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Abstract

Functional genomics sequence data is becoming clinically actionable, raising privacy con-

cerns. However, quantifying the privacy leakage by genotyping is difficult due the heteroge-

neous nature of the sequencing techniques. Thus, we present FANCY, a tool that rapidly esti-

mates number of leaking variants from raw RNA-Seq, ATAC-Seq and ChIP-Seq data, without

explicit genotyping. FANCY employs supervised regression using overall sequencing statis-

tics as features and provides an estimate of the overall privacy risk before data release.
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With the surge of genomics data and the decreasing cost of sequencing [1], genome privacy has

become an important topic of interest. Traditional DNA sequencing, functional genomics [2], and

molecular phenotype [3, 4] datasets create a great number of quasi-identifiers, which, in turn, can

be used to re-identify or characterize individuals without their consent. The surge in different types

of widely available functional genomics data increases the correlations between phenotype and

genotype datasets, which in turn increases the possibility of re-identifying individuals. Functional

genomics data allows for a detailed characterization of disease states and susceptibility. Broad dis-

semination of this data can promote advances. Although functional genomics experiments are not

performed for genotyping purposesrather, the aim is to study phenotypes and basic biologyexperi-

mental procedures have led to the raw reads containing a substantial amount of patients’ variants,

which raises privacy concerns. In contrast to DNA sequencing data, few tools can currently assess

the risk of potential privacy loss from functional genomics data. Rapidly quantifying the number

of leaking variants from functional genomics data is essential before the release of the data. This is

particularly important when multiple assays are performed on samples from the same individuals.

That is, a single data type may not leak enough variants, but a combination of different func-

tional genomics data can pose significant privacy risk as different assays target different regions in

the genome with different coverage profiles [e.g., RNA sequencing (RNA-Seq) targets expressed

exons, whereas H3K27ac chromatin immunoprecipitation sequencing (ChIP-Seq) targets the non-

coding genome on the promoter and enhancer regions] and depth profiles (i.e., some assays have

spread out peaks while others are more punctuate). Such quantification is possible by genotyping

the raw sequences and overlapping them with the gold-standard genotypes from the individuals as

many of the inferred genotypes could be false positives. The limitations of such an approach is the

requirement of large resources for genotyping as well as the presence of a gold-standard genotype

data belonging to the patient. While it is possible to genotype the raw reads with current genotyp-

ing tools, an average variant calling pipeline needs to be radically re-parametrized to better fit with

different assays given that software is typically optimized for whole-genome sequencing.
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Table 1: The maximum and minimum number of variants leaked in each experiments and the

RMSE of our predictions in these test datasets.

Assay number of test datapoints max. number of variants min. number of variants RMSE

RNA-Seq 4740 12,928 379 422.76

ATAC-Seq 6753 238,481 65 4503.10

ChIP-Seq 1082 210,567 2665 5381.22

In this study, we developed a supervised learning method to infer the number of leaking single

nucleotide variants (SNVs) from raw functional genomics data. Our primary goal was to quantify

the SNV leakages in raw sequences without needing genotyping and a gold-standard genotype list.

We built a Gaussian Process Regression model that takes the assay type, sequencing features such

as depth (d) and breadth (b) of the coverage, and the statistical properties of the depth distribution

such as standard deviation(σ ), skewness (±s), and kurtosis(k) as input. The model then predicts

the cumulative number of leaking SNVs with an R2 of 0.99 for training and 0.90 for independent

test RNA-Seq, 0.99 for independent test Assay for Transposase-Accessible Chromatin using se-

quencing (ATAC-Seq), and 0.99 for independent test ChIP-Seq datasets (Figure 1). FANCY can

separately estimate the number of rare and common variants and outputs each estimated number

with a predicted upper and lower bound in the 95% confidence level. FANCY also outputs a sim-

ple qualitative warning message for the risk of sharing (green: can be shared, yellow: attention

needed, red: cannot be shared). We used mean squared error as our loss function in the regression

model [see Table 1 for Root Mean Squared Error (RMSE)]. Our predictions are in great agreement

with the true number of leaking variants in all the independent test datasets (Figure 1). To easily

interpret the performance of our predictions, we calculated the deviation from the true values by

calculating (predicted value - true value) / true value; the negative values indicate underprediction,

i.e number of predicted SNVs are lower than the true number of leaking SNVs (Supplementary

Figure 1). On average, we had 8% prediction error for all of the independent test sets.
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If a functional genomics experiment is leaking more than 1,000 variants, its privacy risk for re-

identification is at maximum regardless of the absolute value of the number of variants. However,

the risk assessment is more valuable for experiments that are leaking a low number of variants as

mis-predicting these values by only a few might result in the release of private data. Thus, we

developed another regression model (see Online Methods) that aims to predict the leakage more

precisely when the number of leaking variants is low. This second model had an RMSE of 75.64,

74.8, and 74.0 for independent test RNA-Seq, ATAC-Seq, and ChIP-Seq datasets, respectively,

in which the maximum number of leaking variants is 1,000 (Supplementary Figure 2). We also

calculated the number of under-predicted (predicted value is lower than true value) leaking variants

and found that we have no under-predicted leaking variants that are smaller than 400 and only three

under-predicted leaking variants between 400 and 500.

We used RNA-Seq data from 432 individuals generated by the gEUVADIS project [5], H3K27ac

ChIP-Seq data from 100 individuals generated by the PsychENCODE Consortium [6], ATAC-

Seq data from 344 individuals generated by the BrainGVEX project[6], and ATAC-Seq data from

288 individuals generated by the PsychENCODE Consortium[6]. We then used the GATK Best

practices from RNA-Seq and DNA data [7, 8] to call SNVs and small insertions and deletions (see

Supplementary Figure 3 for statistics). We treated each chromosome separately, which resulted in

25,152 data points. We randomly divided the data in half to use as training and test sets. We also

separately validated our model by using 308 data points from the RNA-Seq study by Kilpinen et

al. [9].

Genotyping from DNA sequences is the process of comparing the DNA sequence of an indi-

vidual to that of the reference human genome. To be able to successfully genotype, one needs

a substantial depth of sequencing reads for each base pair. According to the Lander-Waterman

statistics for DNA sequencing, when random chunks of DNA are sequenced repeatedly, the depth
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per base pair follows a Poisson distribution with a mean that can be estimated from the read length,

number of reads, and the length of the genome [10]. For example, as RNA-Seq aim to sequence

expressed genes, one would expect that sequencing per depth per base pair does not follow Pois-

son statistics. Thus, genotyping using reads from RNA-Seq experiments is biased towards variants

that are in the exonic regions. Conversely, ChIP-Seq is biased against RNA-Seq, where it targets

non-coding genome such as promoters and enhancers (see Figure 1).

We hypothesized that the statistical properties of the depth per base pair distribution are strong

indicators of the number of variants that can be inferred from functional genomics data. We used

a total of six sequencing features: 1) the average depth per base pair (d); 2) the total fraction of

the genome that is represented at least by one read (i.e., the breadth, b = ∑N
i=1 δ (di), such that

δ (di) = 1 if di > 0, b = 0 otherwise and N is the total number of nucleotides in the genome); 3)

the standard deviation of the depth distribution; 4) skewness (i.e., whether the distribution is larger

on the right or left side of the mean); 5) kurtosis (i.e., whether or not the depth distribution has big

tails); and 6) the type of the experiment (i.e., RNA-Seq, ATAC-Seq, or ChIP-Seq).

We did a leave one feature out test and found that the mean depth (d) and breadth (b) of the

coverage had the greatest effect on the performance of the predictor (see Supplementary Figure

4). We then created predictors by using only (1) mean depth, (2) breadth, and (3) mean depth and

breadth as the features. However, this predictor performed worse than the original model. These

results show that although breadth is the highest contributing feature, all of our features contributed

to the final model; indeed, the RMSE is the lowest when we use all of the features.

In addition to estimating privacy risk, FANCY can also be used to plan functional genomics

experiments (i.e., for a target number of SNVs, one can back-calculate the required sequencing

statistics). Moreover, we also developed a Random Forest classifier (Supplementary Methods) as

a plug-in that predicts the type of the assay (RNA-Seq vs. ATAC-Seq vs. ChIP-Seq) by using the
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sequencing statistics as features, which can be useful to the community for samples with missing

metadata. This classifier has an average accuracy of 96.8%, precision of 94.9%, recall of 90.2%,

and F1 score of 93.3% (Supplementary Figure 5).
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Figure 1: Details of the FANCY and the results. (a) The schematic of the features of FANCY:

average depth; breadth, i.e number of nucleotides represented with at least one read; first, second

and third moment of the depth distribution (standard deviation, skewness and kurtosis). If the

distribution is skewed to the right hand side of the mode (mean is larger than the mode), then the

skewness is positive, it is negative if the mean is smaller than the mode. (b) The schematic of

inputs and outputs of FANCY. (c) The regions that are represented by each assay type. The reads

of RNA-Seq are concentrated on the gene bodies, H3K27ac ChIP-Seq is concentrated on the non-

coding genome (enhancers and promoters) and since ATAC-Seq covers the open chromatin, the

reads are concentrated on both coding and non-coding rehions. (d) The performance of FANCY

on the independent test datasets.
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Methods

FANCY Details:

FANCY is a two-step method. The first step is a regression framework that uses a Gaussian Process

Regression (GPR) model with a matern kernel [11]. We tried other regression models such as linear

regression with and without interactions, different regression trees, and support vector machine

(SVM) regression models. GPR outperformed other models in training (both in terms of RMSE

and R2; see Supplementary Table 1). We obtained the features as follows: We first aligned the

raw functional genomics reads to the reference genome (bwa [12] is used for ChIP and ATAC-seq

data; STAR [13] is used for RNA-Seq data). We then calculated the depth per base pair using

samtools [14] and calculated the statistics. For the true number of SNVs, we used GATK [7,

8] (with appropriate parametrization for each assay type) to call the SNVs. After filtering low-

quality SNVs as suggested by the best practice, we overlapped the remaining SNVs with the gold-

standard SNVs generated from whole genome sequencing data to obtain the true number of SNVs.

The second step is the estimation of rare vs. common variants. We divided the 1,000 Genomes

data into rare and common categories based on minor allele frequency. For each individual in the

1,000 Genomes project, given an assay, we found the the rare variant density and used the mean

density of all individuals with the predicted number of total leaking variants to estimate the number

of rare vs. common variants. FANCYlow is the version of FANCY that was trained on data with

up to 1,000 SNV leakage.

Gaussian Process Regression:

GPR is a supervised learning method that is based on learning fitting functions to a given set of

training data; in comparison, traditional regression models learn the parameters of a given function.

GPR is a nonparametric method used to calculate the probability distribution over all functions that
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fit the data instead of calculating the probability distribution of a specific functions parameters. The

advantage of using GPR is its ability to provide uncertainty estimations at a given confidence level.

The disadvantage of this method is the computational complexity, which makes it unfeasible for

large datasets. Since the sequencing statistics relate to the number of inferred variants differently

in different regimes and for different assays, the relationship between features and the number

of leaking variants cannot be modeled by general mathematical approaches such as generalized

linear models (see Supplementary Figure 7). A Gaussian process can be defined by its mean and

covariance functions as

f (x)∼ (µ(x),∑(x))

A Gaussian process assumes that the distribution of the values of functions p( f (x1), f (x2), ..., f (xN))

at a set of points (x1,x2, ...,xN) is jointly Gaussian with a mean µ(x) and covariance ∑(x), where

∑i j = k(xi,x j). K is a kernel function, which determines the similarity between data points xi and

x j. If these points are deemed similar by the kernel, we expect the output of the functions at these

points to be similar as well. For each xi,yi in our training dataset, we can write a function f (xi)

such that

yi = fi(xi)+ εi

,where εi ∼ N(0,σ 2). Therefore, for any input vector (x1,x2, ...,xN), f (x) has a joint Gaussian

distribution. The covariance (kernel) function k is generally taken as Gaussian (i.e., squared expo-

nential kernel). However, in this application, we found that a Matern kernel performs better. We

used fivefold cross-validation to avoid overfitting and a separate test dataset to validate our model.

Random Forest Details:

Random Forest classifiers combine several decision trees that use multiple subsets of data from

a training sample to produce better predictive performance versus a single decision tree. The

advantage of a Random Forest classifier is that it handles high dimensionality in data as well as
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missing values. It works via the following principles: assume we have an observation yi and the

feature associated with it is xi, j. Here, i = 1, ..,N, j = 1, ...,M and N and M are the number of

observations and features, respectively. We first take a subset from N number of training data

randomly with replacement. We then take a subset of M features randomly. We split the node

iteratively by finding the feature associated with the best split. With this iteration, we grow the

largest tree. We then repeat these steps to aggregate n number of trees to create our Random

Forest. We generated 30 trees using a five-fold cross-validation and an independent test set to

validate our model. We also compared the performance of the Random Forest Classifier to that

of a single decision tree, logistic regression with linear and quadratic discriminants, SVM and k-

nearest neighbor, and found that the Random Forest resulted in the best accuracy (Supplementary

Table 2).

Dataset:

In total, we had 13,537 data points from ATAC-Seq, 9,456 data points from RNA-Seq, and 2,159

from ChIP-Seq. In order to understand whether an imbalance in the number of categories affected

our model selection, we repeatedly sub-sampled 2,159 data points from the RNA-Seq and ATAC-

Seq categories and trained multiple regression models. We found that GPR is the best regression

model in each case (Supplementary Table 3).

Implementation and Data:

We used the MATLAB Statistical and Machine Learning Toolbox as well as pyGPs Python pack-

age [15] for Gaussian Process Learning. A python and MATLAB implementation of FANCY,

FANCYlow, Random Forest Classifier, as well as the custom scripts to generate the features can be

found at https://github.com/gersteinlab/FANCY. We also provide jupyter notebooks so that users

can optimize the parameters in the regression model based on their own data.
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Supplementary Figure 3: Distribution of number of called SNPs and indels from functional

genomics data.
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Supplementary Figure 4: Sorted contribution of different features to the overall predictions.

Lower RMSE corresponds to better predictions. The difference between the first five points on

the figure is smaller compared to other data points, however, lowest RMSE is still observed when

using al the features in the model.
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Supplementary Figure 5: Random Forest classifier performance. A Random Forest Classifier is

developed to predict the type of the experimental assay by using sequencing statistics as features.
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Supplementary Figure 6: Relationship between sequencing statistics and number of leaking

variants.
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Supplementary Figure 7: Predicted vs. true values within 95% confidence level.
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Supplementary Table 1: Comparion of different regression model performances.

Model RMSE R
2

Linear Regression 15831 0.85

Decision Tree 5616 P0.98

SVM 6696 0.97

Random forest 4990 0.99

Supplementary Table 2: Comparion of different classification model performances.

Model RMSE R
2

Linear Regression 15831 0.85

Decision Tree 5616 P0.98

SVM 6696 0.97

Random forest 4990 0.99

Supplementary Table 3: Comparion of different regression model performances when the data is

sub-sampled.

Model RMSE R
2

Linear Regression 11003 0.88

Decision Tree 7898 P0.94

SVM 11722 0.86

Random forest 6932 0.95

GPR 5544.3 0.97
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