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Abstract (315 words) 

Background: Genetic alteration of candidate response elements at their native 

chromosomal loci is the only valid determinant of their potential transcriptional regulatory 

activities. Targeted DNA cleavage by Cas9 coupled with cellular repair processes can 

produce arrays of alleles that can be defined by massively parallel sequencing by synthesis 

(SBS), presenting an opportunity to generate and survey edited cell populations that include 

informative alterations.  Such editing efforts commonly rely on subclonal enrichment to 

isolate cells with preferred genotypic properties at target loci; short nucleotide adducts 

(indices/barcodes) allow PCR-amplified molecules from diverse sample sources to be 

pooled, sequenced, and demultiplexed to resolve source-specific content.  Not widely 

available, however, are capabilities for barcoding thousands of clones, or for automated 

analysis of individual candidate regulatory loci PCR-amplified and sequenced from a 

genetically heterogeneous population—specifically, imputation of discrete genotype(s) by 

allele definition and abundance, and identification of altered regulatory factor binding 

motifs. 

Results:  We describe a panel of 192 8-nucleotide barcode primers compatible with 

Illumina® sequencing platforms, and the application of these barcodes to genotypic 

analysis of Cas9-edited clones.  Permutations of the ninety-six i7 (read 1) and ninety-six i5 

(read 2) barcodes allow unique labeling of up to 9,216 distinct samples.  We created three 

independent Python scripts: SampleSheet.py automates construction of Illumina® Sample 

Sheets encoding up to 9,216 barcode:sample relationships; ImputedGenotypes.py defines 

alleles and imputes genotypes from demultiplexed fastq files; CollatedMotifs.py flags 

transcription factor recognition motif matches altered in alleles relative to a reference 

sequence. 

Conclusions:  Code-enabled definition of alleles and regulatory motifs in sequenced, 

demultiplexed amplicons facilitates evaluation of genetic diversity in up to 9,216 distinct 

samples.  Here, we demonstrate the utility of three scripts in analysis of cell populations 

targeted by Cas9 for disruption of glucocorticoid receptor (GR) binding sites near FKBP5, 

a GR-regulated gene in the human adenocarcinoma cell line A549.  SampleSheet.py, 

ImputedGenotypes.py, and CollatedMotifs.py operate independently and are broadly 

applicable beyond the case described here. 
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Background (509 words) 

The glucocorticoid receptor (GR) is a transcriptional regulatory factor (TF) that binds 

to specific sequence motifs at genomic glucocorticoid response elements (GREs) and 

nucleates combinatorial assembly of multicomponent transcriptional regulatory complexes, 

which modulate expression of cognate target genes.  Three features greatly complicate 

determination of transcriptional regulatory activity by a genomic GR-occupied region 

(GOR). First, in any given context, most GORs appear to lack function1, outnumbering 

glucocorticoid-responsive genes by an order of magnitude or more2-4. Second, a GRE may 

comprise multiple GORs scattered over tens or hundreds of kilobases, each contributing 

distinct regulatory outcomes. Third, GRE activities are highly context-dependent, and must 

be assessed in their normal chromosomal environments. As a result, very few GREs or 

other response elements have been functionally validated5.  

In principle, functional validation could be addressed by Cas9-driven targeted 

genomic editing of candidate response elements, coupled with regulatory analysis of  target 

gene(s).  Edited subclones could be identified from Cas9-treated bulk cell populations, 

using sequencing by synthesis (SBS)6,7 to assess target regions. However,  this would 

require multiplexing hundreds to thousands of samples and a computational workflow for 

deconvolution and analysis.  Specifically, three unmet needs were apparent:   

1. An index (barcode) set and Sample Sheet sufficient for SBS discrimination of 

thousands of subclonal genotypes. In many Illumina® sequencing applications, DNA 

sequences from distinct samples are labeled with barcodes, pooled (multiplexed) as a 

library applied to a single flow cell, and demultiplexed based on sample:index relationships 

specified in a Sample Sheet, which relates user-specified workflow parameters to Illumina® 

sequencer control software.  Illumina® systems formally limit barcode assignments to <96 

(single-index) or <384 (dual-indexed/paired-end) distinct samples.  SBS analysis of 
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independent samples at larger scale requires an augmented barcode set, and automated 

sample:barcode assignment in a Sample Sheet that specifies thousands of data relationships. 

2. Rapid clonal genotype imputation to locate potentially scarce mutant clones with 

desired characteristics. Excellent web-based and command line interface (CLI) tools, e.g., 

CRISPR-GA8, AGEseq9, CRISPResso10, CRISPR-DAV11, Cas-analyzer12, BATCH-GE13, 

BE-Analyzer14, and CRIS.py15, perform aggregate mutation counts and efficiencies from 

next-generation sequencing (NGS) data, reporting population-distributed allele type 

resolution relative to bundled mutation frequencies returned by aggregate analyses (e.g., 

TIDE 16, TIDER17).  We sought to develop a tool that specifically imputes genotypes for 

clonal isolates based on computationally defined alleles, and visually maps Cas9 guide 

RNA sequence(s) on alignments for evaluation of Cas9-associated mutations. 

3. Automated TF binding site (TFBS) collation, to infer potential consequences of 

Cas9 edits to TF function in mutagenized response elements. Cas9-edited cell populations 

typically display a broad spectrum of alleles at targeted loci, generated as insertion/deletion 

(indel) outcomes of non-homologous DNA double-strand break repair processes18.  For 

indels in putative response elements, identifying mutation-associated loss or gain of 

putative TFBSs would inform interpretations and/or predictions of functional 

consequences. 

To address these needs, we set out to automate sequence processing from input to 

output of a Cas9-editing effort focused on candidate response elements, seeking to expedite 

clone selection for retrieval and archiving, to prioritize clones for analysis based on 

imputed genotypic definitions, and to anticipate potential functional consequences based 

on altered TF motif matches (TFBS).   

 

Implementation (256 words) 

We developed three scripts (SampleSheet.py, ImputedGenotypes.py and 

CollatedMotifs.py; https://github.com/YamamotoLabUCSF, supporting resources at DOI 

10.5281/zenodo.3406862) that automate principal steps in (i) sample preparation for 

massively parallel amplicon sequencing, including Sample Sheet creation for Illumina® 

sequencing by synthesis (SBS) platforms; (ii) genotype imputation (allele definition) for 

up to 9,216 pooled, independently barcoded amplicon samples; and (iii) TFBS motif 
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comparison between imputed alleles and a reference (e.g., wild-type) allele.  All scripts 

require Python 3.7 or greater for operation on Mac OSX or Windows systems; scripts are 

available as annotated Jupyter notebooks19 for interactive use in a web browser, as program 

files (.py) that can be run at a command-line interface (CLI), and pre-compiled in Open 

Virtualization Format for virtualization (e.g., in Oracle VM VirtualBox, 

https://www.virtualbox.org/).  Text editor and PDF reader software are required to access 

output files. 

 External dependencies: When operated from a CLI, SampleSheet.py suggests but does 

not require download and installation of a Python package prettytable.  Whether operated 

from a CLI or Jupyter notebook, ImputedGenotypes.py and CollatedMotifs.py require the 

Python packages NumPy, SciPy and psutil, plus download and availability of BLASTN 

(BLAST+ suite, NCBI20);  ImputedGenotypes.py additionally requires fdpf and PyPDF2 

libraries as well as a BLASTN reference genome database for sequencing alignments; 

CollatedMotifs.py further requires MAKEBLASTDB (BLAST+ suite), Meme suite21 

installation (for FIMO and FASTA-GET-MARKOV)22, and a FIMO-compatible TFBS 

motif reference (position frequency matrix) file for transcription factor binding site 

queries20.  In Windows OS, Meme suite programs (FIMO and FASTA-GET-MARKOV) 

require virtualization and CollatedMotifs.py must be run from within a hypervisor (e.g., 

Oracle VM VirtualBox).     
 

Results & Discussion (7005 words) 

A Cas9 editing effort is typically applied to cell populations, but genotypic 

characterization of subclones requires clonal isolation, locus-specific PCR amplification, 

and sequencing.  We developed a custom library of 192 Illumina® platform-compatible, 

uniquely barcoded oligonucleotide primers—96 ‘forward’ and 96 ‘reverse’ as defined by 

sense/antisense to read1 orientation in the Illumina® MiSeq workflow—as indices 

assignable to unique clones (Supp. Fig. 1).  Barcodes at this 96x96 scale exceed 

commercial barcode availability, increasing the number of independent amplicon sources 

that can be pooled for paired-end sequencing and demultiplexing of reads to 9,216.   

We generated hundreds of independent mutant clones in the human lung 

adenocarcinoma cell line A549, targeting genomic regions occupied by the glucocorticoid 
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receptor (GR, product of the NR3C1 gene)23, a DNA-binding transcriptional regulatory 

factor.  We developed code to support and expedite a workflow that reports alleles and 

genotypes for up to 9,216 clones from a single Illumina® SBS run (Fig. 1).  SampleSheet.py 

automates preparation of an Illumina® Sample Sheet, the text document that defines 

well:barcode assignments for demultiplexing on Illumina® sequencing platforms (Fig. 2).  

ImputedGenotypes.py facilitates rapid convergence to genotype from demultiplexed fastq 

files24, simplifying identification of cultured clones of interest to archive and examine (Fig. 

3).  Finally, CollatedMotifs.py summarizes alterations to transcription factor binding site 

(TFBS) motif matches for each clonal isolate relative to a reference sequence, capitalizing 

on public repositories of sequence-selective position frequency matrices for characterized 

DNA-binding regulatory factors (Fig. 4).  DNA sequence alterations associated with Cas9 

editing in putative regulatory elements may cause losses or gains of binding sites for 

transcription regulatory factors, making their annotation in clones useful for interpretation 

of potential functional consequences (Fig. 5).  

 

SampleSheet.py and 96x96 paired-end barcoding of up to 9,216 samples—Illumina® 

SBS workflows generally entail library construction, cluster generation, sequencing, and 

data processing.  In all cases, a single, plain-text, comma-separated (*.csv) file—the 

Sample Sheet—mediates communication of user preferences and sequencing workflow 

specifications to the software in charge of sequencing operations and data acquisition.  

Fundamental run properties (e.g., sequencing cycle number, chemistry) and key links 

between library identities and barcodes are documented, allowing reads to be 

demultiplexed into individual fastq files after sequencing.  Sample Sheets can be 

constructed in Illumina® Experiment Manager (available only for Windows platforms), or 

in any plain-text editor.  Illumina® provides an excellent whitepaper describing Sample 

Sheet sections and preparation in Pub. No. 970-2017-004-A (2017).  

For small numbers of indices (e.g., tens), samples and their identifying barcodes are 

easily compiled manually in a text document.  For hundreds to thousands of samples, 

however, manual compilation becomes time-consuming and prone to error (e.g., typos or 

mistaken entries that lead to sample:barcode mispairings). SampleSheet.py automates 

Sample Sheet construction, allowing a Sample Sheet with up to 9,216 data entries to be 
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compiled in seconds from a single list of up to 96 short lines of text (Fig. 1a, Fig 2), linking 

sample IDs in 96-well plates to specified i7 and i5 barcode pairs.   

 

User inputs and specification of sequencing run properties 

SampleSheet.py prompts users for six values, entered as text at individual Jupyter 

interface or CLI prompts (Fig. 2a, Table 1, Supp. Fig. 2, Supp. Fig. 3a).  These  values 

include: 1) Illumina®  Indexed Sequencing Workflow (A vs. B), 2) absolute path to output 

directory and filename for Sample Sheet, 3) Investigator Name, 4) Project Name, 5) Single-

end (SE) or Paired-end (PE) sequencing run with cycle number(s), and 6) list of 

sample:barcode relationships. 

1-Barcode sequence orientation in SampleSheet—Workflow ‘A’ vs. ‘B’.  Illumina® 

indexed sequencing uses two different paired-end Indexed Sequencing Workflows, 

depending on sequencer (Supp. Fig. 4).  In Workflow A,  index 2 is sequenced before read 

2 resynthesis, meaning that i7 is sequenced as the reverse complement and i5 is sequenced 

on the forward strand (applicable to NovaSeq 6000, MiSeq, HiSeq 2500, HiSeq 2000); in 

Workflow B, index 2 is sequenced after read2 synthesis, creating the reverse complement 

of both index1 (i7) and index2 (i5) (applicable to iSeq100, miniSeq, NextSeq, HiSeq X, 

HiSeq 3000, 4000).  This distinction requires attention to barcode sequence entry in Sample 

Sheet fields ‘index1’ and ‘index2’; users of SampleSheet.py must verify the index 

sequencing workflow on the sequencer on which they will load their libraries, as 

SampleSheet.py fills barcode sequences based on specified workflow (Fig. 2a, input #1; 

Supp. Fig. 3a-1). 

2-Absolute path to file output.  Users are next prompted for a text string that specifies 

the absolute path to a location where the Sample Sheet file will be created (Fig. 2a, input 

#2; Supp. Fig. 3a-2); this string must be entered as a series of directory name(s) beginning 

at the file system root (e.g., /Users on Mac, C:\ on Windows operating systems), ending in 

the file name to be created by the script (e.g., SampleSheet.csv).  Console prompts specify 

that regardless of the operating system (OS, i.e., Mac, Linux, or Windows), directory 

names must be separated by forward slashes (/); functions in the Python operating system 

module generate OS-appropriate paths from the user-provided string. 
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The remaining five user-entered values populate Python variables that are printed to 

Sample Sheet sections to customize content (detailed below as workflow specifications and 

sample:barcode assignments).  Sample Sheets require three sections—denoted in the *.csv 

file by the bracketed strings [Header], [Reads], [Data]—and optionally include additional 

sections (e.g., [Settings], [Manifests]).  SampleSheet.py generates Sample Sheets that use 

four of these sections: [Header], [Reads], [Settings], [Data] (Supp. Fig. 2).   

3−6-Workflow specifications. [Header]—[Header] and [Settings] demarcate lines of 

comma-separated key:value pairs that encode metadata for the sequencing experiment; 

each key denotes a metadatum type and each value encodes a corresponding metadatum.  

SampleSheet.py prints values for eight metadata keys under [Header]: IEMFileVersion, 

Investigator Name, Project Name, Date, Workflow, Application, Description, and 

Chemistry.  Values for two keys (Investigator Name, Project Name) are user-supplied at 

console prompts during script operation (Fig. 2a, inputs #3-4; Supp. Fig. 3a-3), with Date 

value auto-generated based on the system’s present calendar time.  Five keys default to 

values appropriate for amplicon sequencing on Illumina® instruments 

(“IEMFileVersion,4”, “Workflow,GenerateFASTQ”, “Application,FASTQ Only”, 

“Assay,Nextera”, “Description, Sequencing”, and “Chemistry, Amplicon”).   

[Reads]—The number of nucleotide-step extension and imaging cycles to be 

completed by the sequencer is specified in the numeric values on lines of a Sample Sheet’s 

[Reads] section: a single line (e.g., 151) communicates that 150 cycles of base acquisition 

(following a +1 phasing cycle) will be completed to generate a single read (single-end run);  

two lines (e.g., 151 \n 151, where ‘\n’ represents newline character) communicates that 150 

cycles will be completed in two directions to generate forward and reverse-complement 

reads (paired-end run).  Users enter the read cycle number(s) to be printed in the Sample 

Sheet [Reads] section as a single line of comma-separated text (two or three values) at the 

console prompt, specifying single-end or paired-end run (SE or PE) and cycle number(s) 

(single number for SE run, two numbers for PE run) (Fig. 2a, input #5; Supp. Fig. 3a-4).  

For example, for a single-end run with 35 read cycles (plus a single phasing cycle), a user 

would enter SE, 36.  For a paired-end run with 150 read cycles in each direction, a user 

would enter PE, 151, 151. 
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 [Settings]—The 96x96 oligonucleotides reported here—and whose 8-nt index 

sequences are embedded in SampleSheet.py data objects—are designed with Nextera 

sequences flanking the target read sequence (Supp. Fig. 1)25, meaning that the adapter 

sequence 5’-CTGTCTCTTATACACATCT-3’ defines the end of amplicon-specific read 

sequences.  SampleSheet.py populates the optional [Settings] section of the Sample Sheet 

with the key:value pair that communicates adapter trimming during fastq processing 

(“Adapter,CTGTCTCTTATACACATCT”).  “ReverseComplement,0” specifies that read 

sequences are returned as sequenced, not as reverse complements. 

Sample:bar code assignments.  [Data]—SampleSheet.py’s key utility is to automate 

large numbers of sample:barcode relationships in the [Data] table section of a Sample Sheet.  

In principle, i7 and i5 primers can be used in any combination with one another, but in the 

workflow described, i7 and i5 primers serve defined sample barcoding roles that are 

fundamental to the expansion operations performed by SampleSheet.py.  Specifically, we 

assign i7 barcodes as labels for each well (A01-H12) in a 96-well plate, and i5 primers as 

labels across all wells of a single plate (Fig. 1a, Fig. 2c). 

These explicit uses of i7 and i5 barcodes are put into practice when preparing 

amplicons by PCR (Fig. 1a, Supp. Fig. 1, Supp. Fig. 5).  Samples to be PCR-amplified 

can be pictured as being arrayed in 96-well plates, with each sample adopting a defined 

well ID in a defined plate.  Samples may be arrayed in 96-well plates in PCR1, which 

amplifies the target locus from a genetic sample source (such as isolated DNA, cDNA, 

genomic prep from crude lysate).  i7 and i5 barcodes may then be pictured as being overlain 

on PCR1 amplicons in PCR2: a unique i7 primer is used for each well of a single plate, and 

therefore i7 defines the well ID of PCR1 plate position; a unique i5 primer is used across 

all wells of a single plate, and therefore i5 defines the plate ID of a multi-plate PCR1 effort 

(Fig 1a, Fig. 2c, Supp. Fig. 5), and the script outputs each unique full sample name as 

“Plate name-Sample well position”.  Plate name and i7, i5 oligo IDs are entered by user at 

console prompt (Fig. 2a, input #6; Supp. Fig. 3a-5; see Operations below for details).  

SampleSheet.py understands relationships between i7, i5 well ID and barcode sequence, 

with expectation of i7 barcodes defining wells and i5 barcode defining plate (Fig. 2b,c).   

 

Operations and Sample Sheet output file 
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SampleSheet.py establishes sample ID:bar code pairings based on user input, and 

creates a comma-separated file interpretable by Illumina® software as a Sample Sheet.  

After a user is prompted to specify an absolute path to the intended Sample Sheet file 

location, the script presents a console table-view of the i7 and i5 barcode sequences 

(“plateviews”), displaying relationships between the numbers 1-96, well IDs between A01-

H12, and corresponding barcode sequences.  In CLI format, console table-views require 

prior installation of PrettyTable, a Python library that supports visual representation of 

tabular data (freely downloaded from the Python Package Index (PyPI) at 

https://pypi.org/project/PrettyTable/ or from GitHub at 

https://github.com/jazzband/prettytable); in Jupyter notebook format, plateviews are 

automatically presented as images returned after user-definition of variables.  In CLI 

format, SampleSheet.py checks for PrettyTable installation in the system path and a user 

can choose to bypass PrettyTable at a console prompt that queries whether the user wishes 

to progress in the script in its absence if PrettyTable cannot be found.  Console plateviews 

represent the script’s effort to provide a user with resources that help to construct accurate 

sample ID:barcode assignments at the key [Data] user input step in the program (Supp. 

Fig 1).  Screen captures of the console plateviews meant to facilitate barcode ID entry can 

also be found in Supp. Fig. 6 (CLI and Jupyter notebook formats). 

 The final prompt for user input requests a list of sample names (e.g., overarching 

sample names uniquely assigned to each 96-well plate) that are comma-separated from 

integers that specify i7 and i5 barcode assignments to wells.   Each line defines a plate 

name that will be shared across associated well IDs (e.g., A01-H12) , range of i7 barcodes, 

and single i5 barcode that uniquely encompass up to 96 barcoded samples in arrayed format.  

For example, in the following six lines of text, 

 DG-1, 1-96, 1 

 DG-2, 1-96, 9 

 DG-3, 1-50, 78 

 DG-4, 1-96, 7 

 DG-5, 1-96, 22 

 DG-6, 1-68, 34 
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‘DG-1’ represents a sample plate name, ‘1-96’ represents the range of i7 barcodes used in 

PCR2 (i.e., all 96 i7 primers/barcodes were used (A01-H12), each uniquely labeling a 

distinct and corresponding well (A01-H12) within the sample plate), and ‘1’ represents the 

single i5 primer/barcode (from i5 source plate well A01) used to label all wells within this 

sample plate.  SampleSheet.py anticipates for i7 primers to be repeatedly used across 96-

well plates to specify individual wells within each sample plate, and an i5 primer to be 

uniquely assigned to each sample plate to specify the overarching source of i7-labeled wells 

within each plate.  In CLI format, input can be entered line-by-line by a user until a list of 

entries is complete (a single newline keystroke advances for entry of next sample and 

barcode range; two consecutive newline keystrokes complete list entry advance the script), 

or as a single block copied and pasted from advance preparation in a text editor.  In Jupyter 

notebook format, input must be entered with each line entry separated from others by a 

semicolon character (‘;’, see Jupyter notebook Markdown (GitHub) for details). 

 From this minimal syntax for sample plate IDs, i7, and i5 barcodes, the six lines of 

text in the example above are converted to 502 entries in Sample Sheet format; each sample 

plate is ‘expanded’ to delineate up to 96 individual wells based on the minimal information 

provided in the i7/i5 range(s) provided as input (e.g., DG-1-A01, DG-1-A02, … DG-1-

H12, etc.) (Fig. 2c-d).  For 9,216 entries in Sample Sheet format, 96 lines of text would be 

required, significantly reducing the labor and potential for erroneous sample:index 

assignments associated with manual entry of 9,216 assignments.  Upon sample:barcode 

range entry at the command-line, generation and completion of the corresponding Sample 

Sheet text file is nearly instantaneous (<1 second). 
 

ImputedGenotypes.py: allele definition and genotype imputation at specific loci of 

individual clones—Short-read SBS can yield high-coverage definition of multiplexed 

sequences.  Reads can be digitally tracked as representations of individual template 

molecules, meaning that a sample with mixed templates (>1 distinct template sequence) 

can be deconvoluted to restore the identity and relative abundance of the original templates.  

Allele definition and genotype imputation at experimentally examined loci are common 

goals of population genetic analyses, including identification of Cas9-edited clones.  We 

developed ImputedGenotypes.py, a script that converts reads in individual sample-specific 
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fastq files into imputed genotypes for those samples at PCR-amplified (queried) loci (Fig. 

1b, Fig. 3).  The script defines alleles based on relative read abundance (frequencies), 

imputes corresponding sample-specific genotypes, and delivers up to eight output files in 

a user-defined directory location. 

 

User inputs and program dependencies 

ImputedGenotypes.py prompts users for up to seven values—five required and two 

optional—entered as text at Jupyter notebook or CLI prompts (Fig. 3, Table 2).  These 

include: absolute paths to 1) input and 2) output directories, 3) BLASTN executable, and 

4) alignment reference database; 5) reference database file prefix; and (optional) 6-7) DNA 

sub-sequences to display on alignments.  At the outset of ImputedGenotypes.py, a user can 

choose whether to enter input values at ‘coached’ prompts (‘Prompt’) or in a single entry 

(‘List’) that is parsed by the script into appropriate variables.   

1-Absolute path to file output.  Users are first prompted to enter the location of a 

directory for output files (absolute path to target destination, empty of files) (Fig. 3a, input 

#1; Supp. Fig. 3b-1).  The directory can either pre-exist (as long as it is empty), or does 

not have to pre-exist (the script will create the directory designated by the absolute path if 

it does not yet exist).  Up to eight files (six .txt, one .pdf [optional], one .csv) will ultimately 

be generated in this directory as script output (Table 3). 

2-Absolute path to file input.  The script then requests location of the source file 

directory—a directory populated with fastq files containing reads derived from amplicon 

sequencing (Fig. 3a, input #2; Supp. Fig. 3b-2). 

3-Absolute path to BLASTN executable.  ImputedGenotypes.py aligns the top 10 reads 

(abundance defined by frequency) from each fastq file to a reference genome using 

BLASTN, requiring local pre-installation of BLASTN20 (Fig. 3a, input #3; Supp. Fig. 3b-

3; freely available for download with the BLAST+ suite at 

https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local/. 

4-Absolute path to reference sequence (e.g., genome) database.  BLASTN requires a 

local reference sequence database for alignment operations, typically a set of six files with 

a common prefix (e.g., ‘GRCh38’) and extensions .nhr, .nin, .nog, .nsd, .nsi, .nsq, generated 

from a single fasta file containing one or more entries (for example, in the case of a database 
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source file GRCh38.p13_genomic.fna, 457 fasta entries)26 (Fig. 3a, input #4; Supp. Fig. 

3b-4).  A user-specified genome database (or customized sequence database) is a single 

directory containing these six files, and can be made by supplying a fasta file containing 

the target sequence(s) from which BLASTN will seek alignments to MAKEBLASTDB, a 

CLI program available in the BLAST+ download suite (usage guidelines described in the 

BLAST Command Line Applications User Manual , 

https://www.ncbi.nlm.nih.gov/books/NBK279688/). 

5-Prefix common to the six files that compose the alignment reference database.  The 

alignment reference database comprises six files with a common prefix; the script requests 

this prefix from the user (Fig. 3a, input #5; Supp. Fig. 3b-5). 

6 & 7-Optional DNA subsequence(s).  Finally, users have the option to supply one or 

more short nucleotide sequences to be mapped/superimposed above or below allele 

alignments, if matches are found in the aligned nucleic acid sequences.  A Jupyter notebook 

or CLI prompt first asks whether a user will supply entries for one or both of up to two 

optional subsequence inputs; these include: (1) ‘guide RNA sequence’ (5’→3’, in DNA 

form, excluding PAM), if user wishes to display position of guide RNA used in Cas9 

editing effort (can be useful to gauge the plausibility of an allelic difference relative to 

reference sequence as being consequence of Cas9-induced break) (Fig. 3a, input #6; Supp. 

Fig. 3b-6), and (2) ‘test sequence’ (5’→3’), if user wishes to query for presence or absence 

of a specific subsequence in an allele identified by deep sequencing (relative to a reference, 

e.g., wild-type, allele) (Fig. 3a, input #7; Supp. Fig. 3b-7). 

Other dependencies.  Generation of read frequency statistics requires installation of 

Python NumPy and SciPy libraries (https://www.scipy.org/scipylib/download.html, 

https://pypi.org/project/numpy/); generation of a PDF file with allele frequency plots 

(optional) requires Python fpdf and PyPDF2 packages (https://pypi.org/project/fpdf/, 

https://pypi.org/project/PyPDF2/). 

   

Operations and output files 

 Foremost, ImputedGenotypes.py converts raw sequencing read data to proposed allele 

and genotype representations for demultiplexed samples.  Its key operations center on 

discernment of distinct reads, assessment of relative read frequencies, definition of 
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proposed alleles as wild-type or mutant relative to an alignment reference, and genotype 

hypotheses based on ranked allele abundances.  Four lists and two principal dictionaries 

organize the data analyses that ultimately appear in sample and population genotype 

summaries.  Its key outputs supply, for user evaluation, visually accessible evidence for 

allele definitions and hypothesized genotypes (Table 3, Supp. Fig. 7). 

fasta.fa—Core operations begin with fastq file processing, channeling the top ten 

ranked read types and their quantified frequency metrics to a fasta text file (fasta.fa), the 

input for BLASTN alignments.  For each sample, every read sequence is collected in a 

temporary Python list (read_lines), evaluated by the Python Counter function to identify 

the top ten most represented reads and their frequency metrics expressed in five ways: (1) 

read count/total sample reads, (2) read percentile rank relative to other reads, (3) % read 

abundance (raw), (4) % read abundance relative to reads that occur at >1% frequency, (5) % 

read abundance relative to reads that occur at >10% frequency (Fig. 3b).  The fasta 

description line (defline) for each read sequence ingrains both sample ID and frequency 

metrics (sample ID = Sample_Name defined in Sample Sheet [Data] section and fastq file 

name), embedding values used in upcoming script operations to assess read contribution to 

genotype imputation (defline structure: >samplename-plate-well_R1orR2_[read 

count/total reads for sample]_% of all reads_percentile rank relative to all reads_% of all 

reads adjusted for reads that occur >1%_% of all reads adjusted for reads that 

occur >10%) (Fig. 3c). 

 blastn_alignments.txt—The script passes fasta.fa to BLASTN using Python’s System 

Command function, accessing user-specified paths to the BLASTN executable (input #3), 

the reference sequence database directory (input #4+input#5), and blastn_alignments.txt 

with output settings -gapopen 1 -gapextend 1 -outfmt 5.  Because blastn_alignments.txt can 

be a large file (e.g., several  GB depending on the number of fasta entries aligned), users 

must have sufficient hard drive space available and memory resources to accommodate 

operations that draw on this file (alternatively, submit ImputedGenotypes.py to a 

computing cluster with sufficient memory and storage resources). 

 The alignment content of blastn_alignments.txt is populated into a series of Python list 

objects, in which alignment data are parsed and reformatted (e.g., filtered of queries flagged 

by ‘No hits found’ and queries that identified multiple hits (‘<Hit num>’ >1) in the 
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reference database).  Query sequences that belong to the same sample ID (sequences 

among the top ten ranked reads for a sample) are grouped and assigned to unique sample 

ID in a dictionary, alignmentoutput_dict2.   

 allele_definitions.txt, imputed_genotypes.txt, and allele_definitions.csv—

ImputedGenotypes.py draws from alignmentoutput_dict2 to populate its core dictionary, 

imputedgenotypes_dict, in which data are ultimately evaluated for sample allele definitions 

and genotype imputation.  For each sample, imputedgenotypes_dict compiles four 

subdictionaries assigned to each ranked sequence (candidate allele): subdictionary 1 

records ‘allele_name’ (fasta defline), ‘chr+build’, ‘locusID’, ‘coordinates’, and 

‘alignment’; subdictionary 2 records ‘allele_type’ (e.g., wild-type, mutant) and 

‘allele_specs’ (‘specifications’, e.g., likely deletion, insertion, substitution, indel), 

subdictionary 3 records guide RNA sequence(s) with match position in reference sequence, 

and subdictionary 4 records DNA test sequence(s) with match position in reference 

sequence.  Finally, imputed genotype—based on ranked allele type and specification for 

alleles with >10% adjusted frequency—is assigned to each sample ID (e.g., homozygous 

wild-type, homozygous deletion, heterozygous deletion, multi-allelic, etc. (Table 3))  

ImputedGenotypes.py displays its findings in two text files, allele_definitions.txt and 

imputed_genotypes.txt; for each sample ID, allele_definitions.txt reports imputed genotype, 

followed by ‘alleles’ (up to ten sequences ranked by relative frequency) identified from 

read 1 (R1) and read 2 (R2) sequences (Fig. 3d, Supp. Fig. 7).  Three text blocks report 

frequency metrics, allele specifications, and alignments: (1) ‘Allele’ reports sequence name 

(fasta defline containing sample ID and frequency metrics) and allele specifications 

(definition as ‘wild-type’ or ‘mutant’ relative to reference sequence (BLASTN ‘hit’), and 

if ‘mutant’, further resolution as ‘likely deletion | insertion | substitution | complex indel’, 

including number of bp altered by the mutation (e.g., ‘8 bp’); (2) ‘Locus’ reports details of 

alignment database ‘hit’, defined by BLASTN database content (typically, locus identifier 

and coordinates); (3) ‘Alignment’ reports allele sequence relative to reference ‘hit’ 

sequence, with midline (pipe (‘|’) vs. gap) reporting matched vs. unmatched nucleotide 

positions.  If DNA sub-sequences were provided for annotation (optional inputs #6 & 7), 

ImputedGenotypes.py maps the position(s) of these sequence(s) above (if guide RNA) or 

below (if test sequence) each alignment in which the sequence(s) were identified in an 
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allele or its reference, facilitating interpretation of indels as plausible consequences of 

Cas9-directed mutagenesis, and/or assessment of test sequences for presence vs. ablation.  

Ranked sequences that occurred at adjusted frequency <10% are demarcated from other 

alignments with text highlighting their scarceness as likely artefacts (not representing 

genetic source sequences): ‘>>>>> remaining alleles occur at frequency <10% <<<<<’. 

Like allele_definitions.txt, the file imputed_genotypes.txt reports allele definitions and 

alignments for ranked alleles, but reports samples based on imputed genotype class.  In 

other words, a ‘homozygous deletion’ cohort is reported before a ‘homozygous insertion’ 

cohort, in turn reported before ‘heterozygous’ cohorts, followed by a ‘homozygous wild-

type’ cohort and finally, a cohort for which insufficient evidence was recovered to impute 

genotype (‘unclear or multi-allelic, insufficient representation of allele(s)’) (Table 3).  This 

format provides an organized list of identified mutant clones, useful for further 

experimental processing and long-term storage. In addition to their summation in 

allele_definitions.txt and imputed_genotypes.txt, allele data compiled in 

imputedgenotypes_dict are transferred to a pandas dataframe for output in 

allele_definitions.csv, for convenient user access to raw data (Supp. Fig. 7). 

allele_evidence.pdf (optional)—ImputedGenotypes.py visually reports R1 and R2 

ranked sequences in frequency plots printed to allele_evidence.pdf (Fig. 3d, Supp. Fig. 7), 

an optional output file that highlights the ranked sequence subset representing alleles most 

likely to account for sample genotype.  For each sample, ranked sequence abundance is 

rendered as (1) raw frequency (% total reads), (2) % top 10 reads, (3) % reads filtered for 

reads occurring at >1% raw frequency, (4) % reads filtered for reads occurring at >10% 

raw frequency.  A sizeable fraction of reads that occur at <1% frequency in a fastq file are 

attributable to template differences  introduced by sequencing or PCR artefacts27, justifying 

their exclusion in plots (3) and (4) and the frequency recalibration of more abundant 

sequences.  Generation of these plots can be time-intensive (e.g., ~2 min. per pdf page 

depending on system resources), and this code passage is therefore optional in 

ImputedGenotypes.py; after initial user input and just before script operations begin, a user 

is prompted to specify whether to  include (‘Y’) or bypass (‘N’) frequency plot generation 

and assembly into a pdf file. 
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population_summary.txt—ImputedGenotypes.py chiefly hypothesizes genotypes for 

individual samples demultiplexed from a potentially diverse library population, but the 

program also reports aggregate population properties in population_summary.txt (Supp. 

Fig. 7).  In ‘Synopsis of Interpretations: Allele Definitions & Genotype Imputations’, the 

script catalogs i) the fraction of samples for which a genotype was imputed, ii) overall 

genotype properties represented in the sample population (e.g., % samples diploid (1-2 

prominent alleles inferred) vs. % multiploid (>2 prominent alleles inferred),  % 

homozygous wild-type vs. homozygous mutant (subsetted for deletion, insertion, 

substitution, complex indel), % heterozygous (wt + mutant), subsetted as above, % 

heterozygous (mutant + mutant), etc.), and iii) overall alleles represented (e.g., % wild-

type alleles, % mutant alleles (deletion, insertion, substitution, complex indel).  In 

‘Synopsis of Reads Lost to Analysis’, the script  earmarks ranked reads for which there 

were i) no hits, or ii) multiple hits, in the reference database (for sequences with ‘no hits’, 

a user may wish to use BLAST online to identify non-target sequence that was detected as 

amplified from sample source; for sequences with multiple hits, a user may choose to recast 

(constrain) the reference database to focus target alignment, and/or may choose to redesign 

primers or PCR conditions to improve specificity in future amplicon libraries for the locus 

in question). 

script_metrics.txt—Finally, ImputedGenotypes.py logs script operation parameters in 

script_metrics.txt, preserving i) operating system information (name, platform, RAM (GB), 

physical CPU/effective CPU, Python executable), ii) user-defined variables 

(output_directory, fastq_directory, blastn_path, db_path, db_prefix, guideRNA_seq, 

extant_seq), fastq file properties (e.g., Illumina run ID(s), # of fastq files processed and 

their size and read distribution), iii) file output information (output directory, files and their 

sizes), and iv) script operation times (e.g., start time, fasta processing time, alignments 

processing time, imputation processing time, frequency plots compilation time, etc.) (Supp. 

Fig. 7).   

 

CollatedMotifs.py: identification of altered TFBS in individual mutant clones—

DNA sequence-selective transcriptional regulatory factors (TFs) interact with genomic 

response elements (alternatively denoted as enhancers or cis-regulatory modules), 
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chromosomal regions that confer transcriptional regulation, each containing transcription 

factor binding sites (TFBS) for distinct combinations of TFs.  ENCODE catalogues 

genome-wide occupancy28 positions for such TFBS clusters within genomes, but few have 

been validated as functional response elements.  Cas9 editing routinely yields mixed allelic 

mutation at target loci (e.g., variable insertion vs. deletion, indel length across edited cells).  

For editing efforts targeted to putative response elements, widely available pattern-

matching tools enable prediction of TFBSs in a query sequence based on matches to 

position frequency matrices of known TFs.  We developed CollatedMotifs.py, a script that 

automates identification and comparison of TFBS motifs between sample-specific alleles 

and a user-supplied reference sequence. 

 

User inputs and program dependencies 

CollatedMotifs.py prompts users for ten required values—nine absolute paths to 

directories, files, or executables, plus one prefix for alignment database files—entered as 

text at Jupyter notebook or CLI prompts (Fig. 4, Table 4). 

1-Absolute path to output directory.  Users are first prompted to enter the location of 

a directory for output sub-directories and files (absolute path to target destination, empty 

of directories and files) (Fig. 4a, input #1; Supp. Fig. 3c-1).  The directory can either pre-

exist (as long as it is empty), or will be created by the script if it does not yet exist.  Three 

sub-directories (alignments_database, fimo_out and fimo_out_ref) and five files will 

ultimately be generated in this directory as script output (Table 5).   

2-Absolute path to fastq files.  The script then requests location of the source file 

directory—a directory populated with sample-specific fastq files containing reads to be 

processed for sequence content and matches to TFBS motifs (Fig. 4a, input #2; Supp. Fig. 

3c-2).   

3-Absolute path to reference fasta file.  CollatedMotifs.py relies on user-supplied 

reference sequence(s) to evaluate read (allele) sequence properties, specifically to (1) run 

sequence alignments and (2) compare TFBS.  Users supply reference sequence(s) (≥1) in 

NCBI fasta format in a single fasta-formatted text file (Fig. 4a, input #3; Supp. Fig. 3c-

3).  The span of each user-supplied reference sequence should correspond to the full 

genomic amplicon prepared for deep sequencing (borders defined by 5’-most 
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complementarity of primers to target sequence); each associated fasta defline should be 

designated by a useful name or string that can be matched in entirety in fastq sample name(s) 

scheduled to be compared to the fasta reference sequence in question (for example, for 

sample fastq filenames containing the shared prefix ‘DG-1’ (e.g., DG-1-A01, DG-1-

A02, … DG-1-H12), the fasta defline for the reference sequence assigned to DG-1 reads 

should appear as, ‘>DG-1’).  CollatedMotifs.py provides these sequences to 

MAKEBLASTDB to generate a custom sequence database for alignments, and also to 

FIMO, to generate reference-specific TFBS lists for allele comparisons. 

4-Absolute path to BLASTN executable.  CollatedMotifs.py aligns the top 5 reads 

(abundance defined by frequency) from each fastq file to a reference sequence database 

(alignments_database) using BLASTN20 (available for download with BLAST+ suite) 

(Fig. 4a, input #4; Supp. Fig. 3c-4).   

5-Absolute path to MAKEBLASTDB executable.  BLASTN requires a local sequence 

database for alignment operations, a set of six files generated from a single fasta file 

containing one or more entries (see corresponding entry in ImputedGenotypes.py 

description for further detail)26.  Whereas a user of ImputedGenotypes.py prepares a 

genome sequence database using the CLI program MAKEBLASTDB in advance of script 

operation (Fig. 4a, input #5; Supp. Fig. 3c-5), users of CollatedMotifs.py provide the 

absolute path to the MAKEBLASTDB executable (within BLAST+ suite); the script 

invokes MAKEBLASTDB to generate a database from the sequences in the user-supplied 

reference fasta file (input #3). 

6-Prefix common to the six files that compose the alignment reference database.  The 

alignment reference database comprises six files with a common prefix; the script requests 

a user-defined (custom) prefix to be assigned to these files by MAKEBLASTDB (Fig. 4a, 

input #6; Supp. Fig. 3c-6). 

7-Absolute path to FIMO executable.  To identify matches to TFBS motifs, 

CollatedMotifs.py invokes FIMO (‘Find Individual Motif Occurrences’), a program 

available in the MEME suite of motif-based sequence analysis tools (Meme 5.0.5 

download available at http://meme-suite.org/doc/download.html, FIMO background 

available at http://meme-suite.org/doc/fimo-tutorial.html) (Fig. 4a, input #7; Supp. Fig. 

3c-7).  Users supply the absolute path to the local installation of the FIMO executable.  
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Note that in Windows OS, Meme suite programs require virtualization, and 

CollatedMotifs.py must be run from within a hypervisor (e.g., Oracle VirtualBox; Open 

Virtualization Format file available at DOI 10.5281/zenodo.3406862). 

8-Absolute path to FIMO motif file.  The TFBS search program FIMO uses a plain-

text file containing position frequency matrices for one or more TFs (Meme format), the 

basis of TFBS identification in user-supplied reference sequences and fastq-supplied 

(sample ‘query’) sequences.  Users can download a directory of motif database files at 

http://meme-suite.org/doc/download.html (Fig. 4a, input #8; Supp. Fig. 3c-8).  Dozens of 

files listing position frequency matrices experimentally defined for TFs in eubacteria, 

archaea, and eukaryotic groups are available in the motif_databases directory of a Meme 

suite download.  We used JASPAR/JASPAR_CORE_2016_vertebrates.meme, from the 

2016 (6th) release of the public database JASPAR29, as the  motif reference file in the 

example case (containing position frequency matrices for 519 vertebrate TFs). 

9-Absolute path to FASTA-GET-MARKOV executable.  FIMO requires a background 

model from which to assess statistical significance of sequence matches to position 

frequency matrices; CollatedMotifs.py invokes FASTA-GET-MARKOV, a program 

available within Meme suite download, to generate a background model for FIMO 

operations on evaluated sequences.  FASTA-GET-MARKOV generates a background 

Markov model from a user-supplied reference fasta file (input #10) (further description at 

http://meme-suite.org/doc/fasta-get-markov.html) (Fig. 4a, input #9; Supp. Fig. 3c-9). 

10-Absolute path to file supplied to FASTA-GET-MARKOV for background model 

generation. FASTA-GET-MARKOV produces a background model file from a user-

supplied, fasta-formatted nucleotide sequence file (Fig. 4a, input #10; Supp. Fig. 3c-10; 

also see input #9).  We used the full human genome sequence (GRCh38.p13 Primary 

Assembly) as the fasta reference file supplied to FASTA-GET-MARKOV for background 

model generation (RefSeq Accession ID: GCF_000001405.39; filename: 

GCF_000001405.39_GRCh38.p13_genomic.fna; 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39). 

Other dependencies.  Generation of read frequency statistics requires installation of 

Python NumPy and SciPy libraries. 
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Operations and output files 

Like ImputedGenotypes.py, CollatedMotifs.py reports hypothesized alleles for 

demultiplexed NGS datasets, but its sequence alignments are populated with matches to 

TFBS motifs—specifically, with TFBS lost or gained in an allele sequence relative to a 

user-provided reference sequence.  Four dictionaries organize the key data operations that 

report TFBS collations in the visual context of alignments.  Its key outputs prepare data 

files used by BLASTN and FIMO, and supply visually accessible evidence for allele 

definitions and associated TFBS comparisons (Supp. Fig. 8). 

Alignment_database and markov_background.txt—Unlike ImputedGenotypes.py, 

CollatedMotifs.py generates the BLASTN alignment database inline, generating a spartan 

database derived solely from the sequences provided in the reference fasta file (input #3), 

with six file names prefixed by a custom string (input #6).  A background Markov file is 

generated from user-defined sequences (input #10), to be provided to FIMO during TFBS 

match operations.  MAKEBLASTDB and FASTA-GET-MARKOV are invoked using the 

Python System Command function.   

Fasta.fa—The script proceeds to operations that overlap with the fastq→fasta steps in 

ImputedGenotypes.py, linking frequency metrics to ranked sequences in fasta.fa (Fig. 3a-

c, Fig. 4b-c).  CollatedMotifs.py differs from ImputedGenotypes.py in that (for PE 

sequencing) read 1 (R1) and read 2 (R2) sequences for each sample are merged based on 

common cluster ID in R1 and R2 fastq files (i.e., R1 and R2 reads are not tracked 

independently, in contrast to ImputedGenotypes.py) (Fig. 4b).  Merged (R1+R2) 

sequences are channeled into a temporary Python list and filtered for the five most 

abundant reads, then populated to fasta.fa with fasta defline linking sample ID and 

frequency metrics to sequences. 

Blastn_alignments.txt—CollatedMotifs.py passes fasta.fa to BLASTN, which 

generates alignments to sequence content in alignment_database (Fig. 4c).  Alignments  in 

blastn_alignments.txt are iterated through a series of Python list objects to filter for ‘no hits’ 

or ‘multiple hits’, ultimately yielding a dictionary that contains unique sample IDs (keys) 

linked to tuples (values) comprising the suite of sample ID-derived sequence(s) that aligned 

to unique loci in alignment_database. 
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Fimo_out and fimo_out_ref—The script then advances to identification of matches to 

TFBS motifs in DNA sequences, invoking FIMO.  FIMO separately queries two fasta 

files—(1) the reference sequence file (input #3) and (2) fasta.fa generated by 

CollatedMotifs.py; FIMO evaluates sequences in these files for TFBS matches to motifs in 

the user-supplied position frequency matrix (input #8).  For each of the two fasta files, 

CollatedMotifs.py directs five FIMO default output files (cisml.xml, fimo.gff, fimo.html, 

fimo.tsv, fimo.xml) to one of two script-generated subdirectories, ref_fimo_out or fimo_out 

(Fig. 3c).  The five FIMO files present TFBS identification outputs in distinct formats; 

only fimo.tsv is accessed by CollatedMotifs.py, and its contents are read into reference- or 

allele- respective dictionaries, dict_ref_TFBS and dict_allele_TFBS.  By default, FIMO 

reports TFBS matches at a p-value threshold of 0.0001 (1e-4), but users can adjust this 

threshold by adding the flag --thresh with a revised value to the script’s FIMO operation 

call (details for this and other flags can be found at http://meme-suite.org/doc/fimo.html). 

Collated_TFBS.txt—CollatedMotifs.py uses Python dictionary objects to complete its 

distinctive feature, collation of TFBSs for reference sequence(s) and putative alleles.  For 

each sample-associated, ranked allele in dict_allele_TFBS, CollatedMotifs.py determines 

the appropriate reference sequence with which to pose a comparison in dict_ref_TFBS.  A 

compilation dictionary, dict_allele_TFBS_synopsis, assembles each sample ID (key) 

linked to a dictionary (value) containing ranked alleles that each point to further 

subdictionaries (Fig. 4): i) ‘TFs’ summarizes the transcription factors with TFBS identified  

for each allele, ii) ‘gained’ and iii) ‘lost’ list TFBS that are novel or absent in the allele 

relative to ‘all_sites’ in dict_ref_TFBS_synopsis for the corresponding reference sequence .   

For each sample ID in dict_allele_TFBS_synopsis, collated_TFBS.txt reports a visual 

mapping of i) TFBSs new to each allele above the alignment (retrieved from 

alignmentsoutput_dict2), and ii) TFBSs lost from each allele below the alignment (e.g., 

‘new TFBS’ and ‘lost TFBS’) (Fig. 4d; Supp. Fig. 8).    

Script_metrics.txt—Like ImputedGenotypes.py, CollatedMotifs.py logs script 

operation parameters in script_metrics.txt, specifically preserving i) operating system 

information, ii) user-defined variables, iii) fastq file properties, iv) position frequency 

matrix file properties (TF metadata),  v) file output information, and vi) script operation 

times (e.g., start time, MAKEBLASTDB and FASTA-GET-MARKOV processing time, 
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fasta processing time, alignments processing time, FIMO processing time, etc.) (Supp. Fig. 

8). 

 

Use case: Cas9-edited disruptions of glucocorticoid receptor-bound loci near a 

glucocorticoid-regulated gene, FKBP5—We used the 96x96 barcoded primers and the 

three computational tools described here to identify and characterize mutants among 

thousands of Cas9-treated clones in the human adenocarcinoma cell line A549, specifically 

seeking disruptions of glucocorticoid receptor-occupied regions (GORs) near the 

glucocorticoid-responsive gene FKBP5 (Gencode v22 gene ENSG00000096060.13).  

FKBP5 is one of the most highly glucocorticoid-induced genes in many systems examined; 

in A549 cells, the FKBP5 gene body is characterized by promoter-proximal and intronic30 

GORs (Fig. 5a).  GC resistance in humans—associated with recurring lifetime 

vulnerability to major depressive disorder (MDD) and other brain diseases—is potentially 

associated with higher induced levels of FKBP531,32.  Several GORs proximal to FKBP5 

house GR binding sites (GBS) with high evolutionary conservation across 100 vertebrates 

examined, suggesting distant emergence of these sequences in the vertebrate lineage and 

long-term negative selection against changes to these GBS over up to 400 million years 

(Supp. Fig. 9). 

We examined consequences of individual disruptions of eight GORs in a 1.5 Mb 

genomic region (GRCh38/chr6:34,950,000-36,450,000), in which FKBP5 occurs as the 

only dex-responsive gene within a putative topological domain comprising ~400 kb 

(chr6:35,339,500-35,740,000, also comprising the genes PPARD, FANCE, RPL10A, 

TEAD3, TULP1, ARMC12; FKBP5 mRNA is induced ~15-fold within 4 h of 

dexamethasone exposure (100 nM), the only gene body affected >1.5-fold in this region)  

(Fig. 5c and data not shown).  In brief, Cas9 sgRNA sequences were cloned downstream 

of a U6 promoter in a puromycin-selectable vector expressing Streptococcus pyogenes 

Cas9, producing functional Cas9 RNPs in vivo when transfected into cells 

(RRID:Addgene_62988, procedure detailed in Supp. Methods) (Fig. 5b); after puromycin 

selection, single cells from Cas9-treated cell populations were FACS-isolated into 

individual wells of ninety-six 96-well plates for arrayed clonal expansion and amplicon 

barcoding (Supp. Methods, Supp. Fig. 10).  Amplicons from 96-well plates were pooled 
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and sequenced on an Illumina MiSeq with excellent (>99%) barcode pair detection across 

9,216 samples (Supp. Fig. 11, Supp. Fig. 12).  A single list of 96 plate:barcode 

relationships was prepared in plain text format to present as [Data] input to SampleSheet.py; 

SampleSheet.py rendered the Sample Sheet used for sequencing and demultiplexing in 0.05 

sec (<2 min total user interaction with script). 

After sequencing and demultiplexing reads into 9,216x2 (18,432) fastq files 

containing sample read content, fastq files were submitted to ImputedGenotypes.py in 

batches corresponding to locus and sgRNA (i.e., individual editing scenarios, 384-480 

samples/768-960 fastq files per batch) (Fig. 5b).  On a laptop machine (Mac OS) with 16 

GB RAM and 4 physical CPU, allele definitions and imputed genotypes were completed 

for each batch and returned in allele_definitions.txt and imputed_genotypes.txt within 1.2 

min (mean), with population statistics completed in population_summary.txt in <20 sec 

(total genotype imputation and text file reports completed within 2 min); visual evidence 

in the form of frequency plots (allele_evidence.pdf) was completed within 6 h.  Altogether, 

genotypes for 9,216 samples were complete within 35 min processing time.        

We selected clones based on mutant genotypes at target GORs, and evaluated 

consequences to FKBP5 regulation by RT-qPCR (Supp. Methods).  We batch-processed 

fastq files in CollatedMotifs.py as for ImputedGenotypes.py; collated_TFBS.txt files 

earmarking matches for up to 519 vertebrate TFs, mapped over inferred alleles for 384-480 

in each batch, were complete within 3 min.  Altogether, files documenting TFBS for 9,216 

samples were complete within 60 min processing time.  We found that independently 

derived clones altered at GR-occupied regions (GORs) proximal to the glucocorticoid-

responsive gene FKBP5 experience distinct regulatory consequences to FKBP5 regulation, 

correlated to differential loss and/or gain of binding sites for transcription factor binding 

site motif match(es).  

In one example, a mutant with bi-allelic deletions at GOR -26.65 kb appeared 

unaffected for FKBP5 induction at 1 nM and 100 nM dexamethasone (Fig. 5c, clone #1), 

whereas another mutant homozygous for a single-bp insertion (+1 bp) at the same GOR 

showed nearly ablated FKBP5 induction (Fig. 5c, clone #2); closer analysis revealed that 

the mutant with ablated FKBP5 induction harbored an apparent gain-of-function (increased 

pre-dex FKBP5 transcript levels relative to wild-type), attributed to homozygous +1 bp 
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insertion (Fig. 5d). Further evaluation with CollatedMotifs.py revealed that although both 

clone #1 and #2 lost the native GOR summit GBS as a consequence of Cas9 editing (Fig. 

5e, maroon arrows (‘lost GBS’) in top (clone #1) and lower (clone #2) panels), the 

homozygous insertion in clone #2 uniquely reconstituted a novel GBS (Fig. 5e, red arrow 

(‘new GBS’) in lower panel).  Moreover, clone #2 acquired sequence matches to Sox2 and 

DMRT3 binding motifs consequent to the edit within this GOR (Fig. 5e, lower panel).  

Identification of the ‘new Sox2’ site (Fig. 5e, blue arrow in lower panel) associated with 

an FKBP5 transcriptional phenotype is particularly interesting, as Sox2—a TF typically 

associated with stemness—is ectopically expressed in many lung carcinomas, including 

A54933,34.  These results highlight that different Cas9 edits can be associated with distinct 

transcription regulatory consequences, potentially illuminated by mutation-specific TFBS 

alterations that could render distinct functionalities (e.g., amorphic, neomorphic or 

inconsequential outcomes) to response elements under evaluation. Similarly, in other 

examples, small indels that successfully ablated the GBS native to the GOR summit 

commonly introduced a novel alternative GBS, potentially obviating the utility of the 

mutant clone for interpretation of regulatory consequences (Supp. Fig. 13, Supp. Fig. 14). 

These results underscore the value of routine monitoring of altered regulatory motifs 

within candidate response elements indel-edited by Cas9, as indels engender distinct 

binding site alterations that may relate to distinct regulatory outcomes.  Automated 

collation of lost and gained TFBS may be generally useful to inform selection of clones for 

analysis and/or to guide hypotheses for further study.   

 

Test data availability (99 words) 

The list of sample:barcode assignments, fastq files, GRCh38 reference genome, fasta 

file of reference sequences, and TFBS file with position frequency matrices underlying 

these examples are available at Zenodo (10.5281/zenodo.3406862) as test data, along with 

sample output files; users can recapitulate generation of the Sample Sheet that 

demultiplexed reads from these clones as a test of SampleSheet.py, and for a  subset of 

fastq files (corresponding to Cas9 edits targeted to GOR+86.85 kb) can recapitulate 

generation of the imputed genotypes and associated files as a test of ImputedGenotypes.py, 

and can recapitulate comparison of TFBS motifs as a test of CollatedMotifs.py. 
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Conclusions (266 words) 

Other applications—We have described three Python programs 

(https://github.com/YamamotoLabUCSF), which will be of value for researchers who 

prepare amplicons for targeted SBS on Illumina® platforms: SampleSheet.py, 

ImputedGenotypes.py, CollatedMotifs.py.  We presented the scripts in the context of a 

Cas9-editing workflow targeting candidate genomic response elements, but their uses are 

not limited to Cas9-editing scenarios; rather, they are applicable to any scenario calling for 

locus-specific assignment of allele definitions and genotype imputations to individual 

members of a potentially diverse population (for example, sequencing of single or multiple 

loci amplified from cell lines, tumor biopsies, cell-free DNA samples, viral passages, or 

individuals in a population).  Illumina® SBS is broadly amenable to paired-end sequencing 

of amplicons that canvas alleles with larger indel size variation than those described here 

(Supp. Fig. 15).  We envision that SampleSheet.py and the 96x96 i5/i7 barcoded primers 

may be of broadest utility to users who sequence pooled, PCR-amplified material from 

large populations of discrete entities and wish to back-track sequence properties to their 

sources; that ImputedGenotypes.py may be useful for those who need rapid distillation of 

allele definitions and hypothesized genotype(s) for samples of known biological origin (i.e., 

with reference sequences available for alignment); and that CollatedMotifs.py may be of 

utility for users interested in an overview of TFBS differences resulting from genetic 

differences in experimental samples relative to a reference sequence, potentially aiding 

understanding of molecular phenotypes (hypothesis generation) or prioritization of clone 

choice/selection for further experimental analysis.  Open source program files, annotated 

Jupyter notebooks, and Open Virtualization Format file for all code are available for 

download, enabling users to edit and tailor for customized goals, preferences and 

applications. 

 

Availability and requirements 

Project name: SampleSheet.py 

Project home page: YamamotoLabUCSF/SampleSheet 

https://github.com/YamamotoLabUCSF/SampleSheet 
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Operating system(s): Platform independent 

Programming Language: Python 

Other requirements: Python 3.7 or higher 

 Python package installations: PrettyTable 

(CLI format; not required in Jupyter notebook format) 

License:  GNU General Public License 

Any restrictions to use by non-academics: No restrictions 

 

Project name: ImputedGenotypes.py 

Project home page: YamamotoLabUCSF/ImputedGenotypes 

https://github.com/YamamotoLabUCSF/ImputedGenotypes 

Operating system(s): Platform independent 

Programming Language: Python 

Other requirements: Python 3 or higher, BLASTN 

Installations: BLASTN 

Python package installations: SciPy, NumPy, psutil, fpdf, PyPDF2 

License: GNU General Public License 

Any restrictions to use by non-academics: No restrictions 

 

Project name: CollatedMotifs.py 

Project home page: YamamotoLabUCSF/CollatedMotifs 

https://github.com/YamamotoLabUCSF/CollatedMotifs 

Operating system(s): Linux platform-dependent (Mac OS, virtual machine) 

Programming Language: Python 

Other requirements: Python 3 or higher, BLASTN, MAKEBLASTDB, FIMO, 

FASTA-GET-MARKOV 

Installations: BLASTN, MAKEBLASTDB (BLAST+ suite); 

FIMO, FASTA-GET-MARKOV (Meme suite) 

Python package installations: SciPy, NumPy, psutil 

License: GNU General Public License 

Any restrictions to use by non-academics: No restrictions 
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Figures, tables and additional files 

 

TABLES 

Table 1.  SampleSheet.py inputs. 

User input Purpose Example 
Illumina Dual Indexed Sequencing Workflow 
Workflow A vs. 
B 

Specify whether i5 and i7 
indices are reported during 
PE sequencing as ‘forward’ 
or ‘reverse complement’ 
sequences 

A 

Absolute path to Sample Sheet file name 
Output directory 
& Sample Sheet 
file name 

Define directory in which 
Sample Sheet file (with 
designated name) will be 
created 
 

/Users/name/IlluminaNGS/SampleSh
eet.csv 
(MacOS/Linux) or 
C:\Users\name\IlluminaNGS\Sample
Sheet.csv (Windows) 

Sample Sheet sections 
[Header]: 
Investigator 
Name, Project 
Name 

Customize investigator 
name and project name to 
appear in [Header] section 

Dorothy Gale, Cas9-edited clones 

[Reads]: 
SE vs. PE, and # 
of cycles for 
R1/R2 

Specify cycle number for 
R1 (SE) or R1 and R2 (PE) 

PE, 151, 151 

[Data]: 
Sample:barcode 
relationships 

Specify relationship 
between sample name 
common to wells of a 96-
well plate, and i7/i5 indices 

CLI: 
DG-1, 1-96, 1 
DG-2, 1-96, 9 
DG-3, 1-50, 78 
 
Jupyter notebook: 
DG-1, 1-96, 1; DG-2, 1-96, 9; DG-3, 
1-50, 78 
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Table 2.  ImputedGenotypes.py inputs.  

User input Purpose Example 
Absolute paths 
Output 
directory 
 

Directory in which 
output files will be 
created 
 

/Users/name/Documents/ImputedGenotypes 
(MacOS/Linux) 
or 
C:\Users\name\Documents\ImputedGenotypes 
(Windows) 

Fastq 
(input) 
directory 

Directory that will 
supply fastq file(s) 
corresponding to 
sample IDs 
 

/Users/name/Documents/data (MacOS/Linux) 
or 
C:\Users\name\Documents\data (Windows) 
 

BLASTN 
installation 
(executable) 
 

NCBI software that 
scans a nucleotide 
sequence database for 
‘hit(s)’ that align with 
query sequence(s), 
returning hit 
coordinates and 
relative alignment 
between hit and query 
 

/usr/local/bin/blast/bin/blastn (MacOS/Linux) 
or 
C:\windows\system32\blast\bin\blastn 
(Windows) 
 

BLASTN 
database 
(directory) 

Directory created from 
MAKEBLASTDB 
operation on a single 
fasta file containing 
reference sequence 
entries for alignment of 
sequenced reads 

/Users/name/Documents/blastn_database 
(MacOS/Linux) 
or 
C:\Users\name\Documents\blastn_database 
(Windows) 
 

Short DNA sequences (optional) 
Guide RNA 
sequence(s) 
 
 
 
 
 
Query DNA 
sequence(s) 

Nucleotide sequence 
for guide RNA(s) used 
in Cas9 editing effort 
(in DNA format, 
5’→3’, excluding 
PAM) 
 
Nucleotide sequence 
for DNA 
subsequence(s) to test 
for presence/absence in 
imputed alleles 

ATCCAGTTCTCCAGTCTCCC, 
GCGAGCTCGTGTCTGTGACG 
 
 
 
 
 
TACTCAATATCGATC, 
CGGGAGCCCGAG 
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Table 3.  File outputs of ImputedGenotypes.py. 

File name Purpose Notes 

fasta.fa (1) Populates with fasta-
formatted sequence entries for 
most abundant reads (top 10) 
belonging to each sample ID 
(fastq file) among the input 
fastq files; each sequence 
defline records sample ID 
(e.g., source plate & well 
number) and sequence 
frequency metrics; (2) input to 
BLASTN for sequence 
alignments  

 

blastn_alignments.txt Output of BLASTN operation 
on fasta.fa entries relative to 
BLASTN sequence database 

This can be a large (multi-
GB) file, accounting for 
hard drive free space needs 
and/or requiring operation 
on a server 

allele_definitions.txt Output of script operation on 
blastn_alignments.txt (allele 
definitions and imputed 
genotypes) 

Samples are returned in 
order of Sample ID name 

allele_evidence.pdf  Plots of allele abundance, for 
10 ‘ranked’ alleles; visual 
representation of frequency 
evidence used by 
ImputedGenotypes.py as basis 
of sample genotype  

This file is optional.  
Creation of this file is 
time-intensive (e.g., 2-3 
min/sample, depending on 
RAM) and the output file 
can be large (multi-MB or 
GB); user can therefore 
optionally include vs. 
bypass code block that 
generates this file 

imputed_genotypes.txt Output of script operation on 
blastn_alignments.txt (allele 
definitions and imputed 
genotypes), sorted based on 
nature of imputed genotype 

Samples are returned in 
order of imputed genotype 
(specifically, in the 
following order: (1) 
homozygous deletions, (2) 
homozygous insertions, (3) 
homozygous indels, (4) 
homozygous substitutions, 
(5) biallelic deletions, (6) 
biallelic insertions, (7) 
biallelic indels, (8) biallelic 
substitutions, (9) biallelic 
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‘other’, (10) heterozygous 
deletions, (11) 
heterozygous insertions, 
(12) heterozygous indels, 
(13) heterozygous 
substitutions, (14) 
multizygous, (15) 
homozygous wild-type, 
(16) genotype unclear) 

allele_definitions.csv Comma-separated file 
cataloguing data acquired for 
each of the top 10 most 
abundant reads/sample 

Can be opened in Excel or 
imported as a Python 
dataframe object for further 
user-customized 
evaluation/processing 

population_summary.txt Documents # of samples 
processed for genotype 
imputation, % ‘called’ vs. 
‘uncalled’ for imputation; 
sequences with ‘no hits’ in the 
reference database or 
‘multiple hits’ in the reference 
database (excluded from 
genotype imputation analysis); 
representation of allele and 
genotype ‘categories’ 
population-wide 

Aside from providing 
population summaries for 
genotypes, this file 
provides data for further 
investigation of the 
amplicons recovered by 
PCR; sample names/alleles 
flagged as having ‘no hits’ 
or ‘multiple hits’ among 
read(s) can be investigated 
in blastn_alignments.txt to 
evaluate explanations for 
multiple alignments and/or 
to pursue further 
investigation of the read 
sequence(s) in question 
(e.g., conventional web-
based nucleotide BLAST 
against a wide number of 
genomes) 

script_metrics.txt Documents inputs to script 
operation (fastq files) and 
records performance 
parameters (operation 
processing times) 
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Table 4.  CollatedMotifs.py inputs.  Note that in Windows OS, Meme suite programs 

(FIMO and FASTA-GET-MARKOV) require virtualization and CollatedMotifs.py must 

be run from within a hypervisor (e.g., Oracle VirtualBox; Open Virtualization Format file 

available at DOI 10.5281/zenodo.3406862). 

User input Purpose Example 
Absolute paths 
Output directory 
 

Directory in 
which output files 
will be created 
 

/Users/name/Documents/CollatedMotifs 
(MacOS, Linux) 
or 
C:\Users\name\Documents\CollatedMotifs 
(Windows) 

Fastq (input) 
directory 
 

Directory that 
will supply fastq 
file(s) 
corresponding to 
sample IDs 

/Users/name/Documents/data (MacOS, 
Linux) 
or 
C:\Users\name\Documents\data (Windows) 
 

Fasta reference file 
 

Fasta file 
containing 
reference 
sequence(s) as 
source of TFBS 
for comparison in 
alleles; reference 
sequences must 
be named 
(defline) such that 
defline name can 
be found in 
sample name(s) 
for TFBS 
comparison 

/Users/name/Documents/fasta_ref.fa 
(MacOS, Linux) 
or 
C:\Users\name\Documents\fasta_ref.fa 
(Windows) 
 

BLASTN 
installation 
(executable) 
 

NCBI software 
that scans a 
nucleotide 
sequence 
database for 
‘hit(s)’ that align 
with query 
sequence(s), 
returning hit 
coordinates and 
relative alignment 
between hit and 
query 

/usr/local/bin/blast/bin/blastn (MacOS, 
Linux) 
or 
C:\windows\system32\blast\bin\blastn 
(Windows) 
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MAKEBLASTDB 
installation 
(executable) 
 

NCBI software 
that creates an 
alignment 
database from a 
fasta file 
containing 
reference 
sequence(s) 

/usr/local/bin/blast/bin/makeblastdb 
(MacOS, Linux) 
or 
C:\windows\system32\blast\bin\makeblastdb 
(Windows) 
 

FIMO installation 
(executable) 
 

Meme suite 
software that 
identifies matches 
to TFBS motifs in 
sequences 
provided in fasta 
format 

/usr/local/bin/Meme/bin/fimo (MacOS, 
Linux) 
or 
C:\windows\system32\Meme\bin\fimo 
 

FIMO position 
frequency matrix 
file (Meme 
format) 
 

File used by 
FIMO as a basis 
of TFBS match 
searches 
 

/usr/local/bin/Meme/motif_databases/JASPA
R/JASPAR_CORE_2016_vertebrates.meme 
(MacOS, Linux) 
or 
C:\windows\system32\Meme\motif_database
s\JASPAR\JASPAR_CORE_2016_vertebrat
es.meme (Windows) 
 

FASTA-GET-
MARKOV 
installation 
(executable) 
 

Meme suite 
software that 
generates a 
Markov 
background 
statistical model 
for TFBS motif 
matches called by 
FIMO 

/usr/local/bin/Meme/src/fastagetmarkov 
(MacOS, Linux) 
or 
C:\windows\system32\Meme\src\fastagetmar
kov (Windows) 
 

Fasta file as 
background for 
FASTA-GET-
MARKOV 
 

File containing 
sequence(s) used 
by FASTA-GET-
MARKOV to 
generate a 
background 
statistical model 
for TFBS match 
searches 

/Users/name/GRCh38.fa (MacOS, Linux) 
or 
C:\Users\name\GRCh38.fa (Windows) 

Database prefix 
Short text string 
provided as prefix 
common to 

Prefix common to 
all alignment 
database files 

GRCh38 
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alignment database 
files  

(.nhr, .nin, .nog, .
nsd, .nsi, .nsg) 

 

Table 5.  File outputs of CollatedMotifs.py.  The script generates 5 separate files, plus 

three directories (generated by MAKEBLASTDB and FIMO). 

File name Purpose Notes 
Files 
fasta.fa (1) Populates with fasta-

formatted sequence entries for 
most abundant reads (top 5, 
merged read1+read2) belonging 
to each sample ID (fastq file) 
among the input fastq files; 
each sequence defline records 
sample ID (e.g., source plate & 
well number) and sequence 
frequency metrics; (2) input to 
BLASTN for sequence 
alignments  

 

blastn_alignments.txt Output of BLASTN operation 
on fasta.fa entries relative to 
BLASTN sequence database 

This can be a large 
(multi-GB) file, 
accounting for hard 
drive free space needs 
and/or requiring 
operation on a server 

markov_background.txt Output of FASTA-GET-
MARKOV on user-provided 
fasta file of sequences; 
background model for expected 
nucleotide frequencies 

 

collated_TFBS.txt Output of script operation on 
blastn_alignments.txt (allele 
definitions) and fimo.tsv (tables 
of TFBS identified by FIMO for 
alleles and reference 
sequence(s)).  Presents a 
collation of ‘lost’ and ‘new’ 
TFBS for alleles relative to 
reference sequence, in context 
of sequence alignment  

Primary data file 

script_metrics.txt Documents inputs to script 
operation (fastq files, position 
frequency file, etc.) and records 
performance parameters 
(operation processing times) 
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Directories 
alignment_database BLASTN alignment database 

composed of six files 
(.nhr, .nin, .nog, .nsd, .nsi, .nsq), 
generated by MAKEBLASTDB 
from user-supplied reference 
sequence(s) in fasta format 

Files in this database 
share a user-supplied 
prefix provided as a 
short text string during 
user input 

fimo_out Directory of six files created by 
FIMO operations on fasta.fa 
and markov_background.txt 
(cisml.xml, fimo.gff, fimo.html, 
fimo.tsv, fimo.xml) 

Fimo.tsv in fimo_out 
contains sequence 
matches to TFBS motifs 
(with p-value) for each 
allele; its contents are 
the basis for the 
collation of TFBS 
loss/gain evaluated by 
CollatedMotifs.py, 
relative to the cognate 
data for reference 
sequence(s) in 
fimo_out_ref 

fimo_out_ref Directory of six files created by 
FIMO operations on user-
supplied fasta file containing 
reference sequence(s), and 
markov_background.txt 
(cisml.xml, fimo.gff, fimo.html, 
fimo.tsv, fimo.xml) 

 

Table 6.  Public sources for software dependencies. 

Software Source 
BLAST+ suite (NCBI) ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ 
Meme suite http://meme-suite.org/doc/download.html 
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Max: 300 words/legend (total, 1001 words) 
FIGURE LEGENDS 

Figure 1.  Three Python scripts facilitate analysis of genetic diversity in deeply 

sequenced amplicons.  (a) SampleSheet.py operates in workflows that require 

demultiplexing of barcoded sequences, automating construction of an Illumina® Sample 

Sheet with up to 9,216 sample:barcode relationships defined in its [Data] table.  Briefly, 

target loci from up to 9,216 samples can be amplified and indexed in two consecutive PCRs 

(PCR1 & PCR2), from essentially any nucleic acid source (e.g., population samples, Cas9-

edited clonal isolates [colored circles]).  After arraying genetic source material from 

individual samples in 96-well or 384-well (not shown) plates for amplification (PCR1), 

small amounts of each PCR1 product are used as templates in second reactions (PCR2) 

primed by pairs of uniquely barcoded forward and reverse primers compatible with 

Illumina® sequencing platforms (ninety-six i7, ninety-six i5 barcode possibilities).  

Barcoded amplicons are pooled as a library; user-supplied values at SampleSheet.py 

prompts are expanded to populate a Sample Sheet with sample:barcode designations, 

enabling read demultiplexing into up to 9,216 sample-specific fastq files following 

Illumina® SBS; (b) ImputedGenotypes.py accepts any number of fastq files as input, 

applying Python counter functions to classify and count read frequencies.  After aligning 

the most abundant reads to a reference genome (BLASTN), alleles are hypothesized and 

defined based on relative read frequencies and alignment comparison to the wild-type 

reference (e.g., SNPs, indels); genotypes are imputed based on allele definitions.  

Optionally, DNA subsequences (short oligonucleotide sequences) can be mapped onto 

allele outputs to flag positions and/or presence/absence of specific sequence motifs; (c) 

CollatedMotifs.py accepts fastq files as input, along with a single fasta file defining 

reference sequence(s).  Like ImputedGenotypes.py, CollatedMotifs.py identifies candidate 

alleles by read frequency and alignment to a reference sequence; it then identifies and 

compares matches to TFBS motifs in reference and allele sequences (Meme FIMO), 

returning a visualization of novel and lost TFBS in each allele. 

 

Figure 2.  SampleSheet.py: automated Illumina® Sample Sheet construction for 

sequencing and demultiplexing of up to 9,216 barcoded  samples.  (a) SampleSheet.py 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint 

https://doi.org/10.1101/775361


 37 

anticipates user-defined, console-supplied entries for six variables, which define (1) the 

Illumina® Indexed Sequencing Workflow (‘A’ or ‘B’), (2) the absolute path at which the 

Sample Sheet file will be created, plus subsections of an Illumina® Sample Sheet: two 

[Header] values (for the keys (3) ‘InvestigatorName’ & (4) ‘ProjectName’), the [Reads] 

section (indicating (5) the number of sequencing cycles for single-end or paired-end 

formats), and (6) a list of sample plate names and i7+i5 barcode permutations, the principal 

[Data] output; (b) PCR strategy that links amplicons to barcodes underlies the relationship 

that SampleSheet.py creates between an individual sample identity (plate and well ID) and 

its distinctive i7+i5 barcode combination.  In this strategy, i7 sequence (blue) defines 

individual wells of a 96-well plate, and is used across plates; i5 (yellow), in contrast, 

defines up to all wells of a single plate; (c) SampleSheet.py delineates relationships 

between i7 and i5 identities and barcode identities, enabling automated expansion of 

appropriate sample:index relationships in the Sample Sheet [Data] table, (d) and their 

output in the Sample Sheet for up to 9,216 samples.  In the example given, samples arrayed 

in three ninety-six well plates have been uniquely labeled, and an input list with three lines 

of text is expanded into a list of 242 entries, with index sequences accurately presented in 

the Sample Sheet. 
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Figure 3.  ImputedGenotypes.py: allele definition and genotype imputation based on 

read abundance in deeply sequences amplicons.  (a) Seven user-defined inputs specify 

locations of three directories and one executable file (BLASTN), as well as two optional 

short nucleotide sequences to be mapped onto analyzed sequence outputs—ultimately 

generating eight output files; (b) fastq files are read into ImputedGenotypes.py, which 

classifies reads by relative representation (Python counter function) and defines alleles 

based on calculated frequency.  The top ten most abundant reads are labeled with sample 

ID and abundance/representation and populated into a fasta file (fasta.fa), which is (c) 

passed to BLASTN for alignment to a position in the reference genome/sequence provided 

as a BLASTN database in (a) (input #3).  The output alignment file (blastn_alignments.txt) 

is parsed from html format to populate lists and dictionaries with read-specific metadata 

(allele identifier, ‘hit’ position in reference sequence, alignment to ‘hit’); these data are the 

basis of allele type definition (deletion, insertion, wild-type, etc.) and subsequent genotype 

imputation; (d) Eight output files are generated (allele_definitions.txt, 

allele_definitions.csv, allele_evidence.pdf (optional), blastn_alignments.txt, fasta.fa, 

imputed genotypes.txt, population_summary.txt, script_metrics.txt); portions of the 

principal output in allele_definitions.txt and allele_evidence.pdf are shown (see 

Supplement for further examples). 

 

Figure 4.  CollatedMotifs.py: identification of altered regulatory motifs in defined 

alleles, relative to reference sequence.  (a) Ten user-defined inputs specify locations of 

two directories, four executable files (BLASTN, FIMO, MAKEBLASTDB, FASTA-GET-

MARKOV), three files (fasta file with reference sequences, text file with TFBS motifs, 

text file with sequence(s) from which markov background will be defined), and a single 

database prefix string; (b) fastq files are read into CollatedMotfis.py, which merges R1 & 

R2 sequences (from paired-end sequencing) and identifies the top 5 most abundant read 

types for each sample; (c) reference sequences in user-provided fasta file and fasta file 

containing top 5 reads for each sample are provided to BLASTN for alignments and to 

FIMO for TFBS determinations, (d) with alignments and collated TFBS (lost and/or gained) 

displayed in output file collated_TFBS.txt. 
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Figure 5.  Use case: evaluation of Cas9-altered loci occupied by human glucocorticoid 

receptor (GR) near a glucocorticoid-regulated gene, FKBP5.  (a) top panel, GR ChIP-

seq (A549±100 nM dex, 1.5 h) indicating eight intronic and promoter-proximal dex-

dependent GR-occupied regions (GORs (yellow circles)) in vicinity of dex-induced 

FKBP5; GOR coordinates defined as peak summit distance from FANTOM5-defined TSS 

for FKBP5 transcript variant 1 (RefSeq NM_004117, coordinates chr6:35,688,937 in 

GRCh38)35; lower panel, zoom-in of region comprising GOR4-8; (b) Cas9-induced 

mutagenesis, clonal isolation, and amplicon sequencing procedure for genotype imputation 

and mutant clone identification: Cas9 and sgRNA expressed from transfected episomes; 

FACS isolation of single cells into wells of 96-well plates; PCR1 amplification of target 

loci and PCR2 indexing via barcode primers; deep sequencing (MiSeq) supported by 

SampleSheet.py; genotyping supported by ImputedGenotypes.py; TFBS synopsis via 

CollatedMotifs.py; (c) regulatory analysis (fold change (log2) of mRNA levels) for five 

dex-responsive genes (FKBP5, ANKRD1, PER1, SCNN1A, IL8) sampled from A549 (wild-

type and GOR mutants) ±1 nM and 100 nM dex, 4 h (RT-qPCR, ΔΔCT dex relative to 

ethanol control, n=3, mean±std).  Clones #1 and #2 (biallelic Δ and homozygous +1 bp in 

GBS at GOR4 (-26.65 kb) peak summit) exhibit distinct regulatory consequences for 

FKBP5 induction, unique among evaluated genes; (d) ΔCT analysis (CT FKBP5 – 

CTgeometric mean for three reference controls (GAPDH, HBMS, RPL19)) indicates that loss of 

FKBP5 dex induction in ΔΔ-26.65 clone #2 is partly attributable to increased baseline 

(EtOH) transcript level (arrow) relative to wild-type; (e) CollatedMotifs.py TFBS 

annotations in ΔΔ-26.65 clones #1 vs. #2 show that both clones lose native GBS (maroon 

arrow, lost GBS), but clone #2 reconstitutes a novel GBS (red arrow, new GBS).  

Furthermore, clone #2 also exhibits TFBS for novel TFs (e.g., blue arrow, new Sox2), 

suggesting an avenue to further examine—and potentially explain—ostensible mutation-

specific regulatory functions for response elements under study.  
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CRISPR, clustered regularly interspaced short palindromic repeats 

dex, dexamethasone 

FACS, flow-assisted cell sorting 

GBS, GR binding site 

GC, glucocorticoid 

GOR, GR-occupied region 

GR, glucocorticoid receptor 

GRE, glucocorticoid response element 

i5/i7, generic Illumina® index primer identifiers  

MCS, MiSeq Controller Software 

NGS, next generation sequencing 

PE, paired-end (dual indexed) sequencing 

P5/P7, Illumina® flow cell oligonucleotide adapters 

SBS , sequencing by synthesis 

SE, single-end (single indexed) sequencing 

TF, transcription factor 

TFBS, transcription factor binding site 
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1-50
name:
i7:

i5:

DG-2

= A01-E02

= G06

c

a

PE, 151, 151

Cas9-edited clones

Dorothy Gale

filename absolute path to Sample Sheet .csv
SampleSheet.csv

string with any ASCII characters

string with any ASCII characters

SE | PE, #, #

investigator_name

project_name

reads_value

input & example
1

2

3

4

5

6

d

input_list
DG-1, 1-96, 1
DG-3, 1-50, 78
DG-2, 1-96, 9

...

[Header]

ReverseComplement, 0
Adapter, CTGTCTCTTATACACATCT

[Settings]

Date, 04-01-2019
Workflow, GenerateFASTQ
Application, FASTQonly
Description, Sequencing
Assay, Nextera
Chemistry, Amplicon

Sample_ID, Sample_Name, i7_Index_ID, index, i5_Index_ID, index2
[Data]

InvestigatorName, Dorothy Gale
ProjectName, Cas9-edited clones

[Reads]
151
151

1,DG-1-A01,i7A01,GTACGTCA,i5A01,GAGGTAGT
2,DG-1-A02,i7A02,TGCAGTTA,i5A01,GAGGTAGT
3,DG-1-A03,i7A03,ACTGTGGA,i5A01,GAGGTAGT
4,DG-1-A04,i7A04,GGTTAAGA,i5A01,GAGGTAGT
5,DG-1-A05,i7A05,TCACACTA,i5A01,GAGGTAGT
6,DG-1-A06,i7A06,TAGAGGTA,i5A01,GAGGTAGT
7,DG-1-A07,i7A07,GCGACATA,i5A01,GAGGTAGT
8,DG-1-A08,i7A08,TACATGCA,i5A01,GAGGTAGT
9,DG-1-A09,i7A09,GATGATGA,i5A01,GAGGTAGT
10,DG-1-A10,i7A10,TGTGTGCA,i5A01,GAGGTAGT
11,DG-1-A11,i7A11,TCGCTACA,i5A01,GAGGTAGT
12,DG-1-A12,i7A12,AAGCTAGA,i5A01,GAGGTAGT
13,DG-1-B01,i7B01,TAGGACCA,i5A01,GAGGTAGT
14,DG-1-B02,i7B02,TCGTTGGA,i5A01,GAGGTAGT
15,DG-1-B03,i7B03,GTGTCCTA,i5A01,GAGGTAGT
16,DG-1-B04,i7B04,TCCGTATA,i5A01,GAGGTAGT

238,DG-3-D09,i7D09,ACAGGCTA,i5G06,GATAGGAT
239,DG-3-D10,i7D10,AAGTCGCA,i5G06,GATAGGAT
240,DG-3-D11,i7D11,GAGTTCGA,i5G06,GATAGGAT
241,DG-3-D12,i7D12,ACTCTTCA,i5G06,GATAGGAT
242,DG-3-E01,i7E01,AAGACCTA,i5G06,GATAGGAT
242,DG-3-E02,i7E02,ACCATCCA,i5G06,GATAGGAT

135,DG-2-D03,i7D03,TCGTCTCA,i5A09,AGAGCTCT
136,DG-2-D04,i7D04,ACTTACGA,i5A09,AGAGCTCT
137,DG-2-D05,i7D05,TCGGATTA,i5A09,AGAGCTCT
138,DG-2-D06,i7D06,TTGGTCTA,i5A09,AGAGCTCT

Sample
Sheet.csv

SampleSheet

>_>_

relate integer (1-96) 
to well ID (A01-H12)
& index (sequence)

expand sample ID +
indices to complete

[Data] section

‘A’ or ‘B’
A

indexed sequencing workflow

sample plate name, i7 range, i5

csv
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b

/Users/dg/data

GTACGTTCAGC

TAGCTATCAGT

/usr/local/bin/blast/bin/blastn

/Users/dg/GRCh38

/Users/dg/ImputedGenotypes

Cas9 guide RNA sequence

input & example ImputedGenotypes

>_

a
output_directory absolute path to output directory

absolute path to fastq files

absolute path to blastn

test sequence

blastn_path

test_seq

guideRNA_seq

1

3

4

GRCh38
blastn database prefixdb_prefix5

6

7

/Users/dg/data
DG-1-A01.fastq
DG-1-A02.fastq
DG-1-A03.fastq

etc.

....

etc.
....

fastq

read
lines
[1::4]

    

counter.most_common(10)
    

> sample ID1_[reads/total reads]_percentile_% read abundance_% top 10 reads_% reads filtered for 1%_% reads filtered for 10%
TACCAAATCACTGGACCTTAGAAGGTCAGAAATCTTTCAAGCCCTGCAGGACCGTAAAATGCGCATGTGTCCAACGGAAGCACTGGGGCATG

fastq_directory2

allele_evidence.pdf

imputed
genotypes

frequency metrics

i
fa

i

txt

blastn_
alignments.txt

>_
BLASTn define alleles

impute genotypes
d

>_

allele_definitions.txt

Figure 3

absolute path to reference databasedb_path

c

allele_evidence.pdf

txt
i

pdf
ii
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a b

c

input & example
output_directory

fasta_ref

blastn_path

makeblastdb_path

db_prefix

fimo_path

fimo_motifs_path

fasta_get_markov_path

markov_background_file

read
lines
[0::4]

    

frequency
metrics

/Users/dg/data

/usr/local/bin/blast/bin/blastn

/usr/local/bin/blast/bin/makeblastdb

GRCh38

/usr/local/bin/Meme/bin/fimo

/Users/dg/CollatedMotifs

/Users/dg/fasta_ref.fa

/Users/dg/hg38.fa

counter.
most_common(5)

    

R1+R2

1

2

3

4

5

6

7

8

9

10

/Users/dg/data
DG-1-A01.fastq
DG-1-A02.fastq
DG-1-A03.fastq

etc.

....
fastq

fastq_directory

GCAGGATTTGGAGTTTTCT

>reference_1

....

CAAATCACTGGACCTTAG
AAGGTCAGAAATCTTTCAA

>reference_2
AAGGGCCAGACTGGCACC

fa

CollatedMotifs

>_

‘ref’ ‘allele’

>_

>_

>_

>_ collated
motifs

fa

...Meme/motif_databases/JASPAR_CORE_2016_vertebrates.meme

/usr/local/bin/Meme/src/fastagetmarkov

d

Figure 4

absolute path to output directory

absolute path to fastq files

absolute path to reference fasta file

absolute path to blastn

absolute path to makeblastdb

blastn database prefix

absolute path to fimo

absolute path to pfm file

absolute path to fasta-get-markov

absolute path to markov bkgrnd file

collated_TFBS.txt

txt

i
define
alleles

>_
BLASTn

>_
fimo

collate
TFBS
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Figure 5
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