  gustatory  cortex  as  a

function of (I) taste quality (bitter, salty, sweet, sour), (II) taste concentration (high, low)

and (III)  task (pleasantness, intensity judgements). To this end, 24 participants were

tested in two fMRI experiments in which we administered four basic taste categories at

two different concentrations plus an additional neutral compound. Participants judged

intensity  in  one  experiment  and  pleasantness  in  the  other  experiment.  Crucially,  a

spatially constrained classifier (searchlight approach) was trained on data of the first

experiment and tested on the second experiment and vice versa, to identify common,

task-independent  yet  taste-specific  representations.  Moreover,  taste-specific  tuning

functions were calculated for each searchlight to address the issue of narrow vs. wide

taste-specific tuning functions in human GC. Finally, across- and within-concentration

classification analyses were used to assess the influence of concentration on taste-

specific representations. 

Results 

Behavior. Participants were able to correctly perceive taste identity in the majority of all

cases  (see  supporting  Fig.  S1a-b).  Moreover,  they  rated  taste  valence  differently

depending  on  taste  concentration  and  taste  identity,  as  testified  by  the  significant
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interaction  (F(4,  23)  =  3.028,  p =  0.0186;  η2 =  0.030);  with  sweet  always showing

significantly enhanced and bitter showing significantly decreased ratings compared to

neutral (see supporting Tab. S1 and supporting Fig. S2c for details). Concerning the

intensity judgments, participants perceived a consistent difference in intensity between

high and low concentrations, as expected (main effect of intensity: F(1, 23) = 34.398, p

< .001; η2 = 0.181). Moreover, a main effect of taste identity was observed (F(4, 23) =

9.810, p < .001; η2 = 0.280), while the interaction between intensity and taste identity did

not reach significance (F(4, 23) = 2.237, p > .05; η2 = 0.048, see supporting Tab. S1 and

supporting Fig. S1d for details). 

Neural  underpinnings. The  central  focus  of  this  study  was  to  characterize  the

functional organization of putative GC, thus left and right insular cortex were targeted by

means of ROIs derived from independent functional parcellation of the insula (Fan et al.,

2016). Sparse multinomial logistic regression (Krishnapuram et al., 2005) was used to

train  and  test  in  turn  on  the  first  experiment  and  second  experiment  through  a

searchlight approach (Kriegeskorte et al., 2006). 

Cross experiment decoding. First,  we isolated fMRI patterns associated with taste

categories.  Given  previous  reports  on  the  influence  of  taste  concentration  on  fMRI

signals (e.g.  Canna et al., 2019), separate classifications were calculated for high and

low intensities. These critical comparisons will unveil task-invariant yet single or multiple

taste-preferring patterns if present. 

High concentration: Classification among high concentration tastes revealed patterns of

spheres for all four taste categories which were successfully decoded across the two

experiments (see Fig. 1a, right side). For this analysis, we first estimated probabilities
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(rather than accuracies) to quantify the selectivity of each searchlight sphere for a given

taste quality. This set of probabilities provides a continuous multidimensional measure

describing the selectivity  of  each searchlight  sphere (one probability  for  each taste)

rather  than  a  “winner-take-all”  accuracy  measure  (Anzellotti  and  Coutanche,  2018).

After initial classification, we then estimated evidence ratios (ER) by contrasting correct

classifications  with  false  positives  (i.e.  higher  probability  of  a  particular  taste  when

another taste was presented,  see Fig.  1a for significant  ER maps,  p(cluster)  < .05,

FWE-corrected, with an auxiliary threshold of p(voxel) < .001). Statistical maps of ER

were subsequently used to assess the selectivity of each sphere, based on a tuning

index. In particular, tuning indices (range 0-1) were computed based on the evidence

ratio for a particular taste relative to the highest evidence for all other tastes. Indices

equal  or  larger  than  0.5  indicate  an  increasingly  narrow tuning  for  a  specific  taste

category  (see  Methods  section  for  further  details).  Remarkably,  our  results  provide

evidence for a consistent narrow selectivity for all taste categories across experiments,

i.e. independent of task (see Fig. 1b for tuning maps).
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Figure 1. Cross experiment taste maps: (a) Flat maps depict significant clusters of evidence ratios
(cluster-thresholded at pFWE < 0.05 with an auxiliary voxel-threshold of p < 0.001) in insular cortex at the
group-level,  obtained through cross experiment  decoding.  Plots  were created by projecting 3D brain
voxels onto a 2D surface via Nilearn 0.5.0  (Abraham et al., 2014) and subsequently plotting the brain
surfaces by using Visbrain 0.4.0 (Combrisson et al., 2017). Note that ERs for particular tastes can and do
overlap. (b) Tuning maps depict spheres narrowly tuned to single tastes at the group level (thresholded at
> 0.5). (c) Tuning maps for an illustrative subject. The information provided by group level maps may be
misleading given the extreme variability of the insula’s functional microstructure  (Prinster et al., 2017;
Schoenfeld et al., 2004). Single subject maps exhibit a stronger degree of spatial continuity for specific
taste categories than the group-level maps. Left columns always represent low concentration tastes, right
columns represent high concentration tastes. 

Moreover, the number of spheres narrowly tuned to one particular taste varied, with

bitter showing consistent effects in ~4.3 % of insular spheres, salty in ~3.5 % of insula’s

spheres,  while  sweet  and sour  registered ~2.8  % and ~1.8 %, respectively.  Similar

sphere counts were obtained in both left and right insula. Next, we tested for spheres
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broadly tuned to more than one taste. However, virtually none of the clusters coding a

combination of two or three tastes survived the selection criteria. 

To  confirm at  the single-subject  level  that  these sphere-based observations are not

simply due to large interindividual differences in topologies due to group-mean voxel-

based averaging  (Prinster et  al.,  2017;  Schoenfeld  et  al.,  2004),  we next  tested for

differential  effects  of  taste category based on single subject results (see Fig.  1c for

tuning maps of an illustrative subject). Here, 8.89% (median +/- 1.2 % standard error),

8.40% +/- 1.2 %, 8.38% +/- 1.2 %, 6.75% +/- 1.1 % of insular spheres averaged over

hemispheres  responded  to  salty,  bitter,  sweet  and  sour,  respectively  (see  Fig.  2a,

leftmost columns for all scatter plots of all individual subjects).
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Figure 2. Tuning indices at subject level: Scatter plots depict  median tuning index for all  subjects
separately for high (a) and low (b) concentrations. The y-axis represents the median across tuning indices
for a specific taste or a compound of tastes. The x-axis indicates the percentage of spheres that shows a
preferential  tuning  for  a  taste  or  a  compound  of  tastes.  Scatter  plots,  from left  to  right,  represent
percentage of spheres tuned to single tastes (2 leftmost columns), double tastes (2 center columns) and
triple tastes (2 rightmost columns); the left and right columns of each taste configuration represent the left
and right insula, respectively. Note that the x-axis is scaled differently for single-, double- and triple taste
spheres (leftmost, middle and rightmost columns) due to the decreasing number of spheres responsive to
double and triple taste compounds. 

All subjects expressed taste-selective spheres for all tastants. No significant differences

in sphere count were observed for hemisphere, taste category or their interaction (p’s

> .4  and higher)  mirroring  the  group-level  results  (though  note  that  subject-specific

sphere  counts  are  higher  than  group-level  counts,  indicating  increased  sensitivity).

Moreover, the number of spheres was not related to perceived intensity or pleasantness

for any taste (p >= .424, Bonferroni-corrected). Finally, lower counts were found for two-

taste  (0.5%  +/-  0.3%)  and  three-taste  preferring  spheres  (see  Fig.  2a,  middle  and

rightmost columns; more than half of the subjects did not show any significant three-

taste preferring clusters;  see also supporting Tab.  S2a-b).  No significant  differences

across hemispheres or  taste  category  were  observed for  the  double  or  triple-tuned

spheres, confirming the pattern observed at the group level.

Low concentration:  As second critical  comparison, we tested for task-invariant taste-

specific patterns at low concentration. Figure 1a (left side) depicts significant clusters of

evidence ratio maps for each taste category for the low concentration stimuli. As for high

concentration maps, we again observed task-invariant yet taste-selective clusters for all

four tastes (see Fig. 1b). Overall cluster sizes were comparable to those observed for

the high concentration conditions at the group level. In particular, the subjects-specific

sphere  count  for  the  low-concentration  conditions  revealed  an  increase  in  insular
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spheres tuned to sweet (~4.7 %), while bitter (~2.3 %), salty (~0.7 %) and sour (~1.5 %)

preferences slightly decreased relative to high concentration spheres. As for the high

concentration, virtually none of the clusters were tuned to more than one taste category.

Again,  confirmatory  analyses  of  single-subject  results  corroborated  the  group  level

results (see Fig. 2b), with higher counts for single taste preferring spheres (bitter: 8.27%

+/-1.0; salty:  6.88% +/-.9;  sour:  7.47% +/-  1.0;  sweet:  9.68% +/-  1.3) than two- and

three-taste preferring spheres (see supporting Tab. S2). Moreover, subjective intensity

or pleasantness ratings were again not related to subject-specific sphere counts for any

taste  category  (p  >=  .512,  Bonferroni  corrected).  Together,  the  findings  for  both

concentration levels  reveal  that  there are consistent  taste-preference clusters in  the

insula and that most taste-sensitive spheres expressed a preferential tuning to one taste

only. However, these analyses above were independent from each other, thus cannot

answer  the  critical  question  whether  the  observed  task-independent  taste-specific

subregions were also independent of taste concentration. 

High  versus  low  concentrations. The  most  critical  comparison  therefore  tested

whether  the  observed task-independent  clusters  were  also  not  affected by  stimulus

concentration. For this direct fine-grained analysis of the relationship between high and

low concentration maps, we quantified the amount of overlap between high and low

concentration maps for both group and single subjects maps for all taste categories.

Specifically, we counted the number of spheres coactive in low and high concentration

tuning maps and we then computed the ratio between the number of coactive spheres

using geometric mean between the two compared cluster sizes. Geometric averaging

was  adopted  to  account  for  the  overall  different  size  of  the  clusters  of  interest.
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Otherwise, the chance to observe high or low overlap might have been biased by the

relative size of each cluster (e.g. two bigger clusters would have had a higher probability

to  share  common  spheres  than  two  small  clusters).  This  procedure  provided  a

continuous index of overlap ranging between 0 and 1, where 0 indicates no overlap and

1 indicates complete overlap. We computed the index of overlap separately for each

taste to determine to which extent spheres that showed a preference for a specific taste

at a low concentration showed a preference for the same or a different taste at a high

concentration.  Remarkably,  the overlap between high and low concentration maps -

obtained  from  the  cross  experiment  classification  -  were  extremely  low  suggesting

distinct  taste-related patterns as a function of stimulus intensity (see Fig.  3a middle

diagonal, bitter left insula: 0, bitter right insula: 0, salty left insula: 0.03, salty right insula:

0, sour left insula: 0.05, sour right insula: 0, sweet left insula: 0, sweet right insula: 0.04,

see  supporting  Fig.  S2  for  virtually  identical  results  at  the  single-subject  level).

Remarkably,  some  spheres  even  switched  their  taste-specific  preference  (e.g.  from

bitter to sour as indicated by the off-diagonal cells).
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Figure 3. Coactive spheres across taste concentrations: (a) Heat maps depict the coactivity index of
spheres based on data from narrowly tuned spheres for the cross experiment decoding. Coactivity is
expressed as an index of overlapping spheres across concentrations, where 0 indicates the absence of
overlap and 1 complete overlap. (b) Heat maps represent the coactivity index based on classifications for
intensity judgements. (c) Heat maps represent the coactivity index for pleasantness judgements.  The
main diagonal represents coactive spheres coding for the identical taste category across concentrations.
Values outside the main diagonal indicate a switch in taste preference as a function of concentration.

To  test  the  exact  response  properties  of  the  spheres  that  exhibited  concentration-

invariant taste-specificity,  we visualized the amount of  agreement between high and

low-intensity sphere values using Bland and Altman plots  (Bland and Altman, 1999).

Specifically, the plots in Figure 4 show the difference between sphere values for high
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and low concentrations (see the Methods section for further details). Here, deviations

from zero on the y-axis indicate the amount of disagreement between high and low

intensity sphere values, the closer to zero the less sphere values disagree. There was

only a small subset of coactive spheres between high and low concentrations with 4-8

participants per taste showing no concentration-invariant clusters at all (though note that

these concentration-invariant spheres in the responsive participants shared particular

properties as they were grouped together in the Bland-Altman-plots along the y-axis). 

Figure 4. Coactive concentration-independent spheres: Bland and Altman plots represent the amount
of agreement between low and high concentration spheres for the cross experiment classification. Blue
dots represent the agreement of high and low concentration spheres in the insula for all subjects. Red
dots represent the amount of agreement for coactive spheres of all subjects. The clustering around zero
(y-axis)  suggests  non-trivial  similar  evidence  ratios  in  low  and  high  concentrations,  indicating
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concentration independent spheres. The x-axis indicates the average between high and low concentration
of  log  transformed  evidence  ratios.  The  y-axis  indicates  the  difference  between  high  and  low
concentration log transformed evidence ratios (see Bland and Altman plots section for further details). The
top-distribution represents the mean between high and low concentrations for a given taste. The left-
distribution represents the difference between high and low concentrations for a given taste.

Finally, we tested whether the few concentration-invariant spheres anatomically group

together in a particular region of the insula. Since the insula contains many higher-order

gustatory and multisensory regions in addition to the primary gustatory cortex (PGC),

we reasoned that concentration-invariant spheres might be clustered in PGC. To test

this, we first generated group mean maps for each taste. However, no location of insula

contained concentration-invariant spheres from more than three participants. Second,

we checked whether  any particular  subfield  within  the insula contained most  of  the

subject-specific concentration-invariant spheres using the subfield definition provided by

Fan and colleagues (Fan et al., 2016). However, concentration-invariant spheres were

present in all subfields but were usually found in less than half of all participants per

subfield  (see  supporting  Fig.  S3).  Thus,  we  observed  no  anatomical  hotspot  for

concentration-invariant spheres. 

Within  experiments  decoding.  In  order  to  further  confirm  that  the  topological

distinction observed between low and high concentrations was consistent in each single

experiment  and not  merely  due to  task differences across the two experiments,  we

performed  four  additional  classifications,  i.e.  we  separately  decoded  high  and  low

concentrations  within  each  experiment.  For  this  analysis,  the  cross-validation  was

based on a different training and test set: a leave-one-out procedure was used in which

the classifier was trained on three out of the four runs and tested on the remaining one.
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As  expected,  we  were  again  able  to  decode  patterns  of  spheres,  here  within  the

individual  experiments,  which  were  associated  with  each  taste  at  high  and  low

concentrations (see Fig.  5a-b).  In  Figure 3b and 3c,  we show the index of  overlap

between high and low concentrations separately for each experiment; as for the cross-

experiments  maps  (see  Fig.  3a),  we  see  very  little  overlap  between  high  and  low

concentration maps in the within-experiment analyses.

Cross-concentrations  decoding.  Lastly, in  order  to  confirm whether  high  and  low

concentration  maps  reflect  truly  distinct  populations,  we  performed  two  additional

classifications, one per experiment. We trained the classifier on the low concentration

tastes and tested on the high concentration tastes and vice versa for each experimental

session. 
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Figure 5. Within experiments tuning maps: (a) Left and right flat maps depict narrowly tuned spheres in
insular cortex for low concentration tastes, separately for intensity judgements (left) and pleasantness
judgements  (right).  (b)  Left  and  right  maps depict  narrowly  tuned  spheres  in  insular  cortex  for  high
concentration stimuli,  for intensity and pleasantness judgements,  respectively.  (c)  Left  and right  plots
depict  maps  representing  tuning  indices  for  cross  concentrations  decoding  for  each  taste  category,
separately for intensity and pleasantness judgements. Note that within concentration decoding produces
consistent  results  (a-b),  whereas  cross-concentration  decoding  (c)  reveals  almost  no  consistent
clustering.  

We reasoned that if different populations are coding for low and high concentrations, we

should  observe  a  poor  classification.  In  line  with  our  hypothesis  and  the  previous

decoding  results,  we  indeed  observed  only  a  small  amount  of  spheres  coding

indiscriminately  for  low  or  high  concentration  tastes  (Fig.  5c):  Based on  the  tuning

maps, in experiment 1, bitter exhibits only 0.1% of narrowly tuned spheres, salty: 0.5%,

sour: 0.15% and sweet: 0.17%; similar results are obtained in the experiment 2, where

bitter exhibits 1.2%, salty: 0.15%, sour 0.5% and sweet: 0.4%. Together, this pattern of

results is in clear disagreement with the notion of broad concentration-invariant maps of

taste qualities in the human insula. 

Discussion

The main objective of the present study was to test for task- and concentration-invariant

maps in human gustatory cortex through an information based approach. We tested

identical participants in two distinct fMRI experiments on different days and successfully

decoded  patterns  of  spheres  associated  with  each  specific  taste  category  in  all

participants. Remarkably, we were able to decode patterns of spheres associated with

the  specific  taste  categories  across  distinct  behavioral  tasks  and  time,  suggesting
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robust task-invariant taste representations in all individual participants. Most importantly,

low- and high-concentration taste-selective representations showed very little overlap,

contradicting the notion of an exclusively topological organization based on linguistic

taste labels. 

Significantly  extending  previous  observations  (Chikazoe  et  al.,  2019),  we  observed

patterns of spheres narrowly,  but not exclusively,  tuned to specific tastes as well  as

smaller patterns of more broadly tuned spheres in the left and right insula at the group-

level and confirmed taste-specific patterns when considering only one concentration.

The information provided by group level maps may nonetheless misrepresent the actual

organization observable at the single subject level given the extreme variability of the

insula’s  functional  microstructure  as  previously  pointed  out  (Prinster  et  al.,  2017;

Schoenfeld et al., 2004). When inspecting single subjects’ maps, we observed patterns

exhibiting a stronger degree of spatial continuity for specific taste categories. It has to

be noted though, that such subject-specific tuning maps showed a mixture of spheres

narrowly tuned towards one taste category and others exhibiting a broader tuning while

keeping a distinct preference for a specific taste.

As a consequence of the structural variability across individuals, spheres equally tuned

to two or three tastes were virtually absent at the group-level. Also at the single subject

level, the number of spheres coding two tastes was much smaller than spheres coding

single tastes; likewise, only a few subjects showed spheres coding for three different

tastes. This lack of patterns equally tuned to different tastes might be ascribed to the

stringent criteria that we adopted to identify tuning indices. Alternatively, responses in

multi-taste spheres might be more easily elicited by presenting compound tastes which
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was  not  part  of  our  current  experimental  design.  In  line  with  our  results  however,

Fletcher and colleagues (Fletcher et al., 2017) also observed single taste preferences in

the majority of neurons. 

Considering topological theories, we do not find any evidence for common maps across

concentrations, though stable clusters were observed for single concentrations in line

with previous research (Chen et al., 2011; Prinster et al., 2017). Moreover, we observed

a patchy organization in insular cortex for different taste categories rather than a highly

ordered topography  (Chen et al.,  2011;  Prinster et  al.,  2017).  Thus, our data rather

supports  a  model  of  distributed  populations  of  neurons  coding  for  different  taste

qualities, than a model of highly specialized maps. A population coding model seems to

be supported by the distinct topological organization that we observed in high and in low

concentration  maps  (note  that  even  for  the  low-concentration  tastes  all  behavioral

responses differed  from each  other,  pointing  to  a  sufficiently  high  concentration  for

perception, in accord with the distinct patterns of neural activity). Especially at the single

subject  level  (see  Figure  S2  in  Supporting  material),  subsets  of  the  spheres  that

preferentially coded for a specific taste at low concentration changed their preference to

a  different  taste  at  high  concentration,  hence  suggesting  that  taste  coding  might

dynamically change according to relevant features and might be achieved through a

distributed population rather than rely exclusively on rigid functional maps. One might

argue that the difference in representation of low vs. high-concentration tastes might be

due to the fact that participants were less able to identify the low-concentration tastes

(relative to the higher ones). However, a confusion between different low-concentration

tastes should lead to less stable decoding patterns rather than the stable patterns for
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each low-concentration taste observed here. Moreover, the lack of overlap for low and

high concentration patterns also suggests that the coding mechanisms in the gustatory

cortex differs from other, topologically-ordered systems, e.g. vision: There, a change in

stimulus intensity may modulate the firing rate of identical neurons and classification

accuracy (due to changes in SNR) yet should yield similar overall  patterns; whereas

with our gustatory results, tuning patterns stay robust (see Fig.2) but seem to change

location. In accord, a recent study conducted in mice (Wu et al., 2015) targeted sensory

neurons  in  the  geniculate  ganglion,  hence  focused  on  an  earlier  stage  of  taste

processing, and found a robust change in preferential tuning when taste concentration

was systematically varied. Up to 51% of the narrowly tuned neurons exhibited a taste-

selectivity  change  from  narrow  to  broad  tuning,  suggesting  that  at  least  at  an

intermediate  processing  stage  mice  brains  rely  on  a  pattern  coding  mechanism.

Although, we observed a similar scenario at a higher stage of processing, our results

seem to provide further evidence in favor of a population coding model. 

Finally, the amount of overlapping spheres between high and low concentration maps

was  consistently  low.  In  some  cases,  there  were  no  overlapping  spheres,  thus

suggesting that, at least partially, two different underlying populations of neurons might

be  preferentially  coding  for  a  taste  category  at  high  and  low  concentrations.  Our

observations are also supported by a recent study in rats (Fonseca et al., 2018), which

shows that over a large number of neurons only a “small” subset is able to code for both

high and low concentrations of sucrose. In accord, a monkey study (Scott et al., 1991),

observed that less than 1.5 % of the recorded neurons in the insular cortex exhibited a

linear response as a function of the increase in glucose concentration. Although those
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studies report effects on the cellular level and might thus be difficult to directly link to

population-based fMRI results, it has nevertheless been shown for the visual modality

that orientation tuning can be picked up with fMRI (Kamitani and Tong, 2005), even

though the spatial  resolution of fMRI was much coarser than the size of orientation

columns. Potentially, a similar effect was observed here.

While only a small number of concentration-independent taste-preferring spheres were

found  in  our  study,  concentration-dependent  taste-preferring  spheres  were  more

common  and  found  in  all  participants.  However,  the  exact  spatial  layout  differed

between  participants  and  did  not  seem  to  follow  a  highly  organized  topological

arrangement. It has also been proposed that chemical senses have evolved to detect

and  evaluate  potential  primary  reinforcers  (e.g.  Prinster  et  al.,  2017).  Thus,  the

organizational  principle  in  gustatory  cortex  should  be based on valence rather  than

physical stimulus properties. However, the largest taste-specific effects found here were

task-independent and did not vary with perceived pleasantness (or intensity) in contrast

to this hypothesis. Hence, we propose that the variation in neural signaling which was

linked to valence in previous studies  (Grabenhorst et al., 2008; Prinster et al., 2017)

may  rather  be  based  on  changes  of  a  physical  property,  i.e.  concentration,  which

governs perceived pleasantness and significantly shapes informational content in low-

level gustatory cortex.

In summary, our results demonstrate clusters in the human insular cortex preferentially

tuned  to  specific  taste-categories  in  all  single  subjects.  Importantly,  variations  in

stimulus concentration reveal a complex pattern of activity with little overlap between

concentration-dependent taste-specific representations. Together, these results point at
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a population-based organization in gustatory cortex and highlight that gustatory cortex

might be coding a complex mixture of taste identity and concentration rather than a

representation based solely on taste identity. 

Methods

Participants

25 healthy volunteers took part in two experiments; one participant was excluded from

the final analysis due to a technical problem with taste delivery, hence resulting in 24

participants (16 female, age: M = 24.9, SD = 3.6). Participants fulfilled the following

inclusion criteria: no known allergies/sensitivity to the chemical solutions used in the

experiments, no respiratory tract infections in the two weeks prior to the experiments, no

neurological  and  psychiatric  disorders,  no  ongoing  diets,  no  regular  intake  of

medication, no smokers. Additionally, participants were asked to abstain from ingesting

any food or caloric drink within the 3 hours prior to the experiments. In order to assess

normal  tasting  and  smelling  abilities,  participants  passed  two  clinical  tests:  ‘Taste

Stripes’ and ‘Sniffin’ Sticks’ (Burghart Messtechnik, Wedel, Germany). All  participants

gave written  informed consent  according  to  the  local  ethics  committee  of  Otto-von-

Guericke-University Magdeburg.
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Stimuli

We used four distinct tastants (bitter, salty, sour, sweet) plus a neutral solution (artificial

saliva). Solutions were provided by the central pharmacy of the medical faculty of Otto-

von-Guericke-University  Magdeburg.  Stimuli  were  obtained  from the  following  basis

solutions  (=  100%):  600  mM  NaCl  (salty),  1  M  glucose  (sweet),  0.1  mM  quinine

hydrochloride (bitter) and 8 mM citric acid (sour). The neutral solution consisted of 5 mM

KCl and 0.5 mM NaHCO3, the same chemical compounds as saliva (O’Doherty et al.,

2001) though at lower concentration as O’Doherty et al.(2001) based on own piloting.

With  the  exception  of  the  neutral  taste,  all  stimuli  were  presented  at  two  different

concentrations (low and high), which were chosen via pilot testing in order to guarantee

a  discernible  difference  between  the  two  concentrations.  The  resulting  stimuli  were

obtained according to the following percentages of basis solution dissolved with pure

water (low/high): 10 %/70 % salty, 20 %/80 % sweet, 20 %/100 % bitter, 10 %/80 %

sour.

Stimuli  were delivered through an automated stimulation device: Gustometer GU002

(Burghart  Messtechnik,  Wedel,  Germany).  The  Gustometer  allows  the  control  of

stimulus duration and concentration and massively reduces undesirable somatosensory

stimulation given that stimuli are sprayed via compressed air directly onto the tip of the

participants’  tongue.  The  Gustometer  delivers  the  stimulus  at  ca.  40°C  resulting  in

approximately the body temperature of the stimulus upon tongue contact. The device

was controlled through Matlab 2012b (Mathworks, Inc., Natrick, MA) via custom made

scripts  and  Psychophysics  Toolbox  (Brainard,  1997) running  on  a  Windows  7

environment.
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Stimuli  were  delivered  to  the  participant  through  a  pump  hold  by  a  custom  made

plexiglass scaffolding mounted above the head coil. Participants were asked to protrude

the tip of their tongue and enclose it with their lips in order to prevent to ingest the liquid.

None of the participants reported any physical discomfort related to this procedure. The

liquid  was  then  absorbed  by  a  tissue  placed  below  the  participant’s  mouth.  This

procedure was adopted to avoid any motion and swallowing related artifacts and most

importantly  to  isolate  taste-related  activity;  while  avoiding  or  holding  constant  other

confounding factors (e.g. temperature, stimulation of oral cavity etc.).

Experimental Procedure

Participants took part in two scanning sessions with a minimum time interval of 1 day

and a maximum of 7 months. Before and after any scanning session, participants –

while laying in the scanner – were asked to identify each one of the stimuli presented

during the experiment, resulting in four distinct identifications per taste (see supporting

Fig. S1a-b for descriptive results).

The main experiment consisted of four runs, each composed of 45 trials.  Each run

consisted of sequences of stimuli comprised of all tastes in both concentrations plus the

neutral taste. All sequences had to fulfill three basic constraints: 1) each stimulus was

presented 5 times within each run, 2) the same stimulus could never be presented twice

in a row, 3) each combination of two consecutive stimuli was presented at least once

during the entire experiment by using De Brujin sequences. 
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During scanning, each trial started by concurrently displaying the word “Schmecken”

(“Taste”  in  German)  and spraying  the  tastant  on  the  tongue of  the  participant.  The

stimulation  consisted  of  four  distinct  sprays  (250  ms  each)  interspersed  with  four

pauses (250 ms each) for a total duration of 2 seconds; each spray released 50 µl of

tastant, summing up to a total of 200 µl per trial. The tastant delivery was followed by a

rating  scale  which  assessed  intensity  or  pleasantness  for  the  first  and  second

experiment, respectively (“Wie intensiv/angenehm empfinden Sie diesen Geschmack?”,

“How intense/pleasant does this taste?” in German). Participants were asked to provide

their  rating  on  a  nine-point-scale  ranging  from 1:  “No  perception”  to  9:  “Extremely

intense”, or “Extremely unpleasant” to “Extremely pleasant” displayed on the screen. In

order to respond, participants slid a green cursor through the numbers of the scale by

pressing two buttons with the index and middle finger of the right hand. To confirm their

choice, participants pressed a third button with the thumb. For each rating scale, the

green cursor  was randomly  located on a different  digit  upon scale display to  avoid

biasing. In case a participant was unable to provide an answer within 6 seconds after

the appearance of the scale, the response was considered invalid. Immediately after the

rating scale, the word “Rinse” was presented on the screen together with 2 seconds of

sprayed water to rinse the tongue from the previous tastant. The following trial started

after an intertrial interval of 2 seconds (total trial duration 12 s).
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Neuroimaging Data Collection

Scanning was conducted on a Siemens Prisma 3 Tesla system with a 32-channel head

coil for signal reception. T1-weighted structural images were acquired with an MPRAGE

sequence using the following parameters: 1 x 1 x 1 mm3 voxel size, 256 x 256 x 192

matrix, 2.82 ms echo time, 2.5 s repetition time, 1.1 s inversion time, 7° flip angle, 140

Hz/pixel bandwidth, 7/8 partial Fourier, parallel imaging with a GRAPPA factor of 2, and

5:18 min scan duration.

For  functional  imaging  we  opted  for  a  combination  of  reduced  field-of-view  (rFOV)

gradient  echo  EPI  and  parallel  imaging  in  order  to  minimize  signal  dropout  and

geometric distortion. This technique is part of the Siemens "Advanced fMRI" work-in-

progress software. During each of the 4 functional runs we acquired 280 volumes using

the following parameters:  24 slices,  1.8  mm slice  thickness,  0.9  mm interslice gap,

ascending slice excitation order, 135 x 240 mm2 rFOV, 1.25 x 1.25 mm2 in-plane voxel

size, 30 ms echo time, 2 s repetition time, 90° flip angle, 1 mT/m·ms z-shim, 0.73 ms

echo spacing, and GRAPPA factor of 2. The transversal slice block was tilted 20° with

respect to the AC-PC line.

To facilitate the registration and normalization of the rFOV we additionally acquired 10

whole brain EPI volumes. In order to keep geometrical distortions within the rFOV part

of  the whole brain data set identical  to the functional  scans the shim settings were

copied and the FOV and matrix size in phase direction as well as the GRAPPA factor

were doubled. A Siemens auto-align-algorithm was used to  automatically  select  the

identical slices during the second scanning session.
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Data Analysis

Behavioral data

Ratings  of  intensity  and  pleasantness  were  analyzed  with  the  same  statistical

procedure:  We first  computed the median across all  the ratings separately for each

experimental  condition.  Each  dataset  was  then  subjected  to  a  repeated-measures

ANOVA with factors: Taste category (bitter, salty, sour, sweet and neutral) and Intensity

(high  and  low).  Post-hoc  t-tests  were  subsequently  performed  to  statistically  test

potential differences among taste ratings. In order to correct for multiple comparisons,

Bonferroni correction was applied.

Brain-behavior correlations were computed using Pearson’s correlation coefficients and

Bonferroni  corrections.  Effects  of  taste  category and  intensity were  analyzed  using

repeated measures ANOVAs with the factors hemisphere and taste category, separately

for low and high concentrations. All analyses were performed by using the R package

stats v3.6.0 within the R environment (v3.4.4).

fMRI data pre-processing

fMRI analysis was conducted within a computational cluster in a Debian environment;

analysis tools were obtained through NeuroDebian (Halchenko and Hanke, 2012).

Both datasets were subject to the identical pre-processing procedure: Prior to any pre-

processing, 4 dummy scans, collected at the beginning of each scanning session were
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removed  from each  dataset.  Motion  correction  was  performed  by  re-aligning,  each

volume  of  both  experiments  to  the  first  volume  of  experiment  1  via  a  rigid  body

transformation (MCFLIRT, FSL 5.09).

For noise reduction, time series were temporally filtered by means of a band pass filter

(cutoffs: 4 Hz, 150 Hz). Additionally, each volume was spatially smoothed by applying a

FWHM Gaussian kernel of 4 mm via Nilearn 0.5.0 (Abraham et al., 2014).

Multivariate Pattern Analysis (MVPA)

Decoding  analysis  was  performed  with  PyMVPA  (Hanke  et  al.,  2009) and  custom

Python scripts. Prior to the MVPA, each time series was fitted on a voxel by voxel basis

with a General Linear Model (GLM) using Nipy 0.4.2 (Millman and Brett, 2007). 

The GLM was composed of five “taste” regressors (neutral, bitter, salty, sour, sweet; trial

onset  aligned  with  start  of  taste  delivery,  duration  2  s)  convolved  with  a  canonical

hemodynamic response function (HRF) with temporal derivatives. Motion estimates (6

DOF) were included as additional nuisance regressors. In order to subtract potential

artifacts  common  to  each  taste  condition,  GLM  parameters  for  each  taste  were

contrasted runwise against the neutral condition and the resulting t-contrasts were used

as features for classification.

We  then  applied  a  Sparse  Multinomial  Logistic  Regression  classifier  (SMLR,

Krishnapuram et al., 2005) and a leave-one-out cross-validation procedure. The type of

folding  used  for  cross-validation  changed  according  to  the  aim  of  the  specific

classification performed. For the cross-experiment classification, the SMLR was, in turn,

trained on one experiment  and tested on the other one; for  the cross-concentration
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classification, the SLMR was trained on low concentration data and tested on the high

concentration data and vice versa. For the within experiment classifications (separate

classifications for high and low concentrations for both experiments), the SMLR was, in

turn, trained on three out four runs and tested it on the remaining run. Classification was

restricted to voxels in the insula using the brain parcellation provided by Fan et al.,

2016, with a 50% cut-off criterion for the probability maps. Insular ROIs included the

following left  and right  subregions: dorsal  dysgranular insular (dId),  dorsal  agranular

insular (dla), ventral agranular insular (vla), dorsal granular insular (dlg), ventral granular

insular (vlg/vId) and hypergranular insular (G) cortex.

Decoding was performed through a Searchlight approach  (Kriegeskorte et al.,  2006)

with a sphere’s radius of 4 voxels. The primary outcome of the classification analysis

were  the  taste-category-wise  probability  estimates  of  the  SMLR classifier,  for  each

searchlight sphere and each data fold.

MVPA statistical analysis

In order to assess the degree of evidence for a response to a specific presented taste,

we computed the following ratio for each taste and searchlight sphere:

PE (T )=med (P (T ) ) for each taste category across all data folds

ER (T )= PE (T )
max (PE (∼T ) )
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Where:  PE(T)  denotes  the  median of  the  SMLR probability  estimates  P(T)  for  one

specific taste across all trials in which this particular taste was presented. PE(~T) is the

median of probability estimates for the same taste based across all trials in which this

particular taste was not presented (i.e. a different taste was presented). The rationale

adopted for the Evidence Ratio (ER) resembles the concept of the Bayes factor, by

comparing the alternative PE(T) and null PE(~T) hypothesis to assess the goodness of

the model of interest. 

ER computation yields a single map for each taste. In total, four evidence ratios, one for

each taste, were calculated per data fold. The obtained maps were then statistically

evaluated at the group level following a bootstrapped permutation analysis proposed by

Stelzer et al. (2013), implemented in PyMVPA, and briefly summarized here: In order to

assess the null distribution of results, we computed 50 additional “chance” result maps

for each participant, using the identical analysis setup and data folding strategy, while

permuting  the  taste  labels  within  the  training  data.  For  group-level  inference,  all

individual maps were spatially transformed and re-sliced, via FSL FLIRT, from native

image space into MNI space with a 2 mm isotropic voxel size.

The empirical group average map was thresholded using a variable voxel-wise cut-off,

corresponding to p < 0.001 of the distribution of results from 10000 bootstrap samples

of group average maps, computed from randomly drawn “chance” maps, one for each

participant. Likewise, group-level cluster size was statistically tested (p < 0.05) based on

the distribution of cluster sizes across the 10000 bootstrap samples, after applying the

same p < 0.001 voxel-wise threshold to all “chance” group average maps.
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Quantifying tuning maps

In order to quantify the degree of selectivity for each taste or a combination of taste

categories, we computed an index of preferential tuning for each sphere. Tuning indices

(TI) were based on ERs and calculated by using the single taste ERs (e.g. salty) or by

combining  the  ERs  of  different  tastes  (e.g.  bitter  and  salty).  Importantly,  TIs  were

calculated both on the group-level and single subjects’ statistical maps according to the

following equation:

TI (T )=
min (ER (T ) )

max (ER (T ) )+max ⁡(ER (∼T ) )
 

 

Where: ER(T) indicates the evidence ratio for – a single taste or a combination of tastes

of interest – and ER(~T) indicates the evidence ratios of the remaining tastes. In case of

single taste tuning, min(ER(T)) and max(ER(T)) are simply ER(T). The choice of taking

the minimum of ER(T) – in the numerator – and maximum of ER(T) – in denominator –

becomes relevant only when we want to evaluate the selectivity of a combination of

tastes (e.g.  bitter  and salty).  Selecting the smaller  ER(T)  in  the numerator  and the

bigger ER(T) in the denominator prevents that two highly different ER values would

produce a TI above 0.5, which would indeed provide a misleading characterization of

that  sphere’s  preference.  Tuning  indices  guarantee  that  a  given  sphere  can  be

considered as preferentially tuned to a taste or a combination of tastes only if the tuning

index is equal or bigger than 0.5. Hence, they provide a rather conservative measure

(range 0-1) either in favor – values above or equal to 0.5 – or not in favor of the selected

31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/774687doi: bioRxiv preprint 

https://doi.org/10.1101/774687
http://creativecommons.org/licenses/by/4.0/


taste – values below 0.5. Additionally, to avoid selecting extremely low but significant

evidence ratios, we selected spheres with ER(T) equal or larger than 3 for at least one

taste. This threshold was motivated by the analogy with the Bayes factor, where values

equal  or larger than 3 are considered indicative of a moderate evidence  (Kass and

Raftery, 1995). 

Bland and Altman plots

Bland and Altman plots (Bland and Altman, 1999, see Figure 4) represent the amount of

agreement between high and low concentration evidence ratios in the cross experiment

classification. In order to construct such plots, we first assembled the ERs of a specific

taste contained in the ROI of all subjects. Given the high variability of the ER values, we

log-transformed (log2) the data to merely improve results visualization. The x axis of the

plots  represents  the  average between high  and low concentration  ERs.  The y  axis

represents the difference between high and low concentration ERs. The blue dots are

simply  the  result  of  the  aforementioned  computations,  thus  representing  a  general

agreement between high and low concentration ERs. The red dots represent, instead,

the  agreement  between  co-active  spheres  in  high  and  low  concentration  ERs  that

exhibited also a tuning index equal or larger than 0.5. Note that there is no circularity in

this approach given that ERs with tuning indices equal  or larger than 0.5 can have

completely different values and are not conditioned by any common constraint, except

for the requirement to have an ER value equal or larger than 3 (see the Quantifying

tuning maps section). Hence, the clustering around 0 along the y-axis provides critical

additional information about these coactive spheres. 
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