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Abstract: 
            Successful management and utilization of increasingly large genomic datasets is essential 
for breeding programs to increase genetic gain and accelerate cultivar development. To help with 
data management and storage, we developed a sorghum Practical Haplotype Graph (PHG) 
pangenome database that stores all identified haplotypes and variant information for a given set 
of individuals. We developed two PHGs in sorghum, one with 24 individuals and another with 
398 individuals, that reflect the diversity across genic regions of the sorghum genome. 24 
founders of the Chibas sorghum breeding program were sequenced at low coverage (0.01x) and 
processed through the PHG to identify genome-wide variants. The PHG called SNPs with only 
5.9% error at 0.01x coverage - only 3% lower than its accuracy when calling SNPs from 8x 
coverage sequence. Additionally, 207 progeny from the Chibas genomic selection (GS) training 
population were sequenced and processed through the PHG. Missing genotypes in the progeny 
were imputed from the parental haplotypes available in the PHG and used for genomic 
prediction. Mean prediction accuracies with PHG SNP calls range from 0.57-0.73 for different 
traits, and are similar to prediction accuracies obtained with genotyping-by-sequencing (GBS) or 
markers from sequencing targeted amplicons (rhAmpSeq). This study provides a proof of 
concept for using a sorghum PHG to call and impute SNPs from low-coverage sequence data and 
also shows that the PHG can unify genotype calls from different sequencing platforms. By 
reducing the amount of input sequence needed, the PHG has the potential to decrease the cost of 
genotyping for genomic selection, making GS more feasible and facilitating larger breeding 
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populations that can capture maximum recombination. Our results demonstrate that the PHG is a 
useful research and breeding tool that can maintain variant information from a diverse group of 
taxa, store sequence data in a condensed but readily accessible format, unify genotypes from 
different genotyping methods, and provide a cost-effective option for genomic selection for any 
species. 
  
Introduction: 
            The goal of plant breeding is to develop improved cultivars with high yield potential and 
better quality traits while reducing input requirements and environmental impact. Over time, 
plant breeding techniques have shifted from unconscious selection for domestication traits to 
deliberate selection and breeding program design. As the field of genetics developed, plant 
breeders began to use marker-assisted selection to associate genetic markers with desirable traits 
and inform breeding decisions (reviewed in Ramstein et al., 2018). First proposed by Meuwissen 
et al. in 2001, genomic selection (GS) is an extension of marker-assisted selection that uses 
genome-wide markers to make predictions about individual performance. Many studies have 
shown that genomic selection can accelerate the breeding process and rate of genetic gain 
without significantly increasing program costs (for example: Meuwissen et al., 2001; Bernardo 
and Yu, 2007; Heffner et al., 2010; Poland et al., 2012; Heslot et al., 2015; Muleta et al., 2019a). 
Increasingly dense marker or haplotype maps in major crops like maize (Bukowski et al., 2018) 
and sorghum (Lozano et al., 2019) can now be leveraged to inform breeding decisions.  

Despite its apparent success, wide-scale adoption of genomic selection has been slow, 
particularly in developing countries where phenotypic selection is still cheaper than GS for many 
traits (Ribaut et al., 2010). GS costs depend on multiple components, including sample 
collection, processing, and sequencing costs, as well as bioinformatics requirements. Wider 
adoption of GS will require fast genotyping methods that are cheaper than phenotypic selection 
for all or most traits of interest. One way to make genotyping cheaper is to capitalize on pre-
existing genomic data. Pan-genomic analyses capture a wider range of genetic variation and are 
becoming more common as genotyping costs decrease and the quantity of sequence data 
increases (for example: Alonso-Blanco et al., 2016; Morris et al., 2013; Shakoor et al., 2014). 
Tools that can extrapolate from existing whole-genome sequences (WGS) or other marker 
technologies and impute genotypes for individuals in a breeding population can utilize pre-
existing WGS to minimize the amount of new data that breeders need to generate.  

Here we introduce a method for genotyping breeding populations from low-coverage 
sequence data called the Practical Haplotype Graph (PHG). The PHG uses a graph of haplotypes 
to represent the variability in a breeding program and can merge genotypes from WGS and 
marker technologies. It takes a pan-genome approach to marker identification and relies on 
having a limited number of recombination events in each generation (Mace et al., 2009; Bouchet 
et al., 2017). In a breeding population, all major haplotypes in the progeny population are 
contained within a set of founder haplotypes. Moderate recombination shuffles founder 
haplotypes in subsequent generations, but progeny genotypes can be reconstructed if the 
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approximate recombination positions can be identified. The PHG is designed to reconstruct 
haplotypes for a breeding population based on low-coverage random sequence, which reduces 
the quantity of new sequence data that needs to be collected for each cycle of GS. 

In building a PHG database, moderate- to high-coverage WGS reads are aligned to the 
reference genome (Figure 1A) and collapsed into common, consensus haplotypes based on 
sequence divergence (Figure 1B, C). These consensus haplotypes are important for the PHG 
because they reduce the complexity of the graph, make it possible to associate traits with shared 
haplotypes, and fill in (impute) missing sequence information, while maintaining unique 
haplotypes. Once created, consensus haplotypes can be used to predict genotypes for new 
individuals. Skim sequence data are aligned to consensus haplotypes to find the best path 
through the graph, and SNP variants from the predicted haplotype path can be written to a VCF 
file. The result is a set of genome-wide SNP variant calls for each taxon, imputed from skim 
sequence (Figure 1D).  

We tested the efficiency and accuracy of the PHG in a sorghum breeding program at 
Chibas in Port au Prince, Haiti. The climate in Haiti offers year-round growing conditions with 
three growing seasons annually. Currently, the primary sorghum breeding program at Chibas 
uses phenotypic recurrent selection and takes about a year per selection cycle. The main targets 
of selection include high yield, stalk sugar content, and sugarcane aphid resistance. GS has the 
potential to speed up the breeding cycle so that selections can be made up to three times per year, 
but is only useful if the potential increased genetic gain per cycle outweighs additional 
genotyping costs (Muleta et al., 2018). We tested a PHG built with 24 founders of the Chibas 
breeding program (referred to here as the “founder PHG”), and another built with the 24 Chibas 
founders plus an additional 374 taxa that are representative of overall sorghum diversity (referred 
to as the “diversity PHG”). With the Chibas breeding program as our test case, we evaluated 
whether the PHG can impute from low-coverage sequence, how PHG-imputed markers compare 
to other genotyping methods, and how much background genomic information is needed for a 
breeding program. Our results show that the PHG is an effective tool to impute genotypes for 
genomic selection from random skim sequence.   
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Figure 1: PHG database and haplotype creation. (A) WGS data are aligned to a reference 
genome and loaded into the PHG database. (B) A set of designated reference ranges is 
chosen and input data are condensed to produce consensus haplotypes at each reference 
range. Colors are used to indicate sequence similarity across taxa and only a single 
reference range is shown. (C) Unique consensus haplotypes are built for each reference 
range across the genome. Reference ranges are indicated as red regions of the black 
reference genome bar. (D) Low-coverage sequence data are aligned to the consensus 
haplotypes and a hidden Markov model links reference ranges across the genome to predict 
genome-wide haplotypes. 
 

Materials and Methods:  
Phenotypic data: Phenotypes for height, brix, juice weight, leaf weight, earliness, stem weight, 
and grain yield were collected at the Regional Biofuels Technical and Knowledge Center field 
sites in Port au Prince, Haiti. The Chibas training population (250 taxa) was assayed in 5 
experimental conditions (experiments) in Port au Prince, Haiti. Experiments differed by sowing 
date: (1) 9/7/2017, (2) 11/7/2017 to 11/10/2017, (3) 11/8/2017 to 11/10/2017 (irrigated), (4) 
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2/3/2018, and (5) 2/16/2018. All experiments were rainfed except for (3). Taxa were evaluated 
under randomized complete block designs with 4 replicates in each experiment, except for (4) 
and (5), which had 2 replicates each. For each trait, genotype (taxon) means were estimated as 
fixed effects under a linear mixed model with independent and identically distributed effects for 
experiments, interactions between genotypes and experiments, and replicates within experiments. 
Linear mixed models were fit with the R package lme4 (Bates et al. 2015). 
 
Sample collection and DNA extraction: Strips of mature leaf tissue measuring 4cm x 0.5cm 
were collected from month-old sorghum plants growing at the Chibas field site in Port au Prince, 
Haiti. Fresh tissue samples were placed in 96-well costar tube plates and lyophilized for 48 hours 
before being shipped to Intertek for DNA extraction. Samples were packed on silica beads and 
shipped at room temperature to the Intertek facility in Alnarp, Sweden, and DNA was extracted 
using their metal bead DNA extraction protocol. 
  
Library preparation and sequencing: DNA samples from 24 population founders were used to 
make TruSeq Nextera sequencing libraries at the Genomics facility at Cornell University. 
Samples from all 24 founders were pooled and sequenced in a single lane of 2 x150 bp reads on 
an Illumina NextSeq500 instrument resulting in an average of 8x coverage per individual. The 
Chibas training population consists of 238 individuals. Samples in the training set were pooled in 
a single lane with 2,736 other individuals and sequenced at 2x150 bp reads on an Illumina 
NextSeq500 instrument, resulting in approximately 0.1x coverage for each individual. GBS data 
for comparison with PHG genotypes were from Muleta et al. (2019b). 
  
Building the sorghum PHG: A sorghum practical haplotype graph was built using scripts in the 
p_sorghumphg bitbucket repository and PHG version 0.0.9. Instructions for building a new PHG 
can be found on the PHG Wiki, available on Bitbucket at 
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home (Figure 2). 
 
Creating and loading reference ranges: 
            Reference ranges for the PHG were chosen based on conserved gene annotations. Coding 
sequences (CDS) from the sorghum version 3.1 genome annotations and the version 3.0 
reference genome were downloaded from JGI and compared to a BLAST database containing 
CDS for Zea mays, Setaria italica, Brachypodium distachyon, and Oryza sativa (Schnable et al., 
2009; Bennetzen et al., 2012; Vogel et al., 2010; Ouyang et al., 2007) that was created using 
BLAST+ command line tools (Altschul et al., 1997). The sorghum version 3.1 CDS annotations 
and version 3.0 reference genome (McCormick et al., 2017) were compared to the 4-species 
database with blastn default parameters. Sorghum gene intervals were kept if there was at least 
one hit to the four-species database, and gene start and end coordinates were used to create initial 
reference intervals. Initial gene intervals were expanded by 1000 bp on either side of the gene 
coordinates, and intervals within 500 bp of each other were merged to form a single reference 
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range. The resulting dataset contains 19,539 intervals spaced across the genome, which we 
designated “genic reference ranges”, while the intervals between genic reference ranges were 
added to the database as 19,548 “intergenic reference ranges.” The LoadGenomeIntervals 
pipeline was used to add reference genome sequence to the database for both genic and 
intergenic ranges, while sequence data from additional taxa were added only to the genic 
reference ranges.  

 
Figure 2: Steps in building and using the sorghum PHG. The main PHG processing steps are 
indicated with bold arrows. Steps that store or read information from the PHG database are 
indicated with dotted lines. 
  
Adding haplotypes from diverse taxa and creating consensus haplotypes: 
            Sequence data were aligned to the version 3.0 sorghum BTx623 reference genome with 
BWA MEM (McCormick et al., 2017; Li & Durbin, 2009). Taxa in the PHG are as follows: 24 
founder individuals from the Chibas sorghum breeding program, 274 previously-published taxa 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/775221doi: bioRxiv preprint 

https://doi.org/10.1101/775221
http://creativecommons.org/licenses/by-nc-nd/4.0/


(42 from Mace et al., 2013, 232 from Valluru et al., 2019), and 100 taxa from the ICRISAT 
mini-core collection, for a total of 398 taxa. No de novo genome assemblies are included. 
Variants were called with Sentieon’s HaplotypeCaller pipeline (Sentieon DNAseq, 2018) and the 
resulting gVCF files were added to the PHG using the CreateHaplotypesFromGVCF pipeline. 
The same process was used to make a smaller PHG database with only the 24 founder 
individuals from the Chibas breeding program. 
            The 398 or 24 individuals added to the PHG were condensed into common “consensus 
haplotypes” using the CreateConsensus pipeline. Taxa were clustered with the UPGMA 
clustering method in TASSEL (Bradbury et al., 2007) at ten possible divergence levels: 0.001, 
0.00075, 0.0005, 0.00025, 0.0001, 0.000075, 0.00005, 0.000025, 0.00001, and 0. Unique 
divergent haplotypes were retained as consensus haplotypes (minTaxa=1), and all other 
parameters were left at their default values. The Chibas founder taxa were used as a baseline to 
select the best level of haplotype collapse for this dataset, and a consensus level of 0.00025 (1 in 
4000 bp differences) was chosen. This level maximizes SNP count and concordance with other 
sequencing methods, while minimizing the number of haplotypes at each reference range (Figure 
3). Subsequent genotyping and imputation analyses were run using this consensus level.  
 
Predicting new genotypes: 

After creating consensus haplotypes, the findPaths pipeline maps reads to the consensus 
pangenome and uses a hidden Markov model (HMM) and the Viterbi algorithm (Rabiner, 1989) 
to predict the best path through all consensus haplotypes in the graph. In each analysis we subset 
the pangenome graph to only the consensus haplotypes containing one or more of the 24 taxa 
that founded the Chibas breeding program. Paired-end 150 bp reads with varied sequence 
coverage from random sequence data were used as input to predict the best path through the 
graph, both for individuals in the database and for new taxa that are not already represented. 
Paths were exported to a VCF file and used to evaluate accuracy of imputation and genomic 
prediction with the PHG.  
  

All steps described above were run using a docker image containing necessary software 
and scripts available for download from the PHG Bitbucket site. Specific parameters used to run 
each script can be found in the config.txt file on bitbucket. Additional scripts and files for 
creating the sorghum PHG are available at 
https://bitbucket.org/bucklerlab/p_sorghumphg/src/master. 
  
Imputation Accuracy: 
PHG imputation accuracy for WGS: 
            WGS data for the Chibas founder taxa were down-sampled with seqtk (Li, 2013) to 1x, 
0.1x, and 0.01x coverage. Sequences were produced with three separate seed integers to create 
three unique sets of reads at each level of coverage. The full WGS data and each set of down-
sampled sequencing reads were run through the PHG findPaths pipeline using a PHG database 
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with nodes built from the Chibas founders, minReads=0, minTaxa=1, and all other parameters 
left at default values. Setting the minReads parameter to 0 means that the HMM will attempt to 
find a path through the entire genome, even when there is no sequence data observed at a 
particular reference range. Setting the minTaxa parameter to 1 means that all haplotypes are kept, 
even if taxa are too divergent to group with other individuals in the database. SNPs were written 
at all variant sites in the graph, as well as all positions in the sorghum hapmap (Lozano et al, 
2019). SNP calling accuracy was assessed by comparing PHG SNP calls to a set of 3,468 GBS 
SNPs (Muleta et al., 2019b). SNPs with minor allele frequency < 0.05 or call rate < 0.8 were 
removed before comparing PHG and GBS SNP calls. Haplotype calling accuracy was evaluated 
by running low-coverage taxa through the database and counting the number of times that the 
selected node in the graph contained the taxon being imputed. 

While error rates for most taxa were consistent with the overall error, BF-95-11-195 
stood out as having a 5-fold higher error than expected in calling SNPs, although its haplotype 
calling error was not abnormally high. We suspect this sample was mixed up or contaminated 
with DNA from another sample during sequencing, but kept BF-95-11-195 in the database and 
included it in all analyses. 
 
Beagle 5.0 imputation accuracy: 

Because the PHG is expected to be useful when only skim sequence data is available for 
an individual, we compared PHG imputation accuracy to Beagle 5.0 (Browning & Browning, 
2016) imputation accuracy from low-coverage sequence. WGS data for each taxon was down-
sampled as described above. Each down-sampled dataset and the full-coverage (~8x) WGS data 
from 24 founders of the Chibas sorghum breeding program was aligned to the sorghum v3.0 
reference genome with BWA MEM (McCormick et al., 2017; Li & Durbin, 2009) and variants 
were called with the Sentieon DNASeq variant calling pipeline (Sentieon DNAseq, 2018). VCF 
files for each founder were merged using bcftools (Li et al., 2009). When variant sites did not 
line up in the full coverage WGS (i.e., a variant was called for one individual but not for another 
such that merging variant calls across taxa would produce a missing call in some taxa and an 
alternate allele call in others), the unobserved site was assumed to be the reference call. To 
simplify both the Beagle and PHG imputation pipelines and because individuals used in the 
database construction were expected to be inbred lines, all heterozygous calls were assumed to 
come from sequencing and genotyping errors rather than residual heterozygosity, and were 
removed. For the downsampled datasets, unobserved sites were left as missing. A reference 
panel created from full-coverage WGS was used to impute SNPs in the down-sampled VCF 
files. No sites in the downsampled data were masked; instead, missing information was imputed 
directly using the reference panel. In the full-coverage dataset, 1% of all sites were masked and 
re-imputed. Imputation accuracy at all levels of sequence coverage was evaluated by comparing 
Beagle calls to a set of 3,849 GBS SNPs.  
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Designing amplicon sequencing markers and using the PHG to impute variants: 
            Amplicon sequencing technologies like rhAmpSeq use PCR amplification to identify 
SNPs at targeted sites in the genome (Fresnedo-Ramírez et al., 2019). GS with custom 
rhAmpSeq markers was tested with and without PHG imputation. These rhAmpSeq markers 
were developed using 100 taxa from the ICRISAT mini-core collection, which are also used in 
the diversity PHG (Supplemental Table 1). Paired SNP variants between 10-100 bp apart were 
identified in this panel of 100 taxa and designated as potential haplotype regions. Each potential 
haplotype region was expanded on either side of the SNP pair to generate 104bp segments 
centered on the initial pair of SNPs. This identified 336,082 potential haplotype regions, and the 
polymorphic information content (PIC) score was calculated for each haplotype using the 100-
taxa panel. 
 The sorghum reference genome annotation (Sbicolor 313, annotation v3.1) and sequence 
(Sbicolor 312, assembly v3.0) were used to divide the chromosome-level assembly into 2904 
genomic regions. Each region contained equal numbers of non-overlapping gene models; 
overlapping gene models were collapsed into a single gene model. 2892 of these regions 
contained at least one SNP-pair haplotype. For each region, the SNP-pair haplotype with the 
highest PIC score was selected as a representative marker locus. These genome-wide candidates, 
along with 148 target marker regions of interest provided by the sorghum breeding community, 
were used by the rhAmpSeq team at Integrated DNA Technologies, Inc. to design and test 
rhAmpSeq genotyping markers. After design and testing, markers for 1974 genome-wide 
haplotype targets and 138 community-identified targets were selected as the rhAmpSeq amplicon 
set.  

The rhAmpSeq sequence data was processed through the PHG findPaths pipeline in the 
same way as the random skim sequence data described above. To determine how many markers 
the PHG needs for imputation, we randomly sampled 500 and 1000 loci from the original set of 
2,112 haplotype targets and used the PHG findPaths pipeline to impute SNPs across the rest of 
the genome. Results were written to a VCF file and used for genomic prediction. 
  
Genomic prediction: 
            PHG SNP performance in genomic prediction was evaluated using a set of 207 
individuals in the Chibas training population for which GBS (Elshire et al., 2011) and rhAmpSeq 
SNP data was also available. PHG genotypes were predicted with the findPaths pipeline of the 
PHG using either random skim sequence data at approximately 0.1x or 0.01x coverage, or 
rhAmpSeq reads for 2112, 1000, or 500 loci (corresponding to 4854, 1453, and 700 SNPs, 
respectively) as inputs. Paths were determined by using an HMM to extrapolate across all 
reference ranges (minReads=0, removeEqual=false). Genomic relationship matrices based on 
PHG-imputed SNPs were created with the “EIGMIX” option in the SNPRelate R package 
(Zheng et al., 2012). A haplotype relationship matrix using PHG consensus haplotype IDs was 
created as described in Jiang, Schmidt, & Reif (2018) equation (2), using the tcrossprod function 
in base R. For GBS markers, markers with more than 80% missing or minor allele frequency <= 
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0.05 were removed from the dataset and missing markers were imputed with mean imputation, 
and a genomic relationship matrix was computed as described in Endelman et al. (2011). 
Genomic prediction accuracies were Pearson’s correlation coefficients between observed and 
predicted genotype means, calculated with 10 iterations of 5-fold cross validation. GBS and 
rhAmpSeq SNP data without PHG imputation were used as a baseline to determine prediction 
accuracy. To see if the PHG could impute WGS starting from rhAmpSeq amplicons, genomic 
prediction accuracies using the PHG with rhAmpSeq-targeted loci were compared to prediction 
accuracies using rhAmpSeq data alone. 
  
Results: 

We developed two sorghum PHG databases. One contains only the original founder 
haplotypes of the Chibas breeding population (“founder PHG”, 24 genotypes), while the other 
PHG contains both the Chibas founders and WGS from the founder taxa plus an additional 374 
taxa that reflect the overall diversity within sorghum (“diversity PHG”, 398 genotypes). We 
determined how much sequence coverage is needed for the PHG and how genomic prediction 
with PHG-imputed markers compares to genomic prediction with GBS and rhAmpSeq markers. 
Data was processed through the founder PHG and the diversity PHG in the same way. 

 
A PHG for global sorghum diversity: 

The sorghum diversity PHG stores sequence information for 398 diverse inbred lines at 
19,539 reference ranges covering all genic regions of the genome, and is built from WGS data 
with coverage ranging from 4 to 40x, although most individuals have 10x coverage or less. The 
founder PHG contains WGS at ~8x coverage for 24 founders of the Chibas breeding program. A 
gVCF file is made by calling variants between WGS and the reference genome, and variants 
from the gVCF are added to the PHG database in all genic reference ranges. The reference 
ranges in both versions of the sorghum PHG are centered around gene regions. At each reference 
range, haplotypes are collapsed into consensus haplotypes to combine similar taxa and fill in 
missing sequence across the graph. There is a tradeoff when choosing a divergence cutoff for 
consensus haplotypes: a low divergence level will retain lower-frequency SNPs, but not fill in 
gaps and missing data as well as a high divergence level. In both the diversity PHG and the 
founder PHG, consensus haplotypes were created by collapsing haplotypes that had fewer than 1 
in 4,000 bp differences (mxDiv=0.00025), which is a slightly lower density of variants than the 
GBS SNP density reported by Morris et al. (2013). This level was chosen because it marks an 
inflection point in the number of consensus haplotypes that are created (Figure 2A), with an 
average of 5 haplotypes per reference range in the founder PHG and intermediate levels of 
missingness and discordance with WGS calls made with the Sentieon pipeline (Figure 2B-C). 
The consensus haplotypes produced at this divergence level were used to evaluate PHG SNP-
calling and genomic prediction accuracy.  
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Figure 3: Metrics used to choose a consensus level for condensing haplotypes in the founder 
PHG. A) Number of haplotypes and B) Missing counts at each consensus level. C) Discordance 
between SNPs called by the PHG and a set high-confidence WGS SNPs. The divergence level of 
mxDiv=0.00025 is at an inflection point in A) and was chosen as the level that balances the 
tradeoff between amount of missing information in the database and discordance from collapsing 
haplotypes.  
 
PHG SNP-calling accuracy is minimally affected by read count: 
            PHG haplotype and SNP calling accuracies are minimally affected by decreasing 
amounts of sequence data. The PHG was evaluated to determine the lower boundary of sequence 
coverage before imputation accuracy decreased substantially. For each founder in the Chibas 
breeding program, WGS was subset down to ~2.4M, 243,333, and 24,333 reads, corresponding 
to 1x, 0.1x, and 0.01x genome coverage, respectively. Sequencing reads were randomly selected 
from the original WGS fastq files and used to predict SNPs or haplotypes with the PHG, and 
PHG-predicted SNPs and haplotypes at each level of sequence coverage were evaluated for 
accuracy. Haplotypes were considered correct if the imputed haplotype node for a given taxon 
also contained that taxon in the PHG. SNPs were considered correct if they matched GBS calls at 
3,369 loci for which GBS data had MAF > 0.05 and a call rate > 0.8.  

Haplotype error was higher than SNP calling error in both the founder PHG database (24 
taxa) and the diversity PHG database (398 taxa), and accuracy increased in both databases with 
increasing sequence coverage. Haplotype error ranged from 11.5-12.1% error in the founder 
database, to 18.6-23.5% error in the diversity database. SNP error ranged from 2.9-5.9% and 4.3-
15.2% in the founder and diversity PHG databases, respectively (Figure 4). Higher haplotype 
error rates are likely due to similarity among haplotypes that leads the HMM to call an incorrect 
haplotype even if most of the SNPs within that haplotype are correct.  

PHG-imputed SNP calls were better than Beagle-imputed SNP calls when using low-
coverage skim sequence, and about equal to Beagle calls at full coverage (~8x) WGS. Notably, 
while SNP calling accuracy did improve with higher sequence coverage for all imputation 
methods, calling SNPs with the founder PHG resulted in only a 3% difference in SNP-calling 
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accuracy between the highest coverage tested (8x coverage, 2.9% error) and the lowest coverage 
tested (0.01x coverage, 5.9% error; Figure 4B). In contrast, there was a 23% difference in SNP-
calling accuracy between low and high coverage sequence when using Beagle for imputation. 
These results indicate that the PHG is a useful imputation tool that can impute SNPs more 
accurately than Beagle when starting from low-coverage skim sequence. 

 

 
Figure 4: PHG haplotype (A) and SNP (B) error rates compared to GBS data with the 24-taxa 
founder PHG database (purple) and the 398-taxa diversity PHG database (green) for a random 
path through the PHG and a range of sequence coverages. Beagle SNP calling accuracy at each 
coverage level is included in B (blue). Horizontal lines in B represent baseline error rate of the 
PHG (dotted), GBS (dot-dash), and Beagle (dashed). 
 

To determine the PHG baseline error rate, we looked at the intersection of PHG, Beagle, 
and GBS SNP calls at 3,363 loci in 24 taxa. These loci were chosen because they represented 
biallelic SNPs called with the GBS pipeline that also had genotype calls made by both the PHG 
and Beagle imputation methods. The baseline error was calculated as the proportion of SNPs 
where genotype calls from one of the three methods did not match the other two. Using this 
metric, baseline error for Beagle imputation, GBS SNP calls, and PHG imputation were 
calculated to be 2.83%, 2.58%, and 1.15%, respectively (Figure 3B, dashed and dotted lines). To 
investigate the source of the 1.15% PHG error, we compared the SNP calls from a model path 
through the PHG (i.e., the calls that the PHG would make if it called the correct haplotype for 
every taxon at every reference range) to the incorrect PHG SNP calls. Allele calls that were 
correct in the model SNP set but not called in the genotypes predicted by the findPaths pipeline 
were counted as an error in the pathfinding step, which is caused by the HMM incorrectly calling 
the haplotype at a reference range. Allele calls that were not present in the model SNP set were 
counted as an error in the consensus step. Consensus errors are due to alleles being merged in the 
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createConsensus pipeline because of similarity in haplotypes. Our analysis found that 25% of the 
PHG baseline error comes from incorrectly calling the haplotype at a given reference range 
(pathfinding error), while 75% comes from merging SNP calls when creating consensus 
haplotypes (consensus error). Haplotype and SNP calls from the founder PHG were more 
accurate than calls with the diversity PHG at all levels of sequence coverage. These results 
indicate that haplotype and SNP calls from the founder PHG are more accurate than those from 
the diversity PHG. Therefore, subsequent analyses were done with the founder PHG. 

We compared accuracy in calling minor alleles between PHG and Beagle SNP calls. 
Beagle accuracy drops when dealing with datasets where 90-99% of sites are missing (0.1 or 
0.01x coverage) because it makes more errors when calling minor alleles (Figure 5, red circles). 
When imputing from 0.01x coverage sequence, the PHG calls minor alleles correctly 73% of the 
time, whereas Beagle calls minor alleles correctly only 43% of the time. The difference between 
PHG and Beagle minor allele calling accuracy decreases as sequence coverage increases. At 8x 
sequence coverage, both methods perform similarly, with minor alleles being called correctly 
90% of the time. PHG accuracy in calling minor alleles was consistent regardless of minor allele 
frequency (Figure 5, blue triangles).  
 
 
 
 
 
 
 
 
 
Figure 5: Mean error in calling minor alleles with Beagle (red circles) and the PHG (blue 
triangles). (A) 0.01x coverage, (B) 0.1x coverage, (C) 1x coverage, (D) full (8x) coverage. 
 
PHG genomic prediction accuracies match genomic prediction accuracies from GBS 

            To test whether PHG haplotype and SNP calls predicted from low-coverage sequence are 
accurate enough to use for genomic selection in a breeding program, we compared prediction 
accuracies with PHG-imputed data to prediction accuracies with GBS or rhAmpSeq markers.  
We predicted breeding values for 207 individuals from the Chibas training population for which 
GBS, rhAmpSeq, and random skim sequencing data was available. Haplotype IDs from PHG 
consensus haplotypes were also tested to evaluate prediction accuracy from haplotypes instead of 
SNPs (Jiang, Schmidt, & Reif, 2018). The 5-fold cross-validation results suggest that prediction 
accuracies for SNPs imputed with the PHG from random skim sequences are similar to 
prediction accuracies from GBS SNP data for multiple phenotypes, regardless of sequence 
coverage for the PHG input. Haplotypes can be used with equal success; prediction accuracies 
using PHG haplotype IDs were similar to prediction accuracies using PHG or GBS SNP markers 
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(Figure 6A). Results are similar with the diversity PHG database (Supplemental Figure 1). With 
rhAmpSeq markers, adding PHG-imputed SNPs matched, but did not improve, prediction 
accuracies relative to accuracy with rhAmpSeq markers alone (Figure 6B). Using the PHG to 
impute from random low-coverage sequence can, therefore, produce genotype calls that are just 
as effective as GBS or rhAmpSeq marker data, and SNP and haplotype calls predicted with the 
findPaths pipeline and the PHG are accurate enough to use for genomic selection in a breeding 
program.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: 5-fold cross validation prediction accuracies for the Chibas training population (n=207, 
10 iterations) are the same when using A) GBS, PHG SNPs with 0.1x and 0.01x sequence 
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coverage, or PHG haplotypes. B) Prediction accuracies do not change when using rhAmpSeq 
markers alone or using rhAmpSeq markers with additional markers from the PHG, regardless of 
how many rhAmpSeq markers are included.  
 
Discussion: 
SNP calling accuracy: 
            The PHG is a cost-effective genotyping tool that combines WGS data in a database to 
capture the main haplotype groups in the breeding program or species. Sequences and consensus 
haplotypes stored in the PHG can be used for genomic prediction. We built a diversity PHG with 
398 individuals to capture sorghum-wide diversity and a second, smaller database with only the 
24 breeding program founders. In general, the 24-taxa founder PHG database had higher SNP 
and haplotype calling accuracy, but both databases produced genotypes that could be used 
effectively for genomic prediction. 

When testing the accuracy of the PHG, we find that random skim sequence data can be 
imputed for SNPs across the PHG reference ranges with high accuracy. Based on the levels 
tested, 0.01x coverage is the most cost effective level of sequence coverage with 94.1% SNP 
calling accuracy - only a 3% drop in SNP calling accuracy relative to accuracy at 8x-coverage 
WGS. For the sorghum genome, 0.01x coverage corresponds to ~25,000 completely random 
paired-end 150 bp reads. The sequence reads tested here were selected randomly and are unlikely 
to cover all reference ranges, which shows that the PHG can impute across reference ranges even 
when sequence can only be aligned to a portion of the ranges in the database. Long-read 
sequence data, which creates fewer reads, could, therefore, also be used as input for the PHG 
path-finding algorithm (findPaths pipeline). A few long reads spaced randomly across the 
genome would likely identify haplotypes with similar levels of accuracy as 0.01x coverage short-
read sequence data. 

 
Genomic prediction accuracy: 

Both 0.01x and 0.1x coverage sequence imputed with the PHG, as well as haplotype IDs 
from the PHG, can be used for genomic prediction with prediction accuracies similar to those 
produced by GBS markers. In the training dataset comprising 207 individuals, there was no 
difference in using a haplotype relationship matrix instead of genomic relationship matrix built 
from PHG SNPs. However, in larger datasets with more individuals, using haplotype IDs instead 
of SNP markers may improve computational efficiency without a cost in terms of prediction 
accuracy. Using the PHG with rhAmpSeq markers worked as well as using rhAmpSeq markers 
alone for complex traits, but prediction accuracies dropped slightly for some traits (e.g. height, 
juice weight) if only 500 rhAmpSeq markers were used with PHG imputation. This could be 
related to trait genetic architecture; height is an oligogenic trait in sorghum, while traits like grain 
yield and precocity would be expected to be more polygenic (Pereira and Lee, 1995; Girma et 
al., 2019).  
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Low-coverage sequence in conjunction with the PHG allows large-scale imputation of 
progeny genotypes across the genome. We show that the PHG can be used with random skim 
sequence and rhAmpSeq sequences, suggesting that the PHG can also be used to unify sequence 
data from diverse genotyping platforms. With only 0.01x genome coverage needed for accurate 
calls, per-taxon sequencing costs become negligible compared to the cost of DNA extraction and 
library preparation (both of which are also continuing to decrease: see Anderson et al., 2018; 
Baym et al., 2015; Zou et al., 2017). These new technologies, together with the PHG, provide 
breeders with an effective, inexpensive, and fast tool for imputation and genomic selection that 
works across genotyping platforms. Since the founder PHG produces more accurate SNP and 
haplotype calls than the diversity PHG, we also suggest that small PHG databases built for 
specific breeding programs can be more effective than a single species-wide haplotype graph. 

It is surprising that the diversity PHG had lower SNP and haplotype calling accuracy than 
the founder PHG because it contains more information about the species diversity overall. We 
hypothesize that the difference in performance is due to differences in allele frequency or LD 
patterns between the Chibas breeding program and the taxa in the diversity PHG. As expected 
for a breeding program, the Chibas breeding material captures much less diversity than is present 
in the species as a whole. If common alleles in the Chibas founder individuals are rare relative to 
the taxa included in the diversity PHG, then the Chibas founders may have been pulled into 
consensus haplotypes with alleles that are not common in the Chibas breeding program. Using 
these consensus haplotypes to impute from skim sequence could have added alleles not present 
in the founder PHG which would increase SNP calling error relative to GBS. Linkage 
disequilibrium patterns between sorghum races may also differ. Therefore, transition 
probabilities between reference ranges may be estimated less accurately in a diverse PHG 
database comprising multiple races. For now, if working in a breeding context where diversity is 
limited, a founder PHG with program-specific haplotypes appears to work best. In the future, this 
issue could be solved by anchoring consensus haplotypes to a specific set of taxa (in this case, 
the Chibas founders). Other taxa in the database would only be used to fill in missing 
information in the set of anchored consensus haplotypes. The resulting haplotypes would have 
less missing information than the current founder PHG, but would maintain the allele frequencies 
and haplotype patterns of the original set of anchor taxa.   

 
Decreasing genotyping costs: 
 The cost of building a PHG depends on the number of individuals for which WGS or de 
novo assemblies need to be produced. Relying on existing resequencing data when possible can 
significantly reduce the overall cost. For the sorghum PHGs produced here, all taxa in the Chibas 
sorghum breeding program were multiplexed in a single sequencing lane, resulting in 
approximately 8x coverage for each individual and low levels of missing data. The initial 
sequencing investment for the founder PHG was $5,283. The additional 374 taxa added to the 
diversity PHG were produced for other research purposes and no additional sequence data were 
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produced for these individuals. Thus, the total upfront cost for building the sorghum PHGs was 
under $6,000 - less than the genotyping costs for a round of genomic selection. 

The PHG aims to make genotyping and genomic selection marker agnostic, i.e. all 
marker systems should produce similar results. We see the PHG likely to be used with five 
current and future platforms. The most expensive is GBS at approximately $15/sample, which is 
substantially driven by expensive DNA preparation and uneven library coverage. Tn5 based 
skim sequencing can use simple DNA extraction protocols, has the same procedure for any 
species, and costs ~$10/sample. Targeted amplicon-based sequencing can use very inexpensive 
sample preparation protocols and provides 500 to 2000 loci for $3.50 to $10 per sample. It does, 
however, require significant upfront investment to develop amplicons for each species, and the 
per-sample cost is dependent on the number of samples processed annually. The cost of random 
prime sequencing with simple DNA extractions is similar to targeted amplicon sequencing at $5 
to $10 per sample, but the price for random prime sequencing does not depend on sample 
number. Long-read sequence data can also be used with the PHG and the price is likely to drop 
as long-read technologies are developed further. The PHG is designed to work with any of these 
sequence types, making it possible to unify sequence data from across multiple platforms. 
 
Turnaround time: 
            Continuous GS cycles require rapid data turnaround so that there is enough time to 
identify the best progeny and plan crosses before flowering. In the Chibas breeding program, 
tissue samples can be collected about 1 month after planting. For continuous GS cycles to be 
possible, all sample processing, sequencing, and variant calling must be complete 6 weeks after 
samples are collected. Using a DNA extraction service took two weeks, with another 1.5 weeks 
needed for library preparation and sequencing. Sequencing data took 48 hours to run through the 
founder PHG, giving us about a 4-week turnaround time from sample collection to genotype data 
and leaving two weeks to make selections and plan crosses. Additional time could potentially be 
saved with cheap, on-site DNA extractions and library preparations (Anderson et al., 2018; Zou 
et al., 2017). The extra time gained with on-site methods could make a second round of tissue 
collection and sequencing possible if samples are contaminated or if more data is needed for a 
particular breeding line. With these improvements, genotyping would no longer be the factor 
limiting turnaround time, and techniques like speed breeding could be used to further reduce 
cycle time in sorghum breeding (Watson et al. 2018). 
 
Conclusions: 
            We developed two practical haplotype graphs: a diversity PHG with 398 individuals 
consisting of all 5 sorghum races and a founder PHG with individuals specific to the Chibas 
sorghum breeding program, which consists mostly of breeding lines derived from east African 
caudatum sorghums (Muleta et al., 2019b). Our study demonstrated how the PHG can accurately 
impute SNPs and haplotypes from low coverage random sequence data and predict genotypes for 
a breeding population. The PHG was able to produce better imputed genotype calls than Beagle 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/775221doi: bioRxiv preprint 

https://doi.org/10.1101/775221
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.0 when using low-coverage random sequence data, and prediction accuracies from PHG-
imputed SNPs matched those produced with higher-cost GBS marker data for traits with a range 
of genetic architectures when starting from similar levels of sequence coverage. These results 
demonstrate that the PHG is a useful low-cost genotyping tool for breeders around the globe.   
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Supplemental figure: 
 

 
Supplemental Figure 1: Genomic prediction accuracies from diversity PHG SNPs (green) or 
haplotypes (blue) match prediction accuracies of GBS (pink).  
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