
 1

Definition of alleles and altered regulatory motifs across Cas9-edited cell populations

Kirk T. Ehmsen1,*, Matthew T. Knuesel1, Delsy Martinez1, Masako Asahina1, Haruna

Aridomi1, Keith R. Yamamoto1,*

1 Department of Cellular and Molecular Pharmacology, University of California at San

Francisco, 600 16th Street, GH S572D, Box 2280, San Francisco, CA, 94143-2280, USA

2 Department of Biochemistry and Biophysics, University of California at San Francisco,

1700 4th Street, QB3 Room 404, San Francisco, CA, 94158-2330, USA

* To whom correspondence should be addressed. Tel: +1 415 476-8445; Fax: +1 415 514-

4112; Email: yamamoto@ucsf.edu, kirk.ehmsen@gmail.com

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 2

Abstract (315 words)

Background: Genetic alteration of candidate response elements at their native

chromosomal loci is the only valid determinant of their potential transcriptional regulatory

activities. Targeted DNA cleavage by Cas9 coupled with cellular repair processes can

produce arrays of alleles that can be defined by massively parallel sequencing by synthesis

(SBS), presenting an opportunity to generate and survey edited cell populations that include

informative alterations. Such editing efforts commonly rely on subclonal enrichment to

isolate cells with preferred genotypic properties at target loci; short nucleotide adducts

(indices/barcodes) allow PCR-amplified molecules from diverse sample sources to be

pooled, sequenced, and demultiplexed to resolve source-specific content. Not widely

available, however, are capabilities for barcoding thousands of clones, or for automated

analysis of individual candidate regulatory loci PCR-amplified and sequenced from a

genetically heterogeneous population—specifically, imputation of discrete genotype(s) by

allele definition and abundance, and identification of altered regulatory factor binding

motifs.

Results: We describe a panel of 192 8-nucleotide barcode primers compatible with

Illumina® sequencing platforms, and the application of these barcodes to genotypic

analysis of Cas9-edited clones. Permutations of the ninety-six i7 (read 1) and ninety-six i5

(read 2) barcodes allow unique labeling of up to 9,216 distinct samples. We created three

independent Python scripts: SampleSheet.py automates construction of Illumina® Sample

Sheets encoding up to 9,216 barcode:sample relationships; ImputedGenotypes.py defines

alleles and imputes genotypes from demultiplexed fastq files; CollatedMotifs.py flags

transcription factor recognition motif matches altered in alleles relative to a reference

sequence.

Conclusions: Code-enabled definition of alleles and regulatory motifs in sequenced,

demultiplexed amplicons facilitates evaluation of genetic diversity in up to 9,216 distinct

samples. Here, we demonstrate the utility of three scripts in analysis of cell populations

targeted by Cas9 for disruption of glucocorticoid receptor (GR) binding sites near FKBP5,

a GR-regulated gene in the human adenocarcinoma cell line A549. SampleSheet.py,

ImputedGenotypes.py, and CollatedMotifs.py operate independently and are broadly

applicable beyond the case described here.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 3

Keywords (10 keywords, 24 words)

Illumina® sequencing by synthesis, amplicon sequencing, massively parallel DNA

sequencing, MiSeq, Sample Sheet, CRISPR-Cas9 mutagenesis, genotype, transcription

factor binding site (TFBS) motif, BLASTN, FIMO

Background (509 words)

The glucocorticoid receptor (GR) is a transcriptional regulatory factor (TF) that binds

to specific sequence motifs at genomic glucocorticoid response elements (GREs) and

nucleates combinatorial assembly of multicomponent transcriptional regulatory complexes,

which modulate expression of cognate target genes. Three features greatly complicate

determination of transcriptional regulatory activity by a genomic GR-occupied region

(GOR). First, in any given context, most GORs appear to lack function1, outnumbering

glucocorticoid-responsive genes by an order of magnitude or more2-4. Second, a GRE may

comprise multiple GORs scattered over tens or hundreds of kilobases, each contributing

distinct regulatory outcomes. Third, GRE activities are highly context-dependent, and must

be assessed in their normal chromosomal environments. As a result, very few GREs or

other response elements have been functionally validated5.

In principle, functional validation could be addressed by Cas9-driven targeted

genomic editing of candidate response elements, coupled with regulatory analysis of target

gene(s). Edited subclones could be identified from Cas9-treated bulk cell populations,

using sequencing by synthesis (SBS)6,7 to assess target regions. However, this would

require multiplexing hundreds to thousands of samples and a computational workflow for

deconvolution and analysis. Specifically, three unmet needs were apparent:

1. An index (barcode) set and Sample Sheet sufficient for SBS discrimination of

thousands of subclonal genotypes. In many Illumina® sequencing applications, DNA

sequences from distinct samples are labeled with barcodes, pooled (multiplexed) as a

library applied to a single flow cell, and demultiplexed based on sample:index relationships

specified in a Sample Sheet, which relates user-specified workflow parameters to Illumina®

sequencer control software. Illumina® systems formally limit barcode assignments to <96

(single-index) or <384 (dual-indexed/paired-end) distinct samples. SBS analysis of

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 4

independent samples at larger scale requires an augmented barcode set, and automated

sample:barcode assignment in a Sample Sheet that specifies thousands of data relationships.

2. Rapid clonal genotype imputation to locate potentially scarce mutant clones with

desired characteristics. Excellent web-based and command line interface (CLI) tools, e.g.,

CRISPR-GA8, AGEseq9, CRISPResso10, CRISPR-DAV11, Cas-analyzer12, BATCH-GE13,

BE-Analyzer14, and CRIS.py15, perform aggregate mutation counts and efficiencies from

next-generation sequencing (NGS) data, reporting population-distributed allele type

resolution relative to bundled mutation frequencies returned by aggregate analyses (e.g.,

TIDE 16, TIDER17). We sought to develop a tool that specifically imputes genotypes for

clonal isolates based on computationally defined alleles, and visually maps Cas9 guide

RNA sequence(s) on alignments for evaluation of Cas9-associated mutations.

3. Automated TF binding site (TFBS) collation, to infer potential consequences of

Cas9 edits to TF function in mutagenized response elements. Cas9-edited cell populations

typically display a broad spectrum of alleles at targeted loci, generated as insertion/deletion

(indel) outcomes of non-homologous DNA double-strand break repair processes18. For

indels in putative response elements, identifying mutation-associated loss or gain of

putative TFBSs would inform interpretations and/or predictions of functional

consequences.

To address these needs, we set out to automate sequence processing from input to

output of a Cas9-editing effort focused on candidate response elements, seeking to expedite

clone selection for retrieval and archiving, to prioritize clones for analysis based on

imputed genotypic definitions, and to anticipate potential functional consequences based

on altered TF motif matches (TFBS).

Implementation (256 words)

We developed three scripts (SampleSheet.py, ImputedGenotypes.py and

CollatedMotifs.py; https://github.com/YamamotoLabUCSF, supporting resources at DOI

10.5281/zenodo.3406862) that automate principal steps in (i) sample preparation for

massively parallel amplicon sequencing, including Sample Sheet creation for Illumina®

sequencing by synthesis (SBS) platforms; (ii) genotype imputation (allele definition) for

up to 9,216 pooled, independently barcoded amplicon samples; and (iii) TFBS motif

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 5

comparison between imputed alleles and a reference (e.g., wild-type) allele. All scripts

require Python 3.7 or greater for operation on Mac OSX or Windows systems; scripts are

available as annotated Jupyter notebooks19 for interactive use in a web browser, as program

files (.py) that can be run at a command-line interface (CLI), and pre-compiled in Open

Virtualization Format for virtualization (e.g., in Oracle VM VirtualBox,

https://www.virtualbox.org/). Text editor and PDF reader software are required to access

output files.

 External dependencies: When operated from a CLI, SampleSheet.py suggests but does

not require download and installation of a Python package prettytable. Whether operated

from a CLI or Jupyter notebook, ImputedGenotypes.py and CollatedMotifs.py require the

Python packages NumPy, SciPy and psutil, plus download and availability of BLASTN

(BLAST+ suite, NCBI20); ImputedGenotypes.py additionally requires fdpf and PyPDF2

libraries as well as a BLASTN reference genome database for sequencing alignments;

CollatedMotifs.py further requires MAKEBLASTDB (BLAST+ suite), Meme suite21

installation (for FIMO and FASTA-GET-MARKOV)22, and a FIMO-compatible TFBS

motif reference (position frequency matrix) file for transcription factor binding site

queries20. In Windows OS, Meme suite programs (FIMO and FASTA-GET-MARKOV)

require virtualization and CollatedMotifs.py must be run from within a hypervisor (e.g.,

Oracle VM VirtualBox).

Results & Discussion (7005 words)

A Cas9 editing effort is typically applied to cell populations, but genotypic

characterization of subclones requires clonal isolation, locus-specific PCR amplification,

and sequencing. We developed a custom library of 192 Illumina® platform-compatible,

uniquely barcoded oligonucleotide primers—96 ‘forward’ and 96 ‘reverse’ as defined by

sense/antisense to read1 orientation in the Illumina® MiSeq workflow—as indices

assignable to unique clones (Supp. Fig. 1). Barcodes at this 96x96 scale exceed

commercial barcode availability, increasing the number of independent amplicon sources

that can be pooled for paired-end sequencing and demultiplexing of reads to 9,216.

We generated hundreds of independent mutant clones in the human lung

adenocarcinoma cell line A549, targeting genomic regions occupied by the glucocorticoid

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 6

receptor (GR, product of the NR3C1 gene)23, a DNA-binding transcriptional regulatory

factor. We developed code to support and expedite a workflow that reports alleles and

genotypes for up to 9,216 clones from a single Illumina® SBS run (Fig. 1). SampleSheet.py

automates preparation of an Illumina® Sample Sheet, the text document that defines

well:barcode assignments for demultiplexing on Illumina® sequencing platforms (Fig. 2).

ImputedGenotypes.py facilitates rapid convergence to genotype from demultiplexed fastq

files24, simplifying identification of cultured clones of interest to archive and examine (Fig.

3). Finally, CollatedMotifs.py summarizes alterations to transcription factor binding site

(TFBS) motif matches for each clonal isolate relative to a reference sequence, capitalizing

on public repositories of sequence-selective position frequency matrices for characterized

DNA-binding regulatory factors (Fig. 4). DNA sequence alterations associated with Cas9

editing in putative regulatory elements may cause losses or gains of binding sites for

transcription regulatory factors, making their annotation in clones useful for interpretation

of potential functional consequences (Fig. 5).

SampleSheet.py and 96x96 paired-end barcoding of up to 9,216 samples—Illumina®

SBS workflows generally entail library construction, cluster generation, sequencing, and

data processing. In all cases, a single, plain-text, comma-separated (*.csv) file—the

Sample Sheet—mediates communication of user preferences and sequencing workflow

specifications to the software in charge of sequencing operations and data acquisition.

Fundamental run properties (e.g., sequencing cycle number, chemistry) and key links

between library identities and barcodes are documented, allowing reads to be

demultiplexed into individual fastq files after sequencing. Sample Sheets can be

constructed in Illumina® Experiment Manager (available only for Windows platforms), or

in any plain-text editor. Illumina® provides an excellent whitepaper describing Sample

Sheet sections and preparation in Pub. No. 970-2017-004-A (2017).

For small numbers of indices (e.g., tens), samples and their identifying barcodes are

easily compiled manually in a text document. For hundreds to thousands of samples,

however, manual compilation becomes time-consuming and prone to error (e.g., typos or

mistaken entries that lead to sample:barcode mispairings). SampleSheet.py automates

Sample Sheet construction, allowing a Sample Sheet with up to 9,216 data entries to be

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 7

compiled in seconds from a single list of up to 96 short lines of text (Fig. 1a, Fig 2), linking

sample IDs in 96-well plates to specified i7 and i5 barcode pairs.

User inputs and specification of sequencing run properties

SampleSheet.py prompts users for six values, entered as text at individual Jupyter

interface or CLI prompts (Fig. 2a, Table 1, Supp. Fig. 2, Supp. Fig. 3a). These values

include: 1) Illumina® Indexed Sequencing Workflow (A vs. B), 2) absolute path to output

directory and filename for Sample Sheet, 3) Investigator Name, 4) Project Name, 5) Single-

end (SE) or Paired-end (PE) sequencing run with cycle number(s), and 6) list of

sample:barcode relationships.

1-Barcode sequence orientation in SampleSheet—Workflow ‘A’ vs. ‘B’. Illumina®

indexed sequencing uses two different paired-end Indexed Sequencing Workflows,

depending on sequencer (Supp. Fig. 4). In Workflow A, index 2 is sequenced before read

2 resynthesis, meaning that i7 is sequenced as the reverse complement and i5 is sequenced

on the forward strand (applicable to NovaSeq 6000, MiSeq, HiSeq 2500, HiSeq 2000); in

Workflow B, index 2 is sequenced after read2 synthesis, creating the reverse complement

of both index1 (i7) and index2 (i5) (applicable to iSeq100, miniSeq, NextSeq, HiSeq X,

HiSeq 3000, 4000). This distinction requires attention to barcode sequence entry in Sample

Sheet fields ‘index1’ and ‘index2’; users of SampleSheet.py must verify the index

sequencing workflow on the sequencer on which they will load their libraries, as

SampleSheet.py fills barcode sequences based on specified workflow (Fig. 2a, input #1;

Supp. Fig. 3a-1).

2-Absolute path to file output. Users are next prompted for a text string that specifies

the absolute path to a location where the Sample Sheet file will be created (Fig. 2a, input

#2; Supp. Fig. 3a-2); this string must be entered as a series of directory name(s) beginning

at the file system root (e.g., /Users on Mac, C:\ on Windows operating systems), ending in

the file name to be created by the script (e.g., SampleSheet.csv). Console prompts specify

that regardless of the operating system (OS, i.e., Mac, Linux, or Windows), directory

names must be separated by forward slashes (/); functions in the Python operating system

module generate OS-appropriate paths from the user-provided string.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 8

The remaining five user-entered values populate Python variables that are printed to

Sample Sheet sections to customize content (detailed below as workflow specifications and

sample:barcode assignments). Sample Sheets require three sections—denoted in the *.csv

file by the bracketed strings [Header], [Reads], [Data]—and optionally include additional

sections (e.g., [Settings], [Manifests]). SampleSheet.py generates Sample Sheets that use

four of these sections: [Header], [Reads], [Settings], [Data] (Supp. Fig. 2).

3−6-Workflow specifications. [Header]—[Header] and [Settings] demarcate lines of

comma-separated key:value pairs that encode metadata for the sequencing experiment;

each key denotes a metadatum type and each value encodes a corresponding metadatum.

SampleSheet.py prints values for eight metadata keys under [Header]: IEMFileVersion,

Investigator Name, Project Name, Date, Workflow, Application, Description, and

Chemistry. Values for two keys (Investigator Name, Project Name) are user-supplied at

console prompts during script operation (Fig. 2a, inputs #3-4; Supp. Fig. 3a-3), with Date

value auto-generated based on the system’s present calendar time. Five keys default to

values appropriate for amplicon sequencing on Illumina® instruments

(“IEMFileVersion,4”, “Workflow,GenerateFASTQ”, “Application,FASTQ Only”,

“Assay,Nextera”, “Description, Sequencing”, and “Chemistry, Amplicon”).

[Reads]—The number of nucleotide-step extension and imaging cycles to be

completed by the sequencer is specified in the numeric values on lines of a Sample Sheet’s

[Reads] section: a single line (e.g., 151) communicates that 150 cycles of base acquisition

(following a +1 phasing cycle) will be completed to generate a single read (single-end run);

two lines (e.g., 151 \n 151, where ‘\n’ represents newline character) communicates that 150

cycles will be completed in two directions to generate forward and reverse-complement

reads (paired-end run). Users enter the read cycle number(s) to be printed in the Sample

Sheet [Reads] section as a single line of comma-separated text (two or three values) at the

console prompt, specifying single-end or paired-end run (SE or PE) and cycle number(s)

(single number for SE run, two numbers for PE run) (Fig. 2a, input #5; Supp. Fig. 3a-4).

For example, for a single-end run with 35 read cycles (plus a single phasing cycle), a user

would enter SE, 36. For a paired-end run with 150 read cycles in each direction, a user

would enter PE, 151, 151.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 9

 [Settings]—The 96x96 oligonucleotides reported here—and whose 8-nt index

sequences are embedded in SampleSheet.py data objects—are designed with Nextera

sequences flanking the target read sequence (Supp. Fig. 1)25, meaning that the adapter

sequence 5’-CTGTCTCTTATACACATCT-3’ defines the end of amplicon-specific read

sequences. SampleSheet.py populates the optional [Settings] section of the Sample Sheet

with the key:value pair that communicates adapter trimming during fastq processing

(“Adapter,CTGTCTCTTATACACATCT”). “ReverseComplement,0” specifies that read

sequences are returned as sequenced, not as reverse complements.

Sample:bar code assignments. [Data]—SampleSheet.py’s key utility is to automate

large numbers of sample:barcode relationships in the [Data] table section of a Sample Sheet.

In principle, i7 and i5 primers can be used in any combination with one another, but in the

workflow described, i7 and i5 primers serve defined sample barcoding roles that are

fundamental to the expansion operations performed by SampleSheet.py. Specifically, we

assign i7 barcodes as labels for each well (A01-H12) in a 96-well plate, and i5 primers as

labels across all wells of a single plate (Fig. 1a, Fig. 2c).

These explicit uses of i7 and i5 barcodes are put into practice when preparing

amplicons by PCR (Fig. 1a, Supp. Fig. 1, Supp. Fig. 5). Samples to be PCR-amplified

can be pictured as being arrayed in 96-well plates, with each sample adopting a defined

well ID in a defined plate. Samples may be arrayed in 96-well plates in PCR1, which

amplifies the target locus from a genetic sample source (such as isolated DNA, cDNA,

genomic prep from crude lysate). i7 and i5 barcodes may then be pictured as being overlain

on PCR1 amplicons in PCR2: a unique i7 primer is used for each well of a single plate, and

therefore i7 defines the well ID of PCR1 plate position; a unique i5 primer is used across

all wells of a single plate, and therefore i5 defines the plate ID of a multi-plate PCR1 effort

(Fig 1a, Fig. 2c, Supp. Fig. 5), and the script outputs each unique full sample name as

“Plate name-Sample well position”. Plate name and i7, i5 oligo IDs are entered by user at

console prompt (Fig. 2a, input #6; Supp. Fig. 3a-5; see Operations below for details).

SampleSheet.py understands relationships between i7, i5 well ID and barcode sequence,

with expectation of i7 barcodes defining wells and i5 barcode defining plate (Fig. 2b,c).

Operations and Sample Sheet output file

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 10

SampleSheet.py establishes sample ID:bar code pairings based on user input, and

creates a comma-separated file interpretable by Illumina® software as a Sample Sheet.

After a user is prompted to specify an absolute path to the intended Sample Sheet file

location, the script presents a console table-view of the i7 and i5 barcode sequences

(“plateviews”), displaying relationships between the numbers 1-96, well IDs between A01-

H12, and corresponding barcode sequences. In CLI format, console table-views require

prior installation of PrettyTable, a Python library that supports visual representation of

tabular data (freely downloaded from the Python Package Index (PyPI) at

https://pypi.org/project/PrettyTable/ or from GitHub at

https://github.com/jazzband/prettytable); in Jupyter notebook format, plateviews are

automatically presented as images returned after user-definition of variables. In CLI

format, SampleSheet.py checks for PrettyTable installation in the system path and a user

can choose to bypass PrettyTable at a console prompt that queries whether the user wishes

to progress in the script in its absence if PrettyTable cannot be found. Console plateviews

represent the script’s effort to provide a user with resources that help to construct accurate

sample ID:barcode assignments at the key [Data] user input step in the program (Supp.

Fig 1). Screen captures of the console plateviews meant to facilitate barcode ID entry can

also be found in Supp. Fig. 6 (CLI and Jupyter notebook formats).

 The final prompt for user input requests a list of sample names (e.g., overarching

sample names uniquely assigned to each 96-well plate) that are comma-separated from

integers that specify i7 and i5 barcode assignments to wells. Each line defines a plate

name that will be shared across associated well IDs (e.g., A01-H12) , range of i7 barcodes,

and single i5 barcode that uniquely encompass up to 96 barcoded samples in arrayed format.

For example, in the following six lines of text,

 DG-1, 1-96, 1

 DG-2, 1-96, 9

 DG-3, 1-50, 78

 DG-4, 1-96, 7

 DG-5, 1-96, 22

 DG-6, 1-68, 34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 11

‘DG-1’ represents a sample plate name, ‘1-96’ represents the range of i7 barcodes used in

PCR2 (i.e., all 96 i7 primers/barcodes were used (A01-H12), each uniquely labeling a

distinct and corresponding well (A01-H12) within the sample plate), and ‘1’ represents the

single i5 primer/barcode (from i5 source plate well A01) used to label all wells within this

sample plate. SampleSheet.py anticipates for i7 primers to be repeatedly used across 96-

well plates to specify individual wells within each sample plate, and an i5 primer to be

uniquely assigned to each sample plate to specify the overarching source of i7-labeled wells

within each plate. In CLI format, input can be entered line-by-line by a user until a list of

entries is complete (a single newline keystroke advances for entry of next sample and

barcode range; two consecutive newline keystrokes complete list entry advance the script),

or as a single block copied and pasted from advance preparation in a text editor. In Jupyter

notebook format, input must be entered with each line entry separated from others by a

semicolon character (‘;’, see Jupyter notebook Markdown (GitHub) for details).

 From this minimal syntax for sample plate IDs, i7, and i5 barcodes, the six lines of

text in the example above are converted to 502 entries in Sample Sheet format; each sample

plate is ‘expanded’ to delineate up to 96 individual wells based on the minimal information

provided in the i7/i5 range(s) provided as input (e.g., DG-1-A01, DG-1-A02, … DG-1-

H12, etc.) (Fig. 2c-d). For 9,216 entries in Sample Sheet format, 96 lines of text would be

required, significantly reducing the labor and potential for erroneous sample:index

assignments associated with manual entry of 9,216 assignments. Upon sample:barcode

range entry at the command-line, generation and completion of the corresponding Sample

Sheet text file is nearly instantaneous (<1 second).

ImputedGenotypes.py: allele definition and genotype imputation at specific loci of

individual clones—Short-read SBS can yield high-coverage definition of multiplexed

sequences. Reads can be digitally tracked as representations of individual template

molecules, meaning that a sample with mixed templates (>1 distinct template sequence)

can be deconvoluted to restore the identity and relative abundance of the original templates.

Allele definition and genotype imputation at experimentally examined loci are common

goals of population genetic analyses, including identification of Cas9-edited clones. We

developed ImputedGenotypes.py, a script that converts reads in individual sample-specific

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 12

fastq files into imputed genotypes for those samples at PCR-amplified (queried) loci (Fig.

1b, Fig. 3). The script defines alleles based on relative read abundance (frequencies),

imputes corresponding sample-specific genotypes, and delivers up to eight output files in

a user-defined directory location.

User inputs and program dependencies

ImputedGenotypes.py prompts users for up to seven values—five required and two

optional—entered as text at Jupyter notebook or CLI prompts (Fig. 3, Table 2). These

include: absolute paths to 1) input and 2) output directories, 3) BLASTN executable, and

4) alignment reference database; 5) reference database file prefix; and (optional) 6-7) DNA

sub-sequences to display on alignments. At the outset of ImputedGenotypes.py, a user can

choose whether to enter input values at ‘coached’ prompts (‘Prompt’) or in a single entry

(‘List’) that is parsed by the script into appropriate variables.

1-Absolute path to file output. Users are first prompted to enter the location of a

directory for output files (absolute path to target destination, empty of files) (Fig. 3a, input

#1; Supp. Fig. 3b-1). The directory can either pre-exist (as long as it is empty), or does

not have to pre-exist (the script will create the directory designated by the absolute path if

it does not yet exist). Up to eight files (six .txt, one .pdf [optional], one .csv) will ultimately

be generated in this directory as script output (Table 3).

2-Absolute path to file input. The script then requests location of the source file

directory—a directory populated with fastq files containing reads derived from amplicon

sequencing (Fig. 3a, input #2; Supp. Fig. 3b-2).

3-Absolute path to BLASTN executable. ImputedGenotypes.py aligns the top 10 reads

(abundance defined by frequency) from each fastq file to a reference genome using

BLASTN, requiring local pre-installation of BLASTN20 (Fig. 3a, input #3; Supp. Fig. 3b-

3; freely available for download with the BLAST+ suite at

https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local/.

4-Absolute path to reference sequence (e.g., genome) database. BLASTN requires a

local reference sequence database for alignment operations, typically a set of six files with

a common prefix (e.g., ‘GRCh38’) and extensions .nhr, .nin, .nog, .nsd, .nsi, .nsq, generated

from a single fasta file containing one or more entries (for example, in the case of a database

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 13

source file GRCh38.p13_genomic.fna, 457 fasta entries)26 (Fig. 3a, input #4; Supp. Fig.

3b-4). A user-specified genome database (or customized sequence database) is a single

directory containing these six files, and can be made by supplying a fasta file containing

the target sequence(s) from which BLASTN will seek alignments to MAKEBLASTDB, a

CLI program available in the BLAST+ download suite (usage guidelines described in the

BLAST Command Line Applications User Manual ,

https://www.ncbi.nlm.nih.gov/books/NBK279688/).

5-Prefix common to the six files that compose the alignment reference database. The

alignment reference database comprises six files with a common prefix; the script requests

this prefix from the user (Fig. 3a, input #5; Supp. Fig. 3b-5).

6 & 7-Optional DNA subsequence(s). Finally, users have the option to supply one or

more short nucleotide sequences to be mapped/superimposed above or below allele

alignments, if matches are found in the aligned nucleic acid sequences. A Jupyter notebook

or CLI prompt first asks whether a user will supply entries for one or both of up to two

optional subsequence inputs; these include: (1) ‘guide RNA sequence’ (5’→3’, in DNA

form, excluding PAM), if user wishes to display position of guide RNA used in Cas9

editing effort (can be useful to gauge the plausibility of an allelic difference relative to

reference sequence as being consequence of Cas9-induced break) (Fig. 3a, input #6; Supp.

Fig. 3b-6), and (2) ‘test sequence’ (5’→3’), if user wishes to query for presence or absence

of a specific subsequence in an allele identified by deep sequencing (relative to a reference,

e.g., wild-type, allele) (Fig. 3a, input #7; Supp. Fig. 3b-7).

Other dependencies. Generation of read frequency statistics requires installation of

Python NumPy and SciPy libraries (https://www.scipy.org/scipylib/download.html,

https://pypi.org/project/numpy/); generation of a PDF file with allele frequency plots

(optional) requires Python fpdf and PyPDF2 packages (https://pypi.org/project/fpdf/,

https://pypi.org/project/PyPDF2/).

Operations and output files

 Foremost, ImputedGenotypes.py converts raw sequencing read data to proposed allele

and genotype representations for demultiplexed samples. Its key operations center on

discernment of distinct reads, assessment of relative read frequencies, definition of

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 14

proposed alleles as wild-type or mutant relative to an alignment reference, and genotype

hypotheses based on ranked allele abundances. Four lists and two principal dictionaries

organize the data analyses that ultimately appear in sample and population genotype

summaries. Its key outputs supply, for user evaluation, visually accessible evidence for

allele definitions and hypothesized genotypes (Table 3, Supp. Fig. 7).

fasta.fa—Core operations begin with fastq file processing, channeling the top ten

ranked read types and their quantified frequency metrics to a fasta text file (fasta.fa), the

input for BLASTN alignments. For each sample, every read sequence is collected in a

temporary Python list (read_lines), evaluated by the Python Counter function to identify

the top ten most represented reads and their frequency metrics expressed in five ways: (1)

read count/total sample reads, (2) read percentile rank relative to other reads, (3) % read

abundance (raw), (4) % read abundance relative to reads that occur at >1% frequency, (5) %

read abundance relative to reads that occur at >10% frequency (Fig. 3b). The fasta

description line (defline) for each read sequence ingrains both sample ID and frequency

metrics (sample ID = Sample_Name defined in Sample Sheet [Data] section and fastq file

name), embedding values used in upcoming script operations to assess read contribution to

genotype imputation (defline structure: >samplename-plate-well_R1orR2_[read

count/total reads for sample]_% of all reads_percentile rank relative to all reads_% of all

reads adjusted for reads that occur >1%_% of all reads adjusted for reads that

occur >10%) (Fig. 3c).

 blastn_alignments.txt—The script passes fasta.fa to BLASTN using Python’s System

Command function, accessing user-specified paths to the BLASTN executable (input #3),

the reference sequence database directory (input #4+input#5), and blastn_alignments.txt

with output settings -gapopen 1 -gapextend 1 -outfmt 5. Because blastn_alignments.txt can

be a large file (e.g., several GB depending on the number of fasta entries aligned), users

must have sufficient hard drive space available and memory resources to accommodate

operations that draw on this file (alternatively, submit ImputedGenotypes.py to a

computing cluster with sufficient memory and storage resources).

 The alignment content of blastn_alignments.txt is populated into a series of Python list

objects, in which alignment data are parsed and reformatted (e.g., filtered of queries flagged

by ‘No hits found’ and queries that identified multiple hits (‘<Hit num>’ >1) in the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 15

reference database). Query sequences that belong to the same sample ID (sequences

among the top ten ranked reads for a sample) are grouped and assigned to unique sample

ID in a dictionary, alignmentoutput_dict2.

 allele_definitions.txt, imputed_genotypes.txt, and allele_definitions.csv—

ImputedGenotypes.py draws from alignmentoutput_dict2 to populate its core dictionary,

imputedgenotypes_dict, in which data are ultimately evaluated for sample allele definitions

and genotype imputation. For each sample, imputedgenotypes_dict compiles four

subdictionaries assigned to each ranked sequence (candidate allele): subdictionary 1

records ‘allele_name’ (fasta defline), ‘chr+build’, ‘locusID’, ‘coordinates’, and

‘alignment’; subdictionary 2 records ‘allele_type’ (e.g., wild-type, mutant) and

‘allele_specs’ (‘specifications’, e.g., likely deletion, insertion, substitution, indel),

subdictionary 3 records guide RNA sequence(s) with match position in reference sequence,

and subdictionary 4 records DNA test sequence(s) with match position in reference

sequence. Finally, imputed genotype—based on ranked allele type and specification for

alleles with >10% adjusted frequency—is assigned to each sample ID (e.g., homozygous

wild-type, homozygous deletion, heterozygous deletion, multi-allelic, etc. (Table 3))

ImputedGenotypes.py displays its findings in two text files, allele_definitions.txt and

imputed_genotypes.txt; for each sample ID, allele_definitions.txt reports imputed genotype,

followed by ‘alleles’ (up to ten sequences ranked by relative frequency) identified from

read 1 (R1) and read 2 (R2) sequences (Fig. 3d, Supp. Fig. 7). Three text blocks report

frequency metrics, allele specifications, and alignments: (1) ‘Allele’ reports sequence name

(fasta defline containing sample ID and frequency metrics) and allele specifications

(definition as ‘wild-type’ or ‘mutant’ relative to reference sequence (BLASTN ‘hit’), and

if ‘mutant’, further resolution as ‘likely deletion | insertion | substitution | complex indel’,

including number of bp altered by the mutation (e.g., ‘8 bp’); (2) ‘Locus’ reports details of

alignment database ‘hit’, defined by BLASTN database content (typically, locus identifier

and coordinates); (3) ‘Alignment’ reports allele sequence relative to reference ‘hit’

sequence, with midline (pipe (‘|’) vs. gap) reporting matched vs. unmatched nucleotide

positions. If DNA sub-sequences were provided for annotation (optional inputs #6 & 7),

ImputedGenotypes.py maps the position(s) of these sequence(s) above (if guide RNA) or

below (if test sequence) each alignment in which the sequence(s) were identified in an

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 16

allele or its reference, facilitating interpretation of indels as plausible consequences of

Cas9-directed mutagenesis, and/or assessment of test sequences for presence vs. ablation.

Ranked sequences that occurred at adjusted frequency <10% are demarcated from other

alignments with text highlighting their scarceness as likely artefacts (not representing

genetic source sequences): ‘>>>>> remaining alleles occur at frequency <10% <<<<<’.

Like allele_definitions.txt, the file imputed_genotypes.txt reports allele definitions and

alignments for ranked alleles, but reports samples based on imputed genotype class. In

other words, a ‘homozygous deletion’ cohort is reported before a ‘homozygous insertion’

cohort, in turn reported before ‘heterozygous’ cohorts, followed by a ‘homozygous wild-

type’ cohort and finally, a cohort for which insufficient evidence was recovered to impute

genotype (‘unclear or multi-allelic, insufficient representation of allele(s)’) (Table 3). This

format provides an organized list of identified mutant clones, useful for further

experimental processing and long-term storage. In addition to their summation in

allele_definitions.txt and imputed_genotypes.txt, allele data compiled in

imputedgenotypes_dict are transferred to a pandas dataframe for output in

allele_definitions.csv, for convenient user access to raw data (Supp. Fig. 7).

allele_evidence.pdf (optional)—ImputedGenotypes.py visually reports R1 and R2

ranked sequences in frequency plots printed to allele_evidence.pdf (Fig. 3d, Supp. Fig. 7),

an optional output file that highlights the ranked sequence subset representing alleles most

likely to account for sample genotype. For each sample, ranked sequence abundance is

rendered as (1) raw frequency (% total reads), (2) % top 10 reads, (3) % reads filtered for

reads occurring at >1% raw frequency, (4) % reads filtered for reads occurring at >10%

raw frequency. A sizeable fraction of reads that occur at <1% frequency in a fastq file are

attributable to template differences introduced by sequencing or PCR artefacts27, justifying

their exclusion in plots (3) and (4) and the frequency recalibration of more abundant

sequences. Generation of these plots can be time-intensive (e.g., ~2 min. per pdf page

depending on system resources), and this code passage is therefore optional in

ImputedGenotypes.py; after initial user input and just before script operations begin, a user

is prompted to specify whether to include (‘Y’) or bypass (‘N’) frequency plot generation

and assembly into a pdf file.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 17

population_summary.txt—ImputedGenotypes.py chiefly hypothesizes genotypes for

individual samples demultiplexed from a potentially diverse library population, but the

program also reports aggregate population properties in population_summary.txt (Supp.

Fig. 7). In ‘Synopsis of Interpretations: Allele Definitions & Genotype Imputations’, the

script catalogs i) the fraction of samples for which a genotype was imputed, ii) overall

genotype properties represented in the sample population (e.g., % samples diploid (1-2

prominent alleles inferred) vs. % multiploid (>2 prominent alleles inferred), %

homozygous wild-type vs. homozygous mutant (subsetted for deletion, insertion,

substitution, complex indel), % heterozygous (wt + mutant), subsetted as above, %

heterozygous (mutant + mutant), etc.), and iii) overall alleles represented (e.g., % wild-

type alleles, % mutant alleles (deletion, insertion, substitution, complex indel). In

‘Synopsis of Reads Lost to Analysis’, the script earmarks ranked reads for which there

were i) no hits, or ii) multiple hits, in the reference database (for sequences with ‘no hits’,

a user may wish to use BLAST online to identify non-target sequence that was detected as

amplified from sample source; for sequences with multiple hits, a user may choose to recast

(constrain) the reference database to focus target alignment, and/or may choose to redesign

primers or PCR conditions to improve specificity in future amplicon libraries for the locus

in question).

script_metrics.txt—Finally, ImputedGenotypes.py logs script operation parameters in

script_metrics.txt, preserving i) operating system information (name, platform, RAM (GB),

physical CPU/effective CPU, Python executable), ii) user-defined variables

(output_directory, fastq_directory, blastn_path, db_path, db_prefix, guideRNA_seq,

extant_seq), fastq file properties (e.g., Illumina run ID(s), # of fastq files processed and

their size and read distribution), iii) file output information (output directory, files and their

sizes), and iv) script operation times (e.g., start time, fasta processing time, alignments

processing time, imputation processing time, frequency plots compilation time, etc.) (Supp.

Fig. 7).

CollatedMotifs.py: identification of altered TFBS in individual mutant clones—

DNA sequence-selective transcriptional regulatory factors (TFs) interact with genomic

response elements (alternatively denoted as enhancers or cis-regulatory modules),

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 18

chromosomal regions that confer transcriptional regulation, each containing transcription

factor binding sites (TFBS) for distinct combinations of TFs. ENCODE catalogues

genome-wide occupancy28 positions for such TFBS clusters within genomes, but few have

been validated as functional response elements. Cas9 editing routinely yields mixed allelic

mutation at target loci (e.g., variable insertion vs. deletion, indel length across edited cells).

For editing efforts targeted to putative response elements, widely available pattern-

matching tools enable prediction of TFBSs in a query sequence based on matches to

position frequency matrices of known TFs. We developed CollatedMotifs.py, a script that

automates identification and comparison of TFBS motifs between sample-specific alleles

and a user-supplied reference sequence.

User inputs and program dependencies

CollatedMotifs.py prompts users for ten required values—nine absolute paths to

directories, files, or executables, plus one prefix for alignment database files—entered as

text at Jupyter notebook or CLI prompts (Fig. 4, Table 4).

1-Absolute path to output directory. Users are first prompted to enter the location of

a directory for output sub-directories and files (absolute path to target destination, empty

of directories and files) (Fig. 4a, input #1; Supp. Fig. 3c-1). The directory can either pre-

exist (as long as it is empty), or will be created by the script if it does not yet exist. Three

sub-directories (alignments_database, fimo_out and fimo_out_ref) and five files will

ultimately be generated in this directory as script output (Table 5).

2-Absolute path to fastq files. The script then requests location of the source file

directory—a directory populated with sample-specific fastq files containing reads to be

processed for sequence content and matches to TFBS motifs (Fig. 4a, input #2; Supp. Fig.

3c-2).

3-Absolute path to reference fasta file. CollatedMotifs.py relies on user-supplied

reference sequence(s) to evaluate read (allele) sequence properties, specifically to (1) run

sequence alignments and (2) compare TFBS. Users supply reference sequence(s) (≥1) in

NCBI fasta format in a single fasta-formatted text file (Fig. 4a, input #3; Supp. Fig. 3c-

3). The span of each user-supplied reference sequence should correspond to the full

genomic amplicon prepared for deep sequencing (borders defined by 5’-most

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 19

complementarity of primers to target sequence); each associated fasta defline should be

designated by a useful name or string that can be matched in entirety in fastq sample name(s)

scheduled to be compared to the fasta reference sequence in question (for example, for

sample fastq filenames containing the shared prefix ‘DG-1’ (e.g., DG-1-A01, DG-1-

A02, … DG-1-H12), the fasta defline for the reference sequence assigned to DG-1 reads

should appear as, ‘>DG-1’). CollatedMotifs.py provides these sequences to

MAKEBLASTDB to generate a custom sequence database for alignments, and also to

FIMO, to generate reference-specific TFBS lists for allele comparisons.

4-Absolute path to BLASTN executable. CollatedMotifs.py aligns the top 5 reads

(abundance defined by frequency) from each fastq file to a reference sequence database

(alignments_database) using BLASTN20 (available for download with BLAST+ suite)

(Fig. 4a, input #4; Supp. Fig. 3c-4).

5-Absolute path to MAKEBLASTDB executable. BLASTN requires a local sequence

database for alignment operations, a set of six files generated from a single fasta file

containing one or more entries (see corresponding entry in ImputedGenotypes.py

description for further detail)26. Whereas a user of ImputedGenotypes.py prepares a

genome sequence database using the CLI program MAKEBLASTDB in advance of script

operation (Fig. 4a, input #5; Supp. Fig. 3c-5), users of CollatedMotifs.py provide the

absolute path to the MAKEBLASTDB executable (within BLAST+ suite); the script

invokes MAKEBLASTDB to generate a database from the sequences in the user-supplied

reference fasta file (input #3).

6-Prefix common to the six files that compose the alignment reference database. The

alignment reference database comprises six files with a common prefix; the script requests

a user-defined (custom) prefix to be assigned to these files by MAKEBLASTDB (Fig. 4a,

input #6; Supp. Fig. 3c-6).

7-Absolute path to FIMO executable. To identify matches to TFBS motifs,

CollatedMotifs.py invokes FIMO (‘Find Individual Motif Occurrences’), a program

available in the MEME suite of motif-based sequence analysis tools (Meme 5.0.5

download available at http://meme-suite.org/doc/download.html, FIMO background

available at http://meme-suite.org/doc/fimo-tutorial.html) (Fig. 4a, input #7; Supp. Fig.

3c-7). Users supply the absolute path to the local installation of the FIMO executable.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 20

Note that in Windows OS, Meme suite programs require virtualization, and

CollatedMotifs.py must be run from within a hypervisor (e.g., Oracle VirtualBox; Open

Virtualization Format file available at DOI 10.5281/zenodo.3406862).

8-Absolute path to FIMO motif file. The TFBS search program FIMO uses a plain-

text file containing position frequency matrices for one or more TFs (Meme format), the

basis of TFBS identification in user-supplied reference sequences and fastq-supplied

(sample ‘query’) sequences. Users can download a directory of motif database files at

http://meme-suite.org/doc/download.html (Fig. 4a, input #8; Supp. Fig. 3c-8). Dozens of

files listing position frequency matrices experimentally defined for TFs in eubacteria,

archaea, and eukaryotic groups are available in the motif_databases directory of a Meme

suite download. We used JASPAR/JASPAR_CORE_2016_vertebrates.meme, from the

2016 (6th) release of the public database JASPAR29, as the motif reference file in the

example case (containing position frequency matrices for 519 vertebrate TFs).

9-Absolute path to FASTA-GET-MARKOV executable. FIMO requires a background

model from which to assess statistical significance of sequence matches to position

frequency matrices; CollatedMotifs.py invokes FASTA-GET-MARKOV, a program

available within Meme suite download, to generate a background model for FIMO

operations on evaluated sequences. FASTA-GET-MARKOV generates a background

Markov model from a user-supplied reference fasta file (input #10) (further description at

http://meme-suite.org/doc/fasta-get-markov.html) (Fig. 4a, input #9; Supp. Fig. 3c-9).

10-Absolute path to file supplied to FASTA-GET-MARKOV for background model

generation. FASTA-GET-MARKOV produces a background model file from a user-

supplied, fasta-formatted nucleotide sequence file (Fig. 4a, input #10; Supp. Fig. 3c-10;

also see input #9). We used the full human genome sequence (GRCh38.p13 Primary

Assembly) as the fasta reference file supplied to FASTA-GET-MARKOV for background

model generation (RefSeq Accession ID: GCF_000001405.39; filename:

GCF_000001405.39_GRCh38.p13_genomic.fna;

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39).

Other dependencies. Generation of read frequency statistics requires installation of

Python NumPy and SciPy libraries.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 21

Operations and output files

Like ImputedGenotypes.py, CollatedMotifs.py reports hypothesized alleles for

demultiplexed NGS datasets, but its sequence alignments are populated with matches to

TFBS motifs—specifically, with TFBS lost or gained in an allele sequence relative to a

user-provided reference sequence. Four dictionaries organize the key data operations that

report TFBS collations in the visual context of alignments. Its key outputs prepare data

files used by BLASTN and FIMO, and supply visually accessible evidence for allele

definitions and associated TFBS comparisons (Supp. Fig. 8).

Alignment_database and markov_background.txt—Unlike ImputedGenotypes.py,

CollatedMotifs.py generates the BLASTN alignment database inline, generating a spartan

database derived solely from the sequences provided in the reference fasta file (input #3),

with six file names prefixed by a custom string (input #6). A background Markov file is

generated from user-defined sequences (input #10), to be provided to FIMO during TFBS

match operations. MAKEBLASTDB and FASTA-GET-MARKOV are invoked using the

Python System Command function.

Fasta.fa—The script proceeds to operations that overlap with the fastq→fasta steps in

ImputedGenotypes.py, linking frequency metrics to ranked sequences in fasta.fa (Fig. 3a-

c, Fig. 4b-c). CollatedMotifs.py differs from ImputedGenotypes.py in that (for PE

sequencing) read 1 (R1) and read 2 (R2) sequences for each sample are merged based on

common cluster ID in R1 and R2 fastq files (i.e., R1 and R2 reads are not tracked

independently, in contrast to ImputedGenotypes.py) (Fig. 4b). Merged (R1+R2)

sequences are channeled into a temporary Python list and filtered for the five most

abundant reads, then populated to fasta.fa with fasta defline linking sample ID and

frequency metrics to sequences.

Blastn_alignments.txt—CollatedMotifs.py passes fasta.fa to BLASTN, which

generates alignments to sequence content in alignment_database (Fig. 4c). Alignments in

blastn_alignments.txt are iterated through a series of Python list objects to filter for ‘no hits’

or ‘multiple hits’, ultimately yielding a dictionary that contains unique sample IDs (keys)

linked to tuples (values) comprising the suite of sample ID-derived sequence(s) that aligned

to unique loci in alignment_database.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 22

Fimo_out and fimo_out_ref—The script then advances to identification of matches to

TFBS motifs in DNA sequences, invoking FIMO. FIMO separately queries two fasta

files—(1) the reference sequence file (input #3) and (2) fasta.fa generated by

CollatedMotifs.py; FIMO evaluates sequences in these files for TFBS matches to motifs in

the user-supplied position frequency matrix (input #8). For each of the two fasta files,

CollatedMotifs.py directs five FIMO default output files (cisml.xml, fimo.gff, fimo.html,

fimo.tsv, fimo.xml) to one of two script-generated subdirectories, ref_fimo_out or fimo_out

(Fig. 3c). The five FIMO files present TFBS identification outputs in distinct formats;

only fimo.tsv is accessed by CollatedMotifs.py, and its contents are read into reference- or

allele- respective dictionaries, dict_ref_TFBS and dict_allele_TFBS. By default, FIMO

reports TFBS matches at a p-value threshold of 0.0001 (1e-4), but users can adjust this

threshold by adding the flag --thresh with a revised value to the script’s FIMO operation

call (details for this and other flags can be found at http://meme-suite.org/doc/fimo.html).

Collated_TFBS.txt—CollatedMotifs.py uses Python dictionary objects to complete its

distinctive feature, collation of TFBSs for reference sequence(s) and putative alleles. For

each sample-associated, ranked allele in dict_allele_TFBS, CollatedMotifs.py determines

the appropriate reference sequence with which to pose a comparison in dict_ref_TFBS. A

compilation dictionary, dict_allele_TFBS_synopsis, assembles each sample ID (key)

linked to a dictionary (value) containing ranked alleles that each point to further

subdictionaries (Fig. 4): i) ‘TFs’ summarizes the transcription factors with TFBS identified

for each allele, ii) ‘gained’ and iii) ‘lost’ list TFBS that are novel or absent in the allele

relative to ‘all_sites’ in dict_ref_TFBS_synopsis for the corresponding reference sequence .

For each sample ID in dict_allele_TFBS_synopsis, collated_TFBS.txt reports a visual

mapping of i) TFBSs new to each allele above the alignment (retrieved from

alignmentsoutput_dict2), and ii) TFBSs lost from each allele below the alignment (e.g.,

‘new TFBS’ and ‘lost TFBS’) (Fig. 4d; Supp. Fig. 8).

Script_metrics.txt—Like ImputedGenotypes.py, CollatedMotifs.py logs script

operation parameters in script_metrics.txt, specifically preserving i) operating system

information, ii) user-defined variables, iii) fastq file properties, iv) position frequency

matrix file properties (TF metadata), v) file output information, and vi) script operation

times (e.g., start time, MAKEBLASTDB and FASTA-GET-MARKOV processing time,

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 23

fasta processing time, alignments processing time, FIMO processing time, etc.) (Supp. Fig.

8).

Use case: Cas9-edited disruptions of glucocorticoid receptor-bound loci near a

glucocorticoid-regulated gene, FKBP5—We used the 96x96 barcoded primers and the

three computational tools described here to identify and characterize mutants among

thousands of Cas9-treated clones in the human adenocarcinoma cell line A549, specifically

seeking disruptions of glucocorticoid receptor-occupied regions (GORs) near the

glucocorticoid-responsive gene FKBP5 (Gencode v22 gene ENSG00000096060.13).

FKBP5 is one of the most highly glucocorticoid-induced genes in many systems examined;

in A549 cells, the FKBP5 gene body is characterized by promoter-proximal and intronic30

GORs (Fig. 5a). GC resistance in humans—associated with recurring lifetime

vulnerability to major depressive disorder (MDD) and other brain diseases—is potentially

associated with higher induced levels of FKBP531,32. Several GORs proximal to FKBP5

house GR binding sites (GBS) with high evolutionary conservation across 100 vertebrates

examined, suggesting distant emergence of these sequences in the vertebrate lineage and

long-term negative selection against changes to these GBS over up to 400 million years

(Supp. Fig. 9).

We examined consequences of individual disruptions of eight GORs in a 1.5 Mb

genomic region (GRCh38/chr6:34,950,000-36,450,000), in which FKBP5 occurs as the

only dex-responsive gene within a putative topological domain comprising ~400 kb

(chr6:35,339,500-35,740,000, also comprising the genes PPARD, FANCE, RPL10A,

TEAD3, TULP1, ARMC12; FKBP5 mRNA is induced ~15-fold within 4 h of

dexamethasone exposure (100 nM), the only gene body affected >1.5-fold in this region)

(Fig. 5c and data not shown). In brief, Cas9 sgRNA sequences were cloned downstream

of a U6 promoter in a puromycin-selectable vector expressing Streptococcus pyogenes

Cas9, producing functional Cas9 RNPs in vivo when transfected into cells

(RRID:Addgene_62988, procedure detailed in Supp. Methods) (Fig. 5b); after puromycin

selection, single cells from Cas9-treated cell populations were FACS-isolated into

individual wells of ninety-six 96-well plates for arrayed clonal expansion and amplicon

barcoding (Supp. Methods, Supp. Fig. 10). Amplicons from 96-well plates were pooled

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 24

and sequenced on an Illumina MiSeq with excellent (>99%) barcode pair detection across

9,216 samples (Supp. Fig. 11, Supp. Fig. 12). A single list of 96 plate:barcode

relationships was prepared in plain text format to present as [Data] input to SampleSheet.py;

SampleSheet.py rendered the Sample Sheet used for sequencing and demultiplexing in 0.05

sec (<2 min total user interaction with script).

After sequencing and demultiplexing reads into 9,216x2 (18,432) fastq files

containing sample read content, fastq files were submitted to ImputedGenotypes.py in

batches corresponding to locus and sgRNA (i.e., individual editing scenarios, 384-480

samples/768-960 fastq files per batch) (Fig. 5b). On a laptop machine (Mac OS) with 16

GB RAM and 4 physical CPU, allele definitions and imputed genotypes were completed

for each batch and returned in allele_definitions.txt and imputed_genotypes.txt within 1.2

min (mean), with population statistics completed in population_summary.txt in <20 sec

(total genotype imputation and text file reports completed within 2 min); visual evidence

in the form of frequency plots (allele_evidence.pdf) was completed within 6 h. Altogether,

genotypes for 9,216 samples were complete within 35 min processing time.

We selected clones based on mutant genotypes at target GORs, and evaluated

consequences to FKBP5 regulation by RT-qPCR (Supp. Methods). We batch-processed

fastq files in CollatedMotifs.py as for ImputedGenotypes.py; collated_TFBS.txt files

earmarking matches for up to 519 vertebrate TFs, mapped over inferred alleles for 384-480

in each batch, were complete within 3 min. Altogether, files documenting TFBS for 9,216

samples were complete within 60 min processing time. We found that independently

derived clones altered at GR-occupied regions (GORs) proximal to the glucocorticoid-

responsive gene FKBP5 experience distinct regulatory consequences to FKBP5 regulation,

correlated to differential loss and/or gain of binding sites for transcription factor binding

site motif match(es).

In one example, a mutant with bi-allelic deletions at GOR -26.65 kb appeared

unaffected for FKBP5 induction at 1 nM and 100 nM dexamethasone (Fig. 5c, clone #1),

whereas another mutant homozygous for a single-bp insertion (+1 bp) at the same GOR

showed nearly ablated FKBP5 induction (Fig. 5c, clone #2); closer analysis revealed that

the mutant with ablated FKBP5 induction harbored an apparent gain-of-function (increased

pre-dex FKBP5 transcript levels relative to wild-type), attributed to homozygous +1 bp

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 25

insertion (Fig. 5d). Further evaluation with CollatedMotifs.py revealed that although both

clone #1 and #2 lost the native GOR summit GBS as a consequence of Cas9 editing (Fig.

5e, maroon arrows (‘lost GBS’) in top (clone #1) and lower (clone #2) panels), the

homozygous insertion in clone #2 uniquely reconstituted a novel GBS (Fig. 5e, red arrow

(‘new GBS’) in lower panel). Moreover, clone #2 acquired sequence matches to Sox2 and

DMRT3 binding motifs consequent to the edit within this GOR (Fig. 5e, lower panel).

Identification of the ‘new Sox2’ site (Fig. 5e, blue arrow in lower panel) associated with

an FKBP5 transcriptional phenotype is particularly interesting, as Sox2—a TF typically

associated with stemness—is ectopically expressed in many lung carcinomas, including

A54933,34. These results highlight that different Cas9 edits can be associated with distinct

transcription regulatory consequences, potentially illuminated by mutation-specific TFBS

alterations that could render distinct functionalities (e.g., amorphic, neomorphic or

inconsequential outcomes) to response elements under evaluation. Similarly, in other

examples, small indels that successfully ablated the GBS native to the GOR summit

commonly introduced a novel alternative GBS, potentially obviating the utility of the

mutant clone for interpretation of regulatory consequences (Supp. Fig. 13, Supp. Fig. 14).

These results underscore the value of routine monitoring of altered regulatory motifs

within candidate response elements indel-edited by Cas9, as indels engender distinct

binding site alterations that may relate to distinct regulatory outcomes. Automated

collation of lost and gained TFBS may be generally useful to inform selection of clones for

analysis and/or to guide hypotheses for further study.

Test data availability (99 words)

The list of sample:barcode assignments, fastq files, GRCh38 reference genome, fasta

file of reference sequences, and TFBS file with position frequency matrices underlying

these examples are available at Zenodo (10.5281/zenodo.3406862) as test data, along with

sample output files; users can recapitulate generation of the Sample Sheet that

demultiplexed reads from these clones as a test of SampleSheet.py, and for a subset of

fastq files (corresponding to Cas9 edits targeted to GOR+86.85 kb) can recapitulate

generation of the imputed genotypes and associated files as a test of ImputedGenotypes.py,

and can recapitulate comparison of TFBS motifs as a test of CollatedMotifs.py.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 26

Conclusions (266 words)

Other applications—We have described three Python programs

(https://github.com/YamamotoLabUCSF), which will be of value for researchers who

prepare amplicons for targeted SBS on Illumina® platforms: SampleSheet.py,

ImputedGenotypes.py, CollatedMotifs.py. We presented the scripts in the context of a

Cas9-editing workflow targeting candidate genomic response elements, but their uses are

not limited to Cas9-editing scenarios; rather, they are applicable to any scenario calling for

locus-specific assignment of allele definitions and genotype imputations to individual

members of a potentially diverse population (for example, sequencing of single or multiple

loci amplified from cell lines, tumor biopsies, cell-free DNA samples, viral passages, or

individuals in a population). Illumina® SBS is broadly amenable to paired-end sequencing

of amplicons that canvas alleles with larger indel size variation than those described here

(Supp. Fig. 15). We envision that SampleSheet.py and the 96x96 i5/i7 barcoded primers

may be of broadest utility to users who sequence pooled, PCR-amplified material from

large populations of discrete entities and wish to back-track sequence properties to their

sources; that ImputedGenotypes.py may be useful for those who need rapid distillation of

allele definitions and hypothesized genotype(s) for samples of known biological origin (i.e.,

with reference sequences available for alignment); and that CollatedMotifs.py may be of

utility for users interested in an overview of TFBS differences resulting from genetic

differences in experimental samples relative to a reference sequence, potentially aiding

understanding of molecular phenotypes (hypothesis generation) or prioritization of clone

choice/selection for further experimental analysis. Open source program files, annotated

Jupyter notebooks, and Open Virtualization Format file for all code are available for

download, enabling users to edit and tailor for customized goals, preferences and

applications.

Availability and requirements

Project name: SampleSheet.py

Project home page: YamamotoLabUCSF/SampleSheet

https://github.com/YamamotoLabUCSF/SampleSheet

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 27

Operating system(s): Platform independent

Programming Language: Python

Other requirements: Python 3.7 or higher

 Python package installations: PrettyTable

(CLI format; not required in Jupyter notebook format)

License: GNU General Public License

Any restrictions to use by non-academics: No restrictions

Project name: ImputedGenotypes.py

Project home page: YamamotoLabUCSF/ImputedGenotypes

https://github.com/YamamotoLabUCSF/ImputedGenotypes

Operating system(s): Platform independent

Programming Language: Python

Other requirements: Python 3 or higher, BLASTN

Installations: BLASTN

Python package installations: SciPy, NumPy, psutil, fpdf, PyPDF2

License: GNU General Public License

Any restrictions to use by non-academics: No restrictions

Project name: CollatedMotifs.py

Project home page: YamamotoLabUCSF/CollatedMotifs

https://github.com/YamamotoLabUCSF/CollatedMotifs

Operating system(s): Linux platform-dependent (Mac OS, virtual machine)

Programming Language: Python

Other requirements: Python 3 or higher, BLASTN, MAKEBLASTDB, FIMO,

FASTA-GET-MARKOV

Installations: BLASTN, MAKEBLASTDB (BLAST+ suite);

FIMO, FASTA-GET-MARKOV (Meme suite)

Python package installations: SciPy, NumPy, psutil

License: GNU General Public License

Any restrictions to use by non-academics: No restrictions

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 28

Figures, tables and additional files

TABLES

Table 1. SampleSheet.py inputs.

User input Purpose Example
Illumina Dual Indexed Sequencing Workflow
Workflow A vs.
B

Specify whether i5 and i7
indices are reported during
PE sequencing as ‘forward’
or ‘reverse complement’
sequences

A

Absolute path to Sample Sheet file name
Output directory
& Sample Sheet
file name

Define directory in which
Sample Sheet file (with
designated name) will be
created

/Users/name/IlluminaNGS/SampleSh
eet.csv
(MacOS/Linux) or
C:\Users\name\IlluminaNGS\Sample
Sheet.csv (Windows)

Sample Sheet sections
[Header]:
Investigator
Name, Project
Name

Customize investigator
name and project name to
appear in [Header] section

Dorothy Gale, Cas9-edited clones

[Reads]:
SE vs. PE, and #
of cycles for
R1/R2

Specify cycle number for
R1 (SE) or R1 and R2 (PE)

PE, 151, 151

[Data]:
Sample:barcode
relationships

Specify relationship
between sample name
common to wells of a 96-
well plate, and i7/i5 indices

CLI:
DG-1, 1-96, 1
DG-2, 1-96, 9
DG-3, 1-50, 78

Jupyter notebook:
DG-1, 1-96, 1; DG-2, 1-96, 9; DG-3,
1-50, 78

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 29

Table 2. ImputedGenotypes.py inputs.

User input Purpose Example
Absolute paths
Output
directory

Directory in which
output files will be
created

/Users/name/Documents/ImputedGenotypes
(MacOS/Linux)
or
C:\Users\name\Documents\ImputedGenotypes
(Windows)

Fastq
(input)
directory

Directory that will
supply fastq file(s)
corresponding to
sample IDs

/Users/name/Documents/data (MacOS/Linux)
or
C:\Users\name\Documents\data (Windows)

BLASTN
installation
(executable)

NCBI software that
scans a nucleotide
sequence database for
‘hit(s)’ that align with
query sequence(s),
returning hit
coordinates and
relative alignment
between hit and query

/usr/local/bin/blast/bin/blastn (MacOS/Linux)
or
C:\windows\system32\blast\bin\blastn
(Windows)

BLASTN
database
(directory)

Directory created from
MAKEBLASTDB
operation on a single
fasta file containing
reference sequence
entries for alignment of
sequenced reads

/Users/name/Documents/blastn_database
(MacOS/Linux)
or
C:\Users\name\Documents\blastn_database
(Windows)

Short DNA sequences (optional)
Guide RNA
sequence(s)

Query DNA
sequence(s)

Nucleotide sequence
for guide RNA(s) used
in Cas9 editing effort
(in DNA format,
5’→3’, excluding
PAM)

Nucleotide sequence
for DNA
subsequence(s) to test
for presence/absence in
imputed alleles

ATCCAGTTCTCCAGTCTCCC,
GCGAGCTCGTGTCTGTGACG

TACTCAATATCGATC,
CGGGAGCCCGAG

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 30

Table 3. File outputs of ImputedGenotypes.py.

File name Purpose Notes

fasta.fa (1) Populates with fasta-
formatted sequence entries for
most abundant reads (top 10)
belonging to each sample ID
(fastq file) among the input
fastq files; each sequence
defline records sample ID
(e.g., source plate & well
number) and sequence
frequency metrics; (2) input to
BLASTN for sequence
alignments

blastn_alignments.txt Output of BLASTN operation
on fasta.fa entries relative to
BLASTN sequence database

This can be a large (multi-
GB) file, accounting for
hard drive free space needs
and/or requiring operation
on a server

allele_definitions.txt Output of script operation on
blastn_alignments.txt (allele
definitions and imputed
genotypes)

Samples are returned in
order of Sample ID name

allele_evidence.pdf Plots of allele abundance, for
10 ‘ranked’ alleles; visual
representation of frequency
evidence used by
ImputedGenotypes.py as basis
of sample genotype

This file is optional.
Creation of this file is
time-intensive (e.g., 2-3
min/sample, depending on
RAM) and the output file
can be large (multi-MB or
GB); user can therefore
optionally include vs.
bypass code block that
generates this file

imputed_genotypes.txt Output of script operation on
blastn_alignments.txt (allele
definitions and imputed
genotypes), sorted based on
nature of imputed genotype

Samples are returned in
order of imputed genotype
(specifically, in the
following order: (1)
homozygous deletions, (2)
homozygous insertions, (3)
homozygous indels, (4)
homozygous substitutions,
(5) biallelic deletions, (6)
biallelic insertions, (7)
biallelic indels, (8) biallelic
substitutions, (9) biallelic

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 31

‘other’, (10) heterozygous
deletions, (11)
heterozygous insertions,
(12) heterozygous indels,
(13) heterozygous
substitutions, (14)
multizygous, (15)
homozygous wild-type,
(16) genotype unclear)

allele_definitions.csv Comma-separated file
cataloguing data acquired for
each of the top 10 most
abundant reads/sample

Can be opened in Excel or
imported as a Python
dataframe object for further
user-customized
evaluation/processing

population_summary.txt Documents # of samples
processed for genotype
imputation, % ‘called’ vs.
‘uncalled’ for imputation;
sequences with ‘no hits’ in the
reference database or
‘multiple hits’ in the reference
database (excluded from
genotype imputation analysis);
representation of allele and
genotype ‘categories’
population-wide

Aside from providing
population summaries for
genotypes, this file
provides data for further
investigation of the
amplicons recovered by
PCR; sample names/alleles
flagged as having ‘no hits’
or ‘multiple hits’ among
read(s) can be investigated
in blastn_alignments.txt to
evaluate explanations for
multiple alignments and/or
to pursue further
investigation of the read
sequence(s) in question
(e.g., conventional web-
based nucleotide BLAST
against a wide number of
genomes)

script_metrics.txt Documents inputs to script
operation (fastq files) and
records performance
parameters (operation
processing times)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 32

Table 4. CollatedMotifs.py inputs. Note that in Windows OS, Meme suite programs

(FIMO and FASTA-GET-MARKOV) require virtualization and CollatedMotifs.py must

be run from within a hypervisor (e.g., Oracle VirtualBox; Open Virtualization Format file

available at DOI 10.5281/zenodo.3406862).

User input Purpose Example
Absolute paths
Output directory

Directory in
which output files
will be created

/Users/name/Documents/CollatedMotifs
(MacOS, Linux)
or
C:\Users\name\Documents\CollatedMotifs
(Windows)

Fastq (input)
directory

Directory that
will supply fastq
file(s)
corresponding to
sample IDs

/Users/name/Documents/data (MacOS,
Linux)
or
C:\Users\name\Documents\data (Windows)

Fasta reference file

Fasta file
containing
reference
sequence(s) as
source of TFBS
for comparison in
alleles; reference
sequences must
be named
(defline) such that
defline name can
be found in
sample name(s)
for TFBS
comparison

/Users/name/Documents/fasta_ref.fa
(MacOS, Linux)
or
C:\Users\name\Documents\fasta_ref.fa
(Windows)

BLASTN
installation
(executable)

NCBI software
that scans a
nucleotide
sequence
database for
‘hit(s)’ that align
with query
sequence(s),
returning hit
coordinates and
relative alignment
between hit and
query

/usr/local/bin/blast/bin/blastn (MacOS,
Linux)
or
C:\windows\system32\blast\bin\blastn
(Windows)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 33

MAKEBLASTDB
installation
(executable)

NCBI software
that creates an
alignment
database from a
fasta file
containing
reference
sequence(s)

/usr/local/bin/blast/bin/makeblastdb
(MacOS, Linux)
or
C:\windows\system32\blast\bin\makeblastdb
(Windows)

FIMO installation
(executable)

Meme suite
software that
identifies matches
to TFBS motifs in
sequences
provided in fasta
format

/usr/local/bin/Meme/bin/fimo (MacOS,
Linux)
or
C:\windows\system32\Meme\bin\fimo

FIMO position
frequency matrix
file (Meme
format)

File used by
FIMO as a basis
of TFBS match
searches

/usr/local/bin/Meme/motif_databases/JASPA
R/JASPAR_CORE_2016_vertebrates.meme
(MacOS, Linux)
or
C:\windows\system32\Meme\motif_database
s\JASPAR\JASPAR_CORE_2016_vertebrat
es.meme (Windows)

FASTA-GET-
MARKOV
installation
(executable)

Meme suite
software that
generates a
Markov
background
statistical model
for TFBS motif
matches called by
FIMO

/usr/local/bin/Meme/src/fastagetmarkov
(MacOS, Linux)
or
C:\windows\system32\Meme\src\fastagetmar
kov (Windows)

Fasta file as
background for
FASTA-GET-
MARKOV

File containing
sequence(s) used
by FASTA-GET-
MARKOV to
generate a
background
statistical model
for TFBS match
searches

/Users/name/GRCh38.fa (MacOS, Linux)
or
C:\Users\name\GRCh38.fa (Windows)

Database prefix
Short text string
provided as prefix
common to

Prefix common to
all alignment
database files

GRCh38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 34

alignment database
files

(.nhr, .nin, .nog, .
nsd, .nsi, .nsg)

Table 5. File outputs of CollatedMotifs.py. The script generates 5 separate files, plus

three directories (generated by MAKEBLASTDB and FIMO).

File name Purpose Notes
Files
fasta.fa (1) Populates with fasta-

formatted sequence entries for
most abundant reads (top 5,
merged read1+read2) belonging
to each sample ID (fastq file)
among the input fastq files;
each sequence defline records
sample ID (e.g., source plate &
well number) and sequence
frequency metrics; (2) input to
BLASTN for sequence
alignments

blastn_alignments.txt Output of BLASTN operation
on fasta.fa entries relative to
BLASTN sequence database

This can be a large
(multi-GB) file,
accounting for hard
drive free space needs
and/or requiring
operation on a server

markov_background.txt Output of FASTA-GET-
MARKOV on user-provided
fasta file of sequences;
background model for expected
nucleotide frequencies

collated_TFBS.txt Output of script operation on
blastn_alignments.txt (allele
definitions) and fimo.tsv (tables
of TFBS identified by FIMO for
alleles and reference
sequence(s)). Presents a
collation of ‘lost’ and ‘new’
TFBS for alleles relative to
reference sequence, in context
of sequence alignment

Primary data file

script_metrics.txt Documents inputs to script
operation (fastq files, position
frequency file, etc.) and records
performance parameters
(operation processing times)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 35

Directories
alignment_database BLASTN alignment database

composed of six files
(.nhr, .nin, .nog, .nsd, .nsi, .nsq),
generated by MAKEBLASTDB
from user-supplied reference
sequence(s) in fasta format

Files in this database
share a user-supplied
prefix provided as a
short text string during
user input

fimo_out Directory of six files created by
FIMO operations on fasta.fa
and markov_background.txt
(cisml.xml, fimo.gff, fimo.html,
fimo.tsv, fimo.xml)

Fimo.tsv in fimo_out
contains sequence
matches to TFBS motifs
(with p-value) for each
allele; its contents are
the basis for the
collation of TFBS
loss/gain evaluated by
CollatedMotifs.py,
relative to the cognate
data for reference
sequence(s) in
fimo_out_ref

fimo_out_ref Directory of six files created by
FIMO operations on user-
supplied fasta file containing
reference sequence(s), and
markov_background.txt
(cisml.xml, fimo.gff, fimo.html,
fimo.tsv, fimo.xml)

Table 6. Public sources for software dependencies.

Software Source
BLAST+ suite (NCBI) ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
Meme suite http://meme-suite.org/doc/download.html

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 36

Max: 300 words/legend (total, 1001 words)
FIGURE LEGENDS

Figure 1. Three Python scripts facilitate analysis of genetic diversity in deeply

sequenced amplicons. (a) SampleSheet.py operates in workflows that require

demultiplexing of barcoded sequences, automating construction of an Illumina® Sample

Sheet with up to 9,216 sample:barcode relationships defined in its [Data] table. Briefly,

target loci from up to 9,216 samples can be amplified and indexed in two consecutive PCRs

(PCR1 & PCR2), from essentially any nucleic acid source (e.g., population samples, Cas9-

edited clonal isolates [colored circles]). After arraying genetic source material from

individual samples in 96-well or 384-well (not shown) plates for amplification (PCR1),

small amounts of each PCR1 product are used as templates in second reactions (PCR2)

primed by pairs of uniquely barcoded forward and reverse primers compatible with

Illumina® sequencing platforms (ninety-six i7, ninety-six i5 barcode possibilities).

Barcoded amplicons are pooled as a library; user-supplied values at SampleSheet.py

prompts are expanded to populate a Sample Sheet with sample:barcode designations,

enabling read demultiplexing into up to 9,216 sample-specific fastq files following

Illumina® SBS; (b) ImputedGenotypes.py accepts any number of fastq files as input,

applying Python counter functions to classify and count read frequencies. After aligning

the most abundant reads to a reference genome (BLASTN), alleles are hypothesized and

defined based on relative read frequencies and alignment comparison to the wild-type

reference (e.g., SNPs, indels); genotypes are imputed based on allele definitions.

Optionally, DNA subsequences (short oligonucleotide sequences) can be mapped onto

allele outputs to flag positions and/or presence/absence of specific sequence motifs; (c)

CollatedMotifs.py accepts fastq files as input, along with a single fasta file defining

reference sequence(s). Like ImputedGenotypes.py, CollatedMotifs.py identifies candidate

alleles by read frequency and alignment to a reference sequence; it then identifies and

compares matches to TFBS motifs in reference and allele sequences (Meme FIMO),

returning a visualization of novel and lost TFBS in each allele.

Figure 2. SampleSheet.py: automated Illumina® Sample Sheet construction for

sequencing and demultiplexing of up to 9,216 barcoded samples. (a) SampleSheet.py

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 37

anticipates user-defined, console-supplied entries for six variables, which define (1) the

Illumina® Indexed Sequencing Workflow (‘A’ or ‘B’), (2) the absolute path at which the

Sample Sheet file will be created, plus subsections of an Illumina® Sample Sheet: two

[Header] values (for the keys (3) ‘InvestigatorName’ & (4) ‘ProjectName’), the [Reads]

section (indicating (5) the number of sequencing cycles for single-end or paired-end

formats), and (6) a list of sample plate names and i7+i5 barcode permutations, the principal

[Data] output; (b) PCR strategy that links amplicons to barcodes underlies the relationship

that SampleSheet.py creates between an individual sample identity (plate and well ID) and

its distinctive i7+i5 barcode combination. In this strategy, i7 sequence (blue) defines

individual wells of a 96-well plate, and is used across plates; i5 (yellow), in contrast,

defines up to all wells of a single plate; (c) SampleSheet.py delineates relationships

between i7 and i5 identities and barcode identities, enabling automated expansion of

appropriate sample:index relationships in the Sample Sheet [Data] table, (d) and their

output in the Sample Sheet for up to 9,216 samples. In the example given, samples arrayed

in three ninety-six well plates have been uniquely labeled, and an input list with three lines

of text is expanded into a list of 242 entries, with index sequences accurately presented in

the Sample Sheet.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 38

Figure 3. ImputedGenotypes.py: allele definition and genotype imputation based on

read abundance in deeply sequences amplicons. (a) Seven user-defined inputs specify

locations of three directories and one executable file (BLASTN), as well as two optional

short nucleotide sequences to be mapped onto analyzed sequence outputs—ultimately

generating eight output files; (b) fastq files are read into ImputedGenotypes.py, which

classifies reads by relative representation (Python counter function) and defines alleles

based on calculated frequency. The top ten most abundant reads are labeled with sample

ID and abundance/representation and populated into a fasta file (fasta.fa), which is (c)

passed to BLASTN for alignment to a position in the reference genome/sequence provided

as a BLASTN database in (a) (input #3). The output alignment file (blastn_alignments.txt)

is parsed from html format to populate lists and dictionaries with read-specific metadata

(allele identifier, ‘hit’ position in reference sequence, alignment to ‘hit’); these data are the

basis of allele type definition (deletion, insertion, wild-type, etc.) and subsequent genotype

imputation; (d) Eight output files are generated (allele_definitions.txt,

allele_definitions.csv, allele_evidence.pdf (optional), blastn_alignments.txt, fasta.fa,

imputed genotypes.txt, population_summary.txt, script_metrics.txt); portions of the

principal output in allele_definitions.txt and allele_evidence.pdf are shown (see

Supplement for further examples).

Figure 4. CollatedMotifs.py: identification of altered regulatory motifs in defined

alleles, relative to reference sequence. (a) Ten user-defined inputs specify locations of

two directories, four executable files (BLASTN, FIMO, MAKEBLASTDB, FASTA-GET-

MARKOV), three files (fasta file with reference sequences, text file with TFBS motifs,

text file with sequence(s) from which markov background will be defined), and a single

database prefix string; (b) fastq files are read into CollatedMotfis.py, which merges R1 &

R2 sequences (from paired-end sequencing) and identifies the top 5 most abundant read

types for each sample; (c) reference sequences in user-provided fasta file and fasta file

containing top 5 reads for each sample are provided to BLASTN for alignments and to

FIMO for TFBS determinations, (d) with alignments and collated TFBS (lost and/or gained)

displayed in output file collated_TFBS.txt.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 39

Figure 5. Use case: evaluation of Cas9-altered loci occupied by human glucocorticoid

receptor (GR) near a glucocorticoid-regulated gene, FKBP5. (a) top panel, GR ChIP-

seq (A549±100 nM dex, 1.5 h) indicating eight intronic and promoter-proximal dex-

dependent GR-occupied regions (GORs (yellow circles)) in vicinity of dex-induced

FKBP5; GOR coordinates defined as peak summit distance from FANTOM5-defined TSS

for FKBP5 transcript variant 1 (RefSeq NM_004117, coordinates chr6:35,688,937 in

GRCh38)35; lower panel, zoom-in of region comprising GOR4-8; (b) Cas9-induced

mutagenesis, clonal isolation, and amplicon sequencing procedure for genotype imputation

and mutant clone identification: Cas9 and sgRNA expressed from transfected episomes;

FACS isolation of single cells into wells of 96-well plates; PCR1 amplification of target

loci and PCR2 indexing via barcode primers; deep sequencing (MiSeq) supported by

SampleSheet.py; genotyping supported by ImputedGenotypes.py; TFBS synopsis via

CollatedMotifs.py; (c) regulatory analysis (fold change (log2) of mRNA levels) for five

dex-responsive genes (FKBP5, ANKRD1, PER1, SCNN1A, IL8) sampled from A549 (wild-

type and GOR mutants) ±1 nM and 100 nM dex, 4 h (RT-qPCR, ΔΔCT dex relative to

ethanol control, n=3, mean±std). Clones #1 and #2 (biallelic Δ and homozygous +1 bp in

GBS at GOR4 (-26.65 kb) peak summit) exhibit distinct regulatory consequences for

FKBP5 induction, unique among evaluated genes; (d) ΔCT analysis (CT FKBP5 –

CTgeometric mean for three reference controls (GAPDH, HBMS, RPL19)) indicates that loss of

FKBP5 dex induction in ΔΔ-26.65 clone #2 is partly attributable to increased baseline

(EtOH) transcript level (arrow) relative to wild-type; (e) CollatedMotifs.py TFBS

annotations in ΔΔ-26.65 clones #1 vs. #2 show that both clones lose native GBS (maroon

arrow, lost GBS), but clone #2 reconstitutes a novel GBS (red arrow, new GBS).

Furthermore, clone #2 also exhibits TFBS for novel TFs (e.g., blue arrow, new Sox2),

suggesting an avenue to further examine—and potentially explain—ostensible mutation-

specific regulatory functions for response elements under study.

List of abbreviations

CLI, command-line interface

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 40

CRISPR, clustered regularly interspaced short palindromic repeats

dex, dexamethasone

FACS, flow-assisted cell sorting

GBS, GR binding site

GC, glucocorticoid

GOR, GR-occupied region

GR, glucocorticoid receptor

GRE, glucocorticoid response element

i5/i7, generic Illumina® index primer identifiers

MCS, MiSeq Controller Software

NGS, next generation sequencing

PE, paired-end (dual indexed) sequencing

P5/P7, Illumina® flow cell oligonucleotide adapters

SBS , sequencing by synthesis

SE, single-end (single indexed) sequencing

TF, transcription factor

TFBS, transcription factor binding site

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material

Sample datasets analyzed in the current study are available under the following

DOI: 10.5281/zenodo.3406862

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by NIH R01 CA020535 to KRY and NSF MCB-1615826

to KRY.

Authors’ contributions

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 41

KTE authored all code and deposited resources in GitHub and Zenodo repositories,

performed Cas9 mutagenesis experiments and regulatory analysis, generated and

analyzed sequencing datasets, and authored manuscript. MTK tested code,

suggested updates for improvement, and assembled the Open Virtualization Format

file (Linux virtual machine). DM performed GR ChIP-seq and peak calling

analysis. MA tested code and documented amplicon size-dependent recoveries by

two DNA clean-up approaches. HA tested amplicon length recoveries. KRY

secured funding support, advised, and edited manuscript. All authors read and

approved the final manuscript.

Acknowledgments

We thank Mark Stenglein (Colorado State University, Fort Collins, CO) and

Joseph DeRisi (University of California, San Francisco) for design and validation

of 96x96 read1 and read2 barcode adaptors and sequences; all members of the

Yamamoto laboratory for support, discussion and feedback; Sarah Elmes

(Laboratory of Cell Analysis, UCSF; NIH P30CA082103) for expert FACS

assistance and training; Jason Fernandes for initially introducing and sharing

barcoded adaptors and sequences; Michel Tassetto for MiSeq background and

Raul Andino lab (UCSF) for shared MiSeq use; Illumina® Technical Support for

expert equipment troubleshooting and maintenance; Albertas Navickas and Hani

Goodarzi lab (UCSF) for 384-well qPCR access; City College of San Francisco,

in particular Douglas Putnam, Greg Boyd, Aaron Brick, and Jonathan Potter for

programming coursework; contributors to Stack Exchange, Stack Overflow and

related forums for freely sharing programming practices. Research support was

from NIH CA020535 (to KRY).

REFERENCES

1. Vockley, C. M. et al. Direct GR Binding Sites Potentiate Clusters of TF Binding
across the Human Genome. Cell 166, 1269–1281.e19 (2016).

2. So, A. Y.-L., Chaivorapol, C., Bolton, E. C., Li, H. & Yamamoto, K. R.
Determinants of cell- and gene-specific transcriptional regulation by the
glucocorticoid receptor. PLoS Genet. 3, e94 (2007).

3. Reddy, T. E. et al. Genomic determination of the glucocorticoid response reveals
unexpected mechanisms of gene regulation. Genome Res. 19, 2163–2171 (2009).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 42

4. D'Ippolito, A. M. et al. Pre-established Chromatin Interactions Mediate the
Genomic Response to Glucocorticoids. Cell Syst 7, 146–160.e7 (2018).

5. Halfon, M. S. Studying Transcriptional Enhancers: The Founder Fallacy,
Validation Creep, and Other Biases. Trends Genet. 35, 93–103 (2019).

6. Bell, C. C., Magor, G. W., Gillinder, K. R. & Perkins, A. C. A high-throughput
screening strategy for detecting CRISPR-Cas9 induced mutations using next-
generation sequencing. BMC Genomics 15, 1002 (2014).

7. Nussbaum, L. et al. High-Throughput Genotyping of CRISPR/Cas Edited Cells in
96-Well Plates. Methods Protoc 1, 29 (2018).

8. Güell, M., Yang, L. & Church, G. M. Genome editing assessment using CRISPR
Genome Analyzer (CRISPR-GA). Bioinformatics 30, 2968–2970 (2014).

9. Xue, L.-J. & Tsai, C.-J. AGEseq: Analysis of Genome Editing by Sequencing. Mol
Plant 8, 1428–1430 (2015).

10. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with
CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

11. Wang, X. et al. CRISPR-DAV: CRISPR NGS data analysis and visualization
pipeline. Bioinformatics 33, 3811–3812 (2017).

12. Park, J., Lim, K., Kim, J.-S. & Bae, S. Cas-analyzer: an online tool for assessing
genome editing results using NGS data. Bioinformatics 33, 286–288 (2017).

13. Boel, A. et al. BATCH-GE: Batch analysis of Next-Generation Sequencing data
for genome editing assessment. Sci Rep 6, 30330 (2016).

14. Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing.
BMC Bioinformatics 19, 542–7 (2018).

15. Connelly, J. P. & Pruett-Miller, S. M. CRIS.py: A Versatile and High-throughput
Analysis Program for CRISPR-based Genome Editing. Sci Rep 9, 4194–8 (2019).

16. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative
assessment of genome editing by sequence trace decomposition. Nucleic Acids
Res. 42, e168–e168 (2014).

17. Brinkman, E. K. & van Steensel, B. Rapid Quantitative Evaluation of CRISPR
Genome Editing by TIDE and TIDER. Methods Mol. Biol. 1961, 29–44 (2019).

18. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc
8, 2281–2308 (2013).

19. Kluyver, T. et al. Jupyter Notebooks – a publishing format for reproducible
computational workflows. Positioning and Power in Academic Publishing:
Players, Agents and Agendas, 87–90 (2016).

20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

21. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 37, W202–8 (2009).

22. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a
given motif. Bioinformatics 27, 1017–1018 (2011).

23. Kadmiel, M. & Cidlowski, J. A. Glucocorticoid receptor signaling in health and
disease. Trends Pharmacol. Sci. 34, 518–530 (2013).

24. Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger
FASTQ file format for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Res. 38, 1767–1771 (2010).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

 43

25. Stenglein, M. D. et al. Widespread recombination, reassortment, and transmission
of unbalanced compound viral genotypes in natural arenavirus infections. PLoS
Pathog. 11, e1004900 (2015).

26. in BLAST® Command Line Applications User Manual [Internet] (National Center
for Biotechnology Information (US), 2008).

27. Kebschull, J. M. & Zador, A. M. Sources of PCR-induced distortions in high-
throughput sequencing data sets. Nucleic Acids Res. 43, e143 (2015).

28. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription
factor footprints. Nature 489, 83–90 (2012).

29. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription
factor binding profiles and its web framework. Nucleic Acids Res. 46, D1284–
D1284 (2018).

30. Meijsing, S. H. et al. DNA binding site sequence directs glucocorticoid receptor
structure and activity. Science 324, 407–410 (2009).

31. Criado-Marrero, M. et al. Hsp90 and FKBP51: complex regulators of psychiatric
diseases. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373, 20160532 (2018).

32. Binder, E. B. et al. Polymorphisms in FKBP5 are associated with increased
recurrence of depressive episodes and rapid response to antidepressant treatment.
Nat. Genet. 36, 1319–1325 (2004).

33. Nakatsugawa, M. et al. SOX2 is overexpressed in stem-like cells of human lung
adenocarcinoma and augments the tumorigenicity. Lab. Invest. 91, 1796–1804
(2011).

34. Choe, C. et al. SOX2, a stemness gene, induces progression of NSCLC A549 cells
toward anchorage-independent growth and chemoresistance to vinblastine. Onco
Targets Ther 11, 6197–6207 (2018).

35. FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. A promoter-
level mammalian expression atlas. Nature 507, 462–470 (2014).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

(allele TFBS vs. reference TFBS)

ImputedGenotypes

>_>_

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1

b

c

A
B
C
D
E
F
G
H

7 8 9 10 11 127 8 9 10 11 12A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 127 8 9 10 11 127 8 9 11 12A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H

9 10 11 129 10 11 129 10 11 129 11 12

samples
(up to 9,216) PCR1

amplify

PCR-amplify & index samples
Prepare library
& Illumina SampleSheet

barcode
PCR2

pool barcoded amplicons

imputed genotypes

supporting evidence

SampleSheet

>_

a

imputed
genotypes

txt

1 2 3 4 5 6 7 8 9 10 11 12

sample ID

sample ID
heterozygous deletion

allele: 1200/2400 (50%) ∆

allele: 1200/2400 (50%) wt

i5
i7

pdf

fasta

+ CollatedMotifs

>_>_

sequence

Recover sequences
(Illumina SBS technology)

demultiplex
fastq

csv

sample ID
1
2

i7 index1 i5 index2
i7A01 i5A01 GAGGTAGTGTACGTCA
i7A02 i5A02 GCTTAACTTGCAGTTA
i7A03 i5A03 GCAATTCTACTGTGGA
i7A04 i5A04 TCCTCACTGGTTAAGA
i7A05 i5A05 AGTTAGCTTCACACTA
i7A06 i5A06 TCATGGCTTAGAGGTA

classify & count reads
(frequency)

define sample ID : barcode
assignments [Data]

customize [Header], [Reads]

create Sample Sheet

identify top 10 reads
(most abundant)

align to reference
genome (blastn)

return alignments
as alleles & imputed

genotypes

(optional) map
subsequences on alleles

classify & count reads
(frequency)

identify top 5 reads
(most abundant)
align to reference
genome (blastn)
identify TFBS in

reference & alleles
(fimo)

return collation of
novel vs. lost TFBS

allele: # novel/#lost TFBS

allele: 1200/2400 (50%) wt

fre
qu

en
cy

1 2 3 4 5

0.5

(read abundance)

TCAACAGGTCTGATCTCCAAGGACTCTCATTCG
+wxyz{|}~11133zzzwxyzzzwyxx{1~{xqz

@run ID::cluster ID::sample

TCAACAGGTCTGATCTCCAAGGACTCTCATTCG
+wxyz{|}~11133zzzwxyzzzwyxx{1~{xqz

@run ID::cluster ID::sample

fastq

fastq

collated TFBS

collated
motifs

txt
altered TFBS

TTCCAAAAGGAATGAATCGTCTTCTCCCGCCAGAGGAGAAAGCAAACAGT
TTTCATCTATCAACAGGTCTGATCTCCAAGGACTCTCATTCGTCTCTTTA
CCTGGGGACCCAGAAGAAAACTCCAAATCCTGCAAAATGTCAAAGGTGCT
TTGGTCTGTGGTATACAATTTCACATTGCCACCGTTGGTGCCAGTCTGGC
CCTTCAAATGTTGCTGTTCTGACAAATCCTGCAAAATGTCAAAGGTGCT
TTGGTCTGTGGTATACAATTTCACATTGCCACCGTTGGTGCCAGTCTGGC

>reference

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

b

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

1 2 11 12

13 14 23 24

25 26 35 36

37 38 47 48

49 50 59 60

61 62 71 72

73 74 83 84

85 86

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10

15 16 17 18 19 20 21 22

27 28 29 30 31 32 33 34

39 40 41 42 43 44 45 46

51 52 53 54 55 56 57 58

63 64 65 66 67 68 69 70

75 76 77 78 79 80 81 82

87 88 89 90 91 92 93 94 95 96

1 2 11 12

13 14 23 24

25 26 35 36

37 38 47 48

49 50 59 60

61 62 71 72

73 74 83 84

85 86

3 4 5 6 7 8 9 10

15 16 17 18 19 20 21 22

27 28 29 30 31 32 33 34

39 40 41 42 43 44 45 46

51 52 53 54 55 56 57 58

63 64 65 66 67 68 69 70

75 76 77 78 79 80 81 82

87 88 89 90 91 92 93 94 95 96

15

1 2 11 12

13 14 23 24

25 26 35 36

37 38 47 48

49 50 59 60

61 62 71 72

73 74 83 84

85 86

3 4 5 6 7 8 9

1

10

16 17 18 19 20 21 22

27 28 29 30 31 32 33 34

39 40 41 42 43 44 45 46

51 52 53 54 55 56 57 58

63 64 65 66 67 68 69 70

75 76 77 78 79 80 81 82

87 88 89 90 91 92 93 94 95 96

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

A01
A01

A01A01
A02

A01
A03

A01
A04

A01
A05

A01
A06

A01
A07

A01
A08

A01
A09

A01
A10

A01
A11

A01
A12

A01
B01

A01
B02

A01
B03

A01
B04

A01
B05

A01
B06

A01
B07

A01
B08

A01
B09

A01
B10

A01
B11

A01
B12

A01
C01

A01
C02

A01
C03

A01
C04

A01
C05

A01
C06

A01
C07

A01
C08

A01
C09

A01
C10

A01
C11

A01
C12

A01
D01

A01
D02

A01
D03

A01
D04

A01
D05

A01
D06

A01
D07

A01
D08

A01
D09

A01
D10

A01
D11

A01
D12

A01
E01

A01
E02

A01
E03

A01
E04

A01
E05

A01
E06

A01
E07

A01
E08

A01
E09

A01
E10

A01
E11

A01
E12

A01
F01

A01
F02

A01
F03

A01
F04

A01
F05

A01
F06

A01
F07

A01
F08

A01
F09

A01
F10

A01
F11

A01
F12

A01
G01

A01
G02

A01
G03

A01
G04

A01
G05

A01
G06

A01
G07

A01
G08

A01
G09

A01
G10

A01
G11

A01
G12

A01
H01

A01
H02

A01
H03

A01
H04

A01
H05

A01
H06

A01
H07

A01
H08

A01
H09

A01
H10

A01
H11

A01
H12

i7
defines
well

i5
defines
plate

Figure 2

E
F
G
H

A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09
E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 E12

A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09
F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12

A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09
G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12

A09
H01

A09
H02

A09
H03

A09
H04

A09
H05

A09
H06

A09
H07

A09
H08

A09
H09

A09
H10

A09
H11

A09
H12

A
B
C
D

1 2 3 4 5 6 7 8 9 10 11 12

A01
A01

A09A09
A02

A09
A03

A09
A04

A09
A05

A09
A06

A09
A07

A09
A08

A09
A09

A09
A10

A09
A11

A09
A12

A09
B01

A09
B02

A09
B03

A09
B04

A09
B05

A09
B06

A09
B07

A09
B08

A09
B09

A09
B10

A09
B11

A09
B12

A09
C01

A09
C02

A09
C03

A09
C04

A09
C05

A09
C06

A09
C07

A09
C08

A09
C09

A09
C10

A09
C11

A09
C12

A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09 A09
D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12

A
B
C
D
E
F
G
H

A01
A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11

G06G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06
A12

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11
G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06

B12

G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06
C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12

D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11
G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06 G06

D12

E01 E02
G06 G06

1 2 3 4 5 6 7 8 9 10 11 12

1

1-96

plate#
name:
i7:

i5:

1
DG-1

plate# 2

3plate#

= A01-H12

= A01

1 2 11 12

13 14 23 24

25 26 35 36

37 38 47 48

49 50 59 60

61 62 71 72

73 74 83 84

85 86

3 4 5 6 7 8 9 10

15 16 17 18 19 20 21 22

27 28 29 30 31 32 33 34

39 40 41 42 43 44 45 46

51 52 53 54 55 56 57 58

63 64 65 66 67 68 69 70

75 76 77 78 79 80 81 82

87 88 89 90 91 92 93 94 95 96

9 9

1-96
name:
i7:

i5:

DG-2

= A01-H12

= A09

1 2 11 12

13 14 23 24

25 26 35 36

37 38 47 48

49 50

3 4 5 6 7 8 9 10

15 16 17 18 19 20 21 22

27 28 29 30 31 32 33 34

39 40 41 42 43 44 45 46

78 78

1-50
name:
i7:

i5:

DG-2

= A01-E02

= G06

c

a

PE, 151, 151

Cas9-edited clones

Dorothy Gale

filename absolute path to Sample Sheet .csv
SampleSheet.csv

string with any ASCII characters

string with any ASCII characters

SE | PE, #, #

investigator_name

project_name

reads_value

input & example
1

2

3

4

5

6

d

input_list
DG-1, 1-96, 1
DG-3, 1-50, 78
DG-2, 1-96, 9

...

[Header]

ReverseComplement, 0
Adapter, CTGTCTCTTATACACATCT

[Settings]

Date, 04-01-2019
Workflow, GenerateFASTQ
Application, FASTQonly
Description, Sequencing
Assay, Nextera
Chemistry, Amplicon

Sample_ID, Sample_Name, i7_Index_ID, index, i5_Index_ID, index2
[Data]

InvestigatorName, Dorothy Gale
ProjectName, Cas9-edited clones

[Reads]
151
151

1,DG-1-A01,i7A01,GTACGTCA,i5A01,GAGGTAGT
2,DG-1-A02,i7A02,TGCAGTTA,i5A01,GAGGTAGT
3,DG-1-A03,i7A03,ACTGTGGA,i5A01,GAGGTAGT
4,DG-1-A04,i7A04,GGTTAAGA,i5A01,GAGGTAGT
5,DG-1-A05,i7A05,TCACACTA,i5A01,GAGGTAGT
6,DG-1-A06,i7A06,TAGAGGTA,i5A01,GAGGTAGT
7,DG-1-A07,i7A07,GCGACATA,i5A01,GAGGTAGT
8,DG-1-A08,i7A08,TACATGCA,i5A01,GAGGTAGT
9,DG-1-A09,i7A09,GATGATGA,i5A01,GAGGTAGT
10,DG-1-A10,i7A10,TGTGTGCA,i5A01,GAGGTAGT
11,DG-1-A11,i7A11,TCGCTACA,i5A01,GAGGTAGT
12,DG-1-A12,i7A12,AAGCTAGA,i5A01,GAGGTAGT
13,DG-1-B01,i7B01,TAGGACCA,i5A01,GAGGTAGT
14,DG-1-B02,i7B02,TCGTTGGA,i5A01,GAGGTAGT
15,DG-1-B03,i7B03,GTGTCCTA,i5A01,GAGGTAGT
16,DG-1-B04,i7B04,TCCGTATA,i5A01,GAGGTAGT

238,DG-3-D09,i7D09,ACAGGCTA,i5G06,GATAGGAT
239,DG-3-D10,i7D10,AAGTCGCA,i5G06,GATAGGAT
240,DG-3-D11,i7D11,GAGTTCGA,i5G06,GATAGGAT
241,DG-3-D12,i7D12,ACTCTTCA,i5G06,GATAGGAT
242,DG-3-E01,i7E01,AAGACCTA,i5G06,GATAGGAT
242,DG-3-E02,i7E02,ACCATCCA,i5G06,GATAGGAT

135,DG-2-D03,i7D03,TCGTCTCA,i5A09,AGAGCTCT
136,DG-2-D04,i7D04,ACTTACGA,i5A09,AGAGCTCT
137,DG-2-D05,i7D05,TCGGATTA,i5A09,AGAGCTCT
138,DG-2-D06,i7D06,TTGGTCTA,i5A09,AGAGCTCT

Sample
Sheet.csv

SampleSheet

>_>_

relate integer (1-96)
to well ID (A01-H12)
& index (sequence)

expand sample ID +
indices to complete

[Data] section

‘A’ or ‘B’
A

indexed sequencing workflow

sample plate name, i7 range, i5

csv

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

b

/Users/dg/data

GTACGTTCAGC

TAGCTATCAGT

/usr/local/bin/blast/bin/blastn

/Users/dg/GRCh38

/Users/dg/ImputedGenotypes

Cas9 guide RNA sequence

input & example ImputedGenotypes

>_

a
output_directory absolute path to output directory

absolute path to fastq files

absolute path to blastn

test sequence

blastn_path

test_seq

guideRNA_seq

1

3

4

GRCh38
blastn database prefixdb_prefix5

6

7

/Users/dg/data
DG-1-A01.fastq
DG-1-A02.fastq
DG-1-A03.fastq

etc.

....

etc.
....

fastq

read
lines
[1::4]

counter.most_common(10)

> sample ID1_[reads/total reads]_percentile_% read abundance_% top 10 reads_% reads filtered for 1%_% reads filtered for 10%
TACCAAATCACTGGACCTTAGAAGGTCAGAAATCTTTCAAGCCCTGCAGGACCGTAAAATGCGCATGTGTCCAACGGAAGCACTGGGGCATG

fastq_directory2

allele_evidence.pdf

imputed
genotypes

frequency metrics

i
fa

i

txt

blastn_
alignments.txt

>_
BLASTn define alleles

impute genotypes
d

>_

allele_definitions.txt

Figure 3

absolute path to reference databasedb_path

c

allele_evidence.pdf

txt
i

pdf
ii

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

a b

c

input & example
output_directory

fasta_ref

blastn_path

makeblastdb_path

db_prefix

fimo_path

fimo_motifs_path

fasta_get_markov_path

markov_background_file

read
lines
[0::4]

frequency
metrics

/Users/dg/data

/usr/local/bin/blast/bin/blastn

/usr/local/bin/blast/bin/makeblastdb

GRCh38

/usr/local/bin/Meme/bin/fimo

/Users/dg/CollatedMotifs

/Users/dg/fasta_ref.fa

/Users/dg/hg38.fa

counter.
most_common(5)

R1+R2

1

2

3

4

5

6

7

8

9

10

/Users/dg/data
DG-1-A01.fastq
DG-1-A02.fastq
DG-1-A03.fastq

etc.

....
fastq

fastq_directory

GCAGGATTTGGAGTTTTCT

>reference_1

....

CAAATCACTGGACCTTAG
AAGGTCAGAAATCTTTCAA

>reference_2
AAGGGCCAGACTGGCACC

fa

CollatedMotifs

>_

‘ref’ ‘allele’

>_

>_

>_

>_ collated
motifs

fa

...Meme/motif_databases/JASPAR_CORE_2016_vertebrates.meme

/usr/local/bin/Meme/src/fastagetmarkov

d

Figure 4

absolute path to output directory

absolute path to fastq files

absolute path to reference fasta file

absolute path to blastn

absolute path to makeblastdb

blastn database prefix

absolute path to fimo

absolute path to pfm file

absolute path to fasta-get-markov

absolute path to markov bkgrnd file

collated_TFBS.txt

txt

i
define
alleles

>_
BLASTn

>_
fimo

collate
TFBS

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

I

A
B
C
D
E
F
G
H

J
K
L
M
N
O
P PCR2

PCR1

ΔΔ-26.65, clone #2

ΔΔ-26.65, clone #1

lost GBS
new GBS
new Sox2

a

b

e

Figure 5

FKBP5

200

0

250

0

0

200

SampleSheet

>_

ImputedGenotypes

>_>_

CollatedMotifs

>_>_

chr6:35,712,000-35,735,000 (23,001 bp)

+
dex

-

+
dex

-

zoom

Cas9

FACS,Cas9 editing

Cas9 editing & clonal isolation Definition of alleles & altered regulatory motifs
clonal expansion

amplicon
barcoding

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

sequence genotype regulatory
analysis

+98.20

-26.65 -33.61 -33.75 -33.99 -36.8 -38.04 -43.09

+86.85 +42.14

0
250

N
EW

+

-

LO
ST

+

-

strand

LO
ST

+

-

100 kb

10 kb

chr6:35,519,150-35,740,650 (221,501 bp)

1 2 3 4 5

5 6 7 8

6 7 8

4

biallelic ∆

homozygous +1bp

GBS

GBS

strand

∆
2b

p
∆

3b
p

+
1b

p d

fo
ld

 c
ha

ng
e

(lo
g2

, d
ex

/E
tO

H
)

wild-type

ΔΔ-26.65 kb
clone #1

clone #2

c

wt

#1

#2ΔΔ
-2
6.
65

biallelic ∆

homozygous
 +1bp

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/775361doi: bioRxiv preprint

https://doi.org/10.1101/775361

