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Abstract: FRET imaging is an essential analytical method in biomedical research. The limited 

photon-budget experimentally available, however, imposes compromises between 

spatiotemporal and biochemical resolutions, photodamage and phototoxicity. The study of 

photon-statistics in biochemical imaging is thus important in guiding the efficient design of 

instrumentation and assays. Here, we show a comparative analysis of photon-statistics in FRET 

imaging demonstrating how the precision of FRET imaging varies vastly with imaging 

parameters. Therefore, we provide analytical and numerical tools for assay optimization. FLIM 

is a very robust technique with excellent photon-efficiencies but also intensity-based FRET 

imaging can reach very high precision by utilizing also information within acceptor 

fluorescence. 

1. Introduction 

Förster resonance energy transfer (FRET) is the non-radiative transfer of energy from a donor 

fluorophore to an acceptor chromophore [1, 2]. The probability for a molecule to transfer energy 

via FRET (E, FRET efficiency) depends on the inverse of the sixth power of the inter-

chromophore distance and, typically, FRET efficiency is sensitive to distances within the  

nanometers range [3]. For its high sensitivity at the nanometer scale, FRET has many 

applications in biophysics and biomedical sciences, for instance, to determine intermolecular 

distances and protein conformational changes, to detect protein-protein interactions, protein 

modifications and to engineer biosensors for the detection of biomolecules (reviewed in [4-7]). 

FRET results in the reduction of the quantum yield and the fluorescence lifetime of the donor 

fluorophore; in the instances where the acceptor is a fluorescent molecule, FRET also causes 

the sensitized emission of fluorescence from the acceptor fluorophore [1]. Fluorescence 

lifetime imaging microscopy (FLIM) [8, 9] is thus one of the methodologies that enables 

researcher to quantitate FRET; among the various types of FLIM techniques, time-correlated 

single-photon counting (TCSPC) is considered the gold standard for its high precision and 

accuracy [10, 11]. Biological applications of FRET and FLIM are often constrained by the 

limited available photon-budget, i.e. the number of photons that can be detected within a 

reasonable exposure time limited by the need to avoid photodamage and phototoxicity or by 

the time resolution required to characterize dynamic biological processes. The role of photon-

statistics for several FRET imaging techniques has been characterized, more extensively for 

FLIM applications [8, 12-19] and, to our knowledge, at a lesser extent for intensity-based FRET 

imaging techniques [20, 21].  

A method that is commonly used to quantify FRET efficiencies by sensitized emission 

FRET (seFRET) relies on the acquisition of three images [22, 23]: i) the image of the donor 

excited at a wavelength optimized for donor excitation (IDD), ii) the image of the acceptor 

acquired exciting the sample at the same wavelength used for donor excitation (IDA) and iii) the 

image of the acceptor excited at a wavelength optimized for the excitation of the acceptor (IAA). 

Usually, the selective excitation of a donor fluorophore (avoiding excitation of the acceptor 

fluorophore) or the selective detection of the FRET-sensitized emission of the acceptor 

fluorophore (with no direct excitation or no contamination from the fluorescence emitted by 

the donor fluorophore) is not possible. Therefore, several groups have developed methods and 

software for the correction of spectral cross-talks [22-26] or spectral unmixing [27-30]. For 

example, we can estimate the donor spectral bleed-through into the acceptor channel using a 

donor-only control sample and measuring the ratio of intensities detected in the acceptor an 
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donor channels: DER = [IDA/IDD]only-donor (donor emission ratio). Similarly, we can estimate the 

direct excitation of acceptor fluorophores by exciting an acceptor-only sample with excitation 

light optimal for acceptor excitation, and measuring the ratio of intensities detected into the two 

channels: AER = [IDA/IAA]only-acceptor (acceptor excitation ratio). The corrected FRET signal 

(cFRET) can be then computed on each pixel of the sample where both donor and acceptor 

fluorophores are present [22, 23]: 

 cFRET = IDA – DER IDD – AER IAA (1) 

 

We can quantitate FRET efficiency by normalizing the FRET-sensitized fluorescence 

intensity cFRET to the intensity that would have been emitted by the donor if FRET did not 

occur (dFRET estimator) or to the intensity that would have been emitted by the acceptor if 

FRET efficiency was equal to 100% (aFRET estimator):  

 dFRET = η cFRET  / (IDD + η cFRET) (2a) 

 aFRET = ε cFRET / IAA (2b) 

 

ε and η are two additional correction factors that depend on the imaging parameters and can 

be determined by imaging a sample exhibiting a known FRET efficiency (see also 

supplementary tables 1-3 to compare different nomenclatures). It has been shown [22] that 

dFRET and aFRET are good estimators for the apparent FRET efficiency, i.e., the FRET 

efficiency (E) multiplied by the fraction of interacting donors (fD) or interacting acceptors (fA), 

respectively. Protocols for seFRET estimation are described elsewhere [22, 23, 31]. Here, we 

study the role of photon-statistics in seFRET and provide a theoretical comparison of the 

physical limits in precision and accuracy between seFRET and the well-characterized TCSPC. 

Interestingly, seFRET performs very well from a theoretical perspective, resulting in high 

precision because of the efficient utilization of information inferred from both donor and 

acceptor signals.  

2. Results 

A. Fisher information matrix and seFRET 

We describe the wavelength-dependent (λ) fluorescence emission as the sum of photons emitted 

by the donor fluorophore, photons emitted by sensitised acceptors (SE) and photons emitted by 

acceptors upon direct excitation (DE) with donor excitation light source: 

𝑓(𝜆, 𝐸, 𝑛_𝐷, 𝑛_𝐴, 𝑛_𝐷𝐴 ) = 

 𝑘𝑒𝑥𝑇{𝑆𝐷(𝜆)[𝑛𝐷 + 𝑛𝐷𝐴(1 − 𝐸)] + 𝑛𝐷𝐴𝑆𝑆𝐸(𝜆)𝐸 + 𝑛𝐴𝑆𝐷𝐸(𝜆)} (3) 

 

SD, SSE and SDE depend on the spectral characteristics of the fluorophores and detection 

system, e.g., quantum yields, molar extinction coefficients, spectral overlaps; nD, nA and nDA 

are the number of non-interacting donor molecules, non-interacting acceptor molecules and 

interacting donor-acceptor pairs in the sample, respectively. After integration of Eq. 3 over the 

spectral bands of the donor ([λd1, λd2]) and the acceptor channels ([λa1, λa2]), it is possible to 

express the detected intensity in the form: 

 𝐼𝑖(𝐸, 𝐶𝐷, 𝐶𝐴) = 𝐹
𝑖[(1 − 𝛽𝑖

−1)𝜁𝑖(𝐸𝑗 , 𝐶𝐷, 𝐶𝐴) + 𝛽𝑖
−1] (4) 

where i = DD, DA, AA and j = D, A; βi is the fractional contribution of an unspecific 

background signal (Bi), Fi is the maximum intensity of the channel relative to the value of the 

function ζi(E,CD,CA) which is the only expression that explicitly depends on the energy transfer 

efficiency, the concentrations of donor (CD) and acceptor (CA) fluorophores; furthermore ED =  

fDE and EA =  fAE are useful parametrization to analyze the performances of dFRET and aFRET, 
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respectively. For both dFRET and aFRET (j = D or A), the values of Fi, βi and ζAA are (see 

Supp. Eq. S28-32 in supporting information): 

 

{
 
 
 
 

 
 
 
 
𝐹𝐷𝐷 = 𝑁𝑃(1 + 𝐵𝐷𝐷)

𝛽𝐷𝐷
−1 =

𝐵𝐷𝐷

1+𝐵𝐷𝐷

𝐹𝐷𝐴 = 𝑁𝑃(1 + 𝐵𝐷𝐴)

𝛽𝐷𝐴
−1 =

𝐵𝐷𝐴

1+𝐵𝐷𝐴

𝐹𝐴𝐴 = 𝜀𝑁𝑃(1 + 𝐵𝐴𝐴)

𝛽𝐴𝐴
−1 =

𝐵𝐴𝐴

1+𝐵𝐴𝐴

𝜁𝐴𝐴 = 𝐶𝐴

 (5) 

For the dFRET (Eq. 13a) and the aFRET (Eq. 13b) estimators, ζDD and ζDA are: 

  {
𝜁𝐷𝐷 = 𝐶𝐷(1 − 𝐸𝐷)

𝜁𝐷𝐴 = 𝐸𝐷𝐶𝐷(𝜂
−1 − 𝐷𝐸𝑅) + 𝐶𝐴𝜀𝐴𝐸𝑅 + 𝐶𝐷𝐷𝐸𝑅

 (6a) 

 {
𝜁𝐷𝐷 = 𝐶𝐷 − 𝐸𝐴𝜂𝐶𝐴
𝜁𝐷𝐴 = 𝐸𝐴𝐶𝐴(1 − 𝜂𝐷𝐸𝑅) + 𝐶𝐴𝜀𝐴𝐸𝑅 + 𝐶𝐷𝐷𝐸𝑅

 (6b) 

The proportionality constants ε and η (see Supp. Eq. S25-26 and Supp. Tables 1-3) are the ratio 

of the donor/acceptor excitation light intensities and detection efficiencies, respectively; NP = 

kex T is the sum of photons collected in the donor and sensitized emission channel. With Eqs. 

6, we can evaluate the Fisher information matrix J which element (J-1)11 of its inverse matrix 

provides the Cramer-Rao bound [20, 32] for the variance of dFRET and aFRET (see Supp. Eqs. 

S33-43). With the subscript B, SBT and E, we indicate the variances caused by background 

signals, spectral bleed-through and FRET efficiency, respectively. The variance of dFRET can 

be thus written as: 

 𝜎𝐸𝐷
2 = (𝐽𝑑𝐹𝑅𝐸𝑇

−1)
11
=

�̃�𝐵
2+�̃�𝑆𝐵𝑇

2 +�̃�𝐸
2

𝑁𝑃
 (7) 

The symbol �̃� indicate variances normalized to the Poisson noise variance (NP = kex T). The 

background, spectral bleed-through and intrinsic noise contributions are defined by Eqs. 8-10, 

respectively. 

 

{
 
 

 
 
�̃�𝐵
2(𝑑𝐹𝑅𝐸𝑇) = �̃�𝐵𝐷𝐷

2 (𝑑𝐹𝑅𝐸𝑇) + �̃�𝐵𝐷𝐴
2 (𝑑𝐹𝑅𝐸𝑇) + �̃�𝐵𝐴𝐴

2 (𝑑𝐹𝑅𝐸𝑇)

�̃�𝐵𝐷𝐷
2 (𝑑𝐹𝑅𝐸𝑇) = 𝐵𝐷𝐷[𝐷𝐸𝑅 𝜂(1 − 𝐸𝐷) + 𝐸𝐷]

2𝐶𝐷
−2

�̃�𝐵𝐷𝐴
2 (𝑑𝐹𝑅𝐸𝑇) = 𝐵𝐷𝐴[𝜂(1 − 𝐸𝐷)]

2𝐶𝐷
−2

�̃�𝐵𝐴𝐴
2 (𝑑𝐹𝑅𝐸𝑇) = 𝐵𝐴𝐴[𝐴𝐸𝑅 𝜂(1 − 𝐸𝐷)]

2𝐶𝐷
−2𝜀

 (8) 

 

 {

�̃�𝑆𝐵𝑇
2 (𝑑𝐹𝑅𝐸𝑇) = �̃�𝐷𝐸𝑅

2 (𝑑𝐹𝑅𝐸𝑇) + �̃�𝐴𝐸𝑅
2 (𝑑𝐹𝑅𝐸𝑇)

�̃�𝐷𝐸𝑅
2 (𝑑𝐹𝑅𝐸𝑇) = 𝐴𝐸𝑅(𝐴𝐸𝑅 + 1)[𝐶𝐴(1 − 𝐸𝐷)

2𝜂2]𝐶𝐷
−2𝜀

�̃�𝐴𝐸𝑅
2 (𝑑𝐹𝑅𝐸𝑇) = 𝐷𝐸𝑅[(𝐷𝐸𝑅 + 1)(1 − 𝐸𝐷)𝜂 + 2𝐸𝐷][(1 − 𝐸𝐷)

2𝜂]𝐶𝐷
−1

 (9) 

 

 �̃�𝐸
2(𝑑𝐹𝑅𝐸𝑇) = 𝐸𝐷(1 − 𝐸𝐷)[𝐸𝐷(1 − 𝜂) + 𝜂]𝐶𝐷

−1 (10) 

Similarly, we can evaluate the analytical descriptions for the noise of the estimator aFRET: 
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{
 
 

 
 
�̃�𝐵
2(𝑎𝐹𝑅𝐸𝑇) = �̃�𝐵𝐷𝐷

2 (𝑎𝐹𝑅𝐸𝑇) + �̃�𝐵𝐷𝐴
2 (𝑎𝐹𝑅𝐸𝑇) + �̃�𝐵𝐴𝐴

2 (𝑎𝐹𝑅𝐸𝑇)

�̃�𝐵𝐷𝐷
2 (𝑎𝐹𝑅𝐸𝑇) = 𝐵𝐷𝐷DER 𝐶𝐴

−2

�̃�𝐵𝐷𝐴
2 (𝑎𝐹𝑅𝐸𝑇) = 𝐵𝐷𝐴𝐶𝐴

−2

�̃�𝐵𝐴𝐴
2 (𝑎𝐹𝑅𝐸𝑇) = 𝐵𝐴𝐴[𝜀 𝐴𝐸𝑅 𝐸𝐴]

2𝐶𝐷
−2𝜀−1

 (11) 

 

{

�̃�𝑆𝐵𝑇
2 (𝑎𝐹𝑅𝐸𝑇) = �̃�𝐷𝐸𝑅

2 (𝑎𝐹𝑅𝐸𝑇) + �̃�𝐴𝐸𝑅
2 (𝑎𝐹𝑅𝐸𝑇)

�̃�𝐷𝐸𝑅
2 (𝑎𝐹𝑅𝐸𝑇) = 𝐷𝐸𝑅(𝐷𝐸𝑅 + 1)[𝐶𝐷 − 𝐶𝐴𝐸𝐴𝜂]𝐶𝐴

−2

�̃�𝐴𝐸𝑅
2 (𝑎𝐹𝑅𝐸𝑇) = 𝐴𝐸𝑅[(𝐴𝐸𝑅 + 1)𝜀 + 2𝐸𝐴]𝐶𝐴

−1

  (12) 

 

 �̃�𝐸
2(𝑎𝐹𝑅𝐸𝑇) = 𝐸𝐴(1 + 𝜀

−1A)𝐶𝐴
−1 (13) 

Our analytical framework is explicitly derived from the seminal work of Watkins and 

colleagues for sensitized emission FRET in single molecule applications [20]. In the present 

work, the main difference is that we study Fisher information for a typical three-filter method  

[22, 23, 25, 33], where we acquire the three images IDD, IDA and IAA. The measurement IAA was 

not included in the previous analysis – where was unnecessary – but it has significant 

implications for the photon-efficiency of seFRET. In sections C-E, these analytical solutions 

are tested in the absence of cross-talk, in the presence of spectral bleed-through and in the 

presence of unspecific channel background by means of open-source numerical simulations 

(see Methods).  

B. Cramer-Rao lower bound for TCSPC  

To provide a reference for the theoretical efficiency of seFRET, we studied the relative error 

for the estimation of FRET by TCSPC, the gold-standard in FLIM detection and estimation of 

FRET [7]. We could not calculate the analytical solutions for an appropriate double-exponential 

model for TCSPC, thus we implemented open-source numerical simulations (see Methods) 

adapted the computational core originally developed by Bouchet and colleagues [32]. The 

Cramer-Rao lower bound for the standard deviation of the FRET estimate ( �̃�𝐸(𝑇𝐶𝑆𝑃𝐶)), 

normalized to the total photon count, is shown in figure 1. We consider the case where FRET 

is estimated by a double exponential fit with a known reference fluorescence lifetime and where 

the fractional contribution of the FRET-decays and its shortened lifetime are fitted. In fig. 1a 

we assumed an ideal Dirac-like instrument response function (IRF), for a reference lifetime of 

1, 3 and 10 nanoseconds. For each reference lifetime, we simulated a contribution of 10% 

(higher curves), 50% (middle curves) and ~90% (lower curves) to the total signal arising from 

the short exponential decay. As expected, for larger reference fluorescence lifetime values and 

larger relative contribution of the FRET fraction, the normalized standard deviation is lower. 

Fig. 1b shows the same analysis but with a finite IRF as defined in Bouchet et al. [32] to ~38ps 

full-width half-maximum. The IRF seems to not have a significant impact except for high FRET 

efficiencies values, i.e. when the fluorescence lifetime estimates are in the order of magnitude 

of the IRF. Fig. 1c shows similar simulation, however, in this case the reference fluorescence 

lifetime is kept constant to 3ns for all curves. Here, we changed the contribution of an 

uncorrelated background to 0 (fig. 1c, lower curves), 100 (middle curves) and 1,000 (higher 

curves) background photons. Within the set parameters, the intermediate signal-to-background 

ratio correspond to 1, 5 and 100 and the conditions with the highest background signal to 0.1, 

0.5 and 1, demonostrating that the statistical error in FRET estimates are comparatively robust 

to the presence of uncorrelated background.  

All the intermediate cases that are highlighted with the yellow surface in fig. 1 are also used 

as reference in fig. 2-4. To guide in the interpretation of the figures, we provide a practical 

example with a donor fluorophore exhibiting an unquenched fluorescence lifetime of 3ns, 50% 

FRET efficiency and with only half of the photons emitted by donor interacting with acceptor 
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molecules. Under these conditions  �̃�𝐸(𝑇𝐶𝑆𝑃𝐶) is approximately equal to one (fig. 1a). With a 

photon-budget equal to 1,000 photons, an ideal TCSPC would thus estimate a FRET efficiency 

of 50±3% (the standard deviation is �̃�𝐸/√1,000). With a 90% of the photons emitted by the 

quenched donor, �̃�𝐸~0.4  and the estimate of FRET efficiency would be around 50±1%. 

However, it should be noted that in the first case, around one quarter of photons are lost because 

of FRET, in the second case, almost half. Therefore, at even exposure times and not at even 

photon counts, the total photon counts in the second case would amount to ~750, resulting in 

an estimate of 50±4%. This example illustrates how the results shown are simple to interpret 

but, at the same time, the specific case of TCSPC presented in fig. 1 is compounded to loss of 

photons towards the acceptor fluorophore, photons which information is not used.   

 

Fig. 1. Photon-economy in FRET estimation by TCSPC. The statistical errors normalized to 
photon-budget for FRET measured by FLIM was estimated numerically. (a) Photon-efficiency 

of TCSPC for an ideal TCSPC system with Dirac-like IRF for an unquenched lifetime of 1ns 

(blue), 3ns (black lines and yellow area) and 10ns (magenta). Curves of the same colour 
represent the cases where the fractional contribution of the FRET-fraction is 10%, 50% and 

~90% from top to bottom. (b) Same simulations as shown in panel (a) but with a finite IRF of  

38ps full-width at half-maximum. (c) Simulations for a 3ns unquenched fluorescence lifetime, 
where an uncorrelated background signal of 0 (magenta), 100 (black curves and yellow area) 

and 1,000 photons (blue) are considered. In all simulations, the number of photons emitted from 

the unquenched component is kept to 1,000 but the results shown do not change with the absolute 

number of total photons.  

C. Photon-economy of seFRET in the absence of cross-talks 

First we consider the case where only intrinsic noise is present (Eqs. 10 and 13) with the 

proportionality constants η and ε set to 1, to aid the interpretation of the results. Fig. 2 shows 

numerical simulations (see Methods for details) carried out with one-hundred donor-acceptor 

pairs participating in Förster-type energy transfer (from 0 % to 100 % FRET efficiency) in the 

presence and absence of donor and acceptor molecules that do not undergo energy transfer (fD 

= 10-100%, fA = 10-100%,). The close match between the simulations and the analytical 

solutions demonstrates the consistency of the formalism we obtained. Fig. 2a-b shows that 

dFRET and aFRET are unbiased estimators for fDE and fAE, respectively. Furthermore, fig. 2c-

d shows that the signal-to-noise ratio (SNR) in dFRET is always equal or better than aFRET. 

In these ideal conditions, dFRET is infinitely precise both in the absence of FRET or in the 

presence of 100% FRET efficiencies as the absence of signal from either the donor or acceptor 

channel unequivocally inform about the occurrence of these particular cases. The SNR values 

for dFRET and aFRET depend on the relative number of acceptors and donors in the sample; 

however, the estimators are quite robust in the absence of spurious signals. Indeed, seFRET 

explores a relatively narrow SNR area when varying the values of fD and fA (Fig. 2c-d - grey 
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area). In comparison, the SNR for an ideal TCSPC (fig. 1a and fig. 2c-d, yellow area) explores 

a much wider area at the varying contribution of donors interacting with acceptor fluorophores.  

 

Fig. 2. seFRET in the absence of background. The dFRET (a) and the aFRET (b) estimators are 
unbiased in the absence of background signals. When all molecules participate to FRET (black 

curves), both dFRET and aFRET measures FRET efficiency and trace the diagonal of the plots. 

dFRET and aFRET are insensitive to an excess of the non-interacting acceptor (orange) or donor 
(red) molecules, respectively. In all other conditions, for instance, partial participation of 

molecules to FRET (50% in blue and 10%in green), dFRET and aFRET measure lower FRET 

values but correct relative to their definitions (fDE and fAE, respectively). The normalized 
standard deviations for dFRET (c) and aFRET (d) vary with a sweep of the parameters (nDA, nD, 

nA and E) albeit in a narrow SNR area (gray) and with a perfect match between the analytical 

solutions (dark gray curves) and the numerical simulations (solid circles). In yellow, the 

reference area explored by TCSPC from Fig. 1a is shown. 

D. Photon-economy of seFRET in the presence of cross-talk 

To illustrate the general principles underlying photon-statistics in seFRET and for an initial 

validation of the theoretical framework, in section C we have illustrated an ideal case that does 

not occur in realistic experimental conditions aiming. Next, we introduce spectral cross-talks 

(non-negligible AER and DER values) to evaluate at which extent these non-idealities degrade 

the efficiency of seFRET. Table 1 shows values that are reported in the literature for cross-talk 

parameters for a confocal (system 1) and a wide-field (system 2) microscope using typical 

yellow and cyan fluorescent proteins [22, 23].  

 
FRET pair Microscope AER DER η ε  Reference 

CFP-YFP Confocal (system 1) 0.60 0.42 0.52 6.3 [22] 

CFP-citrine Wide-field (system 2) 0.29 1.07 0.015 42 [23] 

Table 1 - properties of FRET pairs relevant to seFRET 

Fig. 3a-b shows that dFRET and aFRET are unbiased estimators also in the presence of 

cross-talk when the calibration parameters are properly measured. However, fig. 3c-d shows 

that the noise performances of the estimators are significantly deteriorated in the presence of 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/774919doi: bioRxiv preprint 

https://doi.org/10.1101/774919
http://creativecommons.org/licenses/by/4.0/


cross-talk, accounting for a twenty-fold (system 2, blue curve and circles) and a five-fold 

(system 1, red curves and circles) increase of standard deviations compared to the ideal 

measurement (black curves and circles are those also shown in fig. 2).  

 

Fig. 3. seFRET in the presence of spectral bleed through. Even in the presence of spectral cross-

talk between channels, dFRET (a) and aFRET (b) are unbiased estimators as shown using the 
cross-talk reported in table one for a representative configuration of a confocal (system 1, red) 

and a wide-field (system 2, blue) microscope. However, cross-talk cause a significant 

deterioration of the SNR of the estimators (c-d). The loss of SNR and its dependency on DER, 
AER and the fraction of interacting donor/acceptor fluorophores is further illustrated in (e-f) 

where the SNR regions for molecules that all interact (grey), or where a minority of donor (red) 

or acceptor (blue) molecules interact is shown by varying DER and AER from 0 to 1. In yellow, 

the reference area explored by TCSPC from Fig. 1b is shown. 

To generalize these results, in fig. 3e-f we show noise performance as a function of a 

parameter sweep, where we varied the AER and DER values from 0 to 1 with η and ε set to 1, 

similarly to fig. 1. We also simulated three conditions where: all molecules participate to FRET 

(fD=fA=1, grey area) and only a minority of donor (fD=0.1, fA=1, red area) or acceptor (fD=1, 

fA=0.1, blue area) molecules contribute to FRET. A decrease of interacting fractions causes 

significant deterioration of the SNR compared to the case where all molecules are interacting. 

Lower fractions of donor or acceptor molecules interacting causes the highest loss of efficiency 

to donor or acceptor estimators, respectively. 

Donor imaging by FLIM does not suffer from spectral bleed-through and it is rather robust 

also to non-idealities such as broadening of the IRF (fig. 3 c-d, yellow areas). In realistic 

conditions, FRET estimates by TCSPC tend to outperform seFRET methods. 
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E. seFRET in the presence of a background signal 

We also studied how an unspecific background signal deteriorates the performances of dFRET 

and aFRET. Fig. 4 a-b shows that both dFRET and aFRET are biased and provide inaccurate 

estimations for FRET efficiency in the presence of background. For simplicity, the numerical 

simulations are carried out assuming an equal relative background contribution in all channels 

setting the number of background photons (BDD, BAA and BDA) equal to a fixed fraction of 

photons emitted by donor and acceptor molecules (shown from 0% to 60%). In these conditions, 

dFRET overestimates FRET efficiencies at lower values (<50%) and underestimates energy 

transfer at higher values while aFRET overestimates FRET efficiencies with particularly large 

biases at low FRET values. These inaccuracies can be ameliorated by experimental corrections 

and, whenever possible, operating in conditions of high signal-to-background ratio. More 

importantly, the presence of background deteriorates the SNR of the dFRET and aFRET 

estimations. In the illustrative cases shown in fig. 4c-d, we set a background signal at 20% level 

showing the significant deterioration of SNR (note the logarithmic scale). 

 

Fig. 4. seFRET in the presence of background. When the measured fluorescence intensities are 
contaminated with an unspecific background signal, the dFRET (a) and aFRET (b) are not 

accurate estimators of fDE and fAE. The background-to-signal ratio simulated here (0%, black; 

20%, yellow; 40%, orange and 60%, red) span a very broad range to illustrate the magnitude of 
the loss of accuracy. The analytical solutions (solid lines) describing the noise in dFRET (c) and 

aFRET (d) match the numerical simulations (solid circles) also in the presence of a background 

signal. We compare the noise for the systems also shown in fig. 1, i.e. system 1 (confocal, 0% 
background in red, 20% background in orange), system 2 (wide-field, 0% background in blue, 

20% background in cyan) and the ideal case as a reference (0% background in black and 20% 

background in dark gray). In yellow, the reference area explored by TCSPC from Fig. 1c is 

shown. 

Fluorescence signals from non-specific stains (e.g., autofluorescence) deteriorate estimate 

obtained by any techniques. However, when the background is caused by instrumentation (e.g., 

dark current or stray light), TCSPC is very robust to background noise, as illustrated by the 

yellow areas in fig. 3c-d. The lower  and the upper boundaries of the yellow area corresponds 

to a signal to background ratio for TCSPC equal to infinity and to 0.5, respectively, while the 

signal to background noise simulated for seFRET is set to either infinite (no background) or 

0.8.  
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3. Discussion 

FRET imaging is a powerful method to probe cell biochemistry. Therefore, it is not surprising 

that a multitude of assays have been developed using FRET, from in vitro single-molecule 

detection [20] to in vivo imaging [34, 35], including both very common applications (e.g., 

quantitative polymerase chain reaction and related hybridization-based assays [36]) and more 

specialist uses such as the study of protein conformations, interactions and post-translational 

modifications [4]. Because of its versatility, a plethora of methodologies for FRET imaging and 

data analysis [37] exists. Fluorescence lifetime imaging microscopy and sensitized emission 

FRET are two of the most common quantitative methods used for biochemical imaging. The 

choice between FLIM and seFRET often depends on the availability of specialist 

instrumentation (e.g., for TCSPC/FLIM) or requirements such as fast acquisition speed 

(typically better for seFRET). FLIM in general - and TCSPC among FLIM techniques - is 

regarded as the most robust technique for FRET estimation [9]. In fact, FLIM requires fewer 

control samples and provides robust and reproducible absolute measurements across 

independent experimental sessions. The photon-statistics of the various implementations of 

fluorescence lifetime imaging have been studied in-depth (for example, in [10, 11, 13, 38-41]). 

Photon-counting techniques such as TCSPC are very efficient and can provide the highest 

attainable SNR. Taken together, these observations suggest that TCSPC/FLIM is the most 

accurate and precise technique to quantify FRET, a conclusion also supported by some 

experimental observations [9].  

Therefore, seFRET is commonly used as a fast, simpler and more cost-effective alternative. 

Breakthroughs in FLIM-enabling technologies [42-48] and data analysis [49-51] are reducing 

the barrier to adoption for FLIM; therefore, as the choice between the two techniques might be 

slowly drift away from technical requirements, we aimed to develop a comparative analysis of 

the limits of both techniques from an information theory perspectives to provide guidance on 

the selection and also optimization of these methodologies. 

Interestingly, seFRET can outperform TCSPC in the estimation of FRET in the ideal 

conditions of negligible spectral cross-talk. In this specific case, TCSPC can attain higher SNR 

only when the majority (>50%) of donor fluorophores are engaged in FRET with acceptors. In 

all other cases, the dFRET estimator performs significantly better. A better photon-efficiency 

of the dFRET estimator for FRET efficiency results from the capability of dFRET to utilize 

information from photons emitted from both donor and acceptor fluorophores. However, the 

higher precision of dFRET is vastly reduced as soon as realistic levels of spectral cross-talks 

and background are taken into account. Furthermore, we did not consider the additional 

statistical and systematic errors that the reference measurements required by seFRET causes 

and other sources of noise manifesting in detectors that do not operate in single-photon 

counting. Therefore, despite the excellent performance of seFRET compared to TCSPC, 

TCSPC might generally outperform seFRET in reproducibility, accuracy and precision in 

practical implementations. However, it is important to note that the appropriate optimization of 

imaging parameters for seFRET can make seFRET rather competitive also for its high 

precision, something that might be often underestimated. Moreover, the use of long-Stokes shift 

of acceptor fluorophores for seFRET, not usually implemented to the best of our knowledge, 

might result in vast improvements in the SNR of this intensity-based technique. We also note 

that we compared seFRET to TCSPC as an established gold-standard in FRET detection. Other 

FLIM implementations can provide significantly worse performances than TCSPC [17, 38] and 

TCSPC can as well deteriorate its performance when pushed to competitive fast detection limits 

[52, 53], suggesting that there are cases when FLIM can lose its competitive edge relative to a 

simpler seFRET technique.  

Ultimately, one of the most substantial differences between FLIM and seFRET is that FLIM 

is typically used for the detection of donor fluorescence, permitting researchers to streamline 

the use of the visible spectrum or to optimize Foster distances with dark acceptors [54, 55], 

avoiding cross-talks and issues related to chromatic aberrations. On the contrary, seFRET uses 
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the complete photon-budget emitted by the donor and acceptor fluorophores providing a mean 

to improve precision. Therefore, in those cases where the benefits of a dark chromophore might 

be irrelevant, the combination of seFRET and TCSPC (e.g., in dual-colour FLIM) might 

provide significant improvements in precision in FRET estimation. A higher precision leads 

directly to an improvement in the capability to resolve smaller biochemical differences in living 

cells. From a theoretical standpoint, this improvement in biochemical resolving power can also 

be understood for the general analysis of Fisher information in multi-dimensional or multi-

parametric detection systems (see for example the photon partitioning theorem in [56, 57]). 

From a practical point of view, dual-colour fast high-resolution FLIM might be increasingly 

accessible thanks to the ongoing revolution in time-resolved detection technologies and could 

provide yet unexplored ideal performances.   

 

4. Methods 

All the analytical solutions were obtained manually, but their consistency was evaluated with 

the use of Mathematica (Wolfram). The numerical simulations and plots were generated with 

bespoke software written in Matlab (Mathworks) and available at the GitHub repository 

github.com/alesposito/FisherInformation with a CC BY 4.0 license. The Cramer-Rao lower 

bound for TCSPC was obtained with parameters sweeps utilizing the computational core 

developed Bouchet and colleagues [32]. Briefly, we utilized their methods to compute the 

standard deviation, normalized to the total (donor) photon counts, of the shorter fluorescence 

lifetime estimate. This was the fluorescence lifetime quenched via FRET and evaluated as a 

double-exponential fit with constant background and known IRF. Fig. 1a was generated 

considering 1,000 photons emitted by donor molecules not participating in FRET with a 

reference lifetime equal to 1, 3 or 10ns. Both the reference lifetime and the number of photons 

were used as fixed parameters. The number of photons emitted by quenched donors was varied 

from 100, 500 to 10,000 corresponding to SNRs of 0.1, 0.5 and 10. Energy transfer efficiency 

was varied from 0 to 100% in 128 steps on a power series. We used TCSPC as a gold-standard 

reference and, therefore, we utilized parameters of high-end systems. The laser repetition rate 

was set to 80MHz with a histogram resolution of 8-bits resulting in a bin time resolution of 

48.8ps. Fig. 1b was generated in the same way, but using an experimental IRF provided by 

Bouchet et al. [32], with a nominal IRF of 38ps full-width at half-maximum. For Fig. 1c, we 

simulated only a reference fluorescence lifetime of 3ns. All other parameters the same as in 

Fig. 1b, we varied the number of photons in an uncorrelated background for Fig. 1c, including 

0, 100 and 1,000 photons, which had to be estimated. This parameter sweep resulted in different 

signal-to-background ratios as described in the result sections. The results are shown as 

normalized by the total photon count emitted, that is including the sum of photons emitted by 

the FRET-fraction, the unquenched fraction and the background.  

Numerical simulations for seFRET were utilized to propagate errors in the unmixing 

equations described in this work. First, we synthesized noiseless images using the same 

mathematical framework; subsequently, we added Poissonian noise and unmixed the images to 

determine how noise propagates to the FRET estimates aFRET and dFRET. The results for 

both TCSPC and seFRET depend on the ratio of the emitted photons and not on the absolute 

values (not shown) of photon counts, thus they are presented as normalized to the total photon 

counts for generality. All the simulations are computationally light and compatible with older 

versions of Matlab and computers; however, the results reported in this work were performed 

with Dell Precision workstation equipped with an Intel Xeon CPU E5-1620v3 and 64GB of 

RAM and Matlab 2018a.  
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