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Abstract 

 

PSD-95 is a member of Membrane Associated Guanylate Kinase class of proteins which form 

scaffolding interactions with partner proteins including ion and receptor channels. PSD-95 is directly 

implicated in modulating the electrical responses of excitable cells. The first two PSD-95/Disks 

Large/Zona Occludens domains of PSD-95 have been shown to be the key component in the 

formation of channel clusters. We report crystal structures of the dual domain in both in apo and 

ligand-bound form; thermodynamic analysis of ligand association and Small Angle X-ray Scattering of 

the dual domain in the absence and presence of ligands. These experiments reveal that the ligated 

double domain forms a scaffold in the complete sense of the word. The concentration of the 

components in this study is comparable to those found in compartments of excitable cells such as 

the postsynaptic density and juxta-paranodes of Ranvier. The properties of the dual domain explain 

the basis of the scaffolding function of PSD-95, and provide a more detailed understanding of the 

integration of key components of neuronal specializations involved in nervous signal transmission.   
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Introduction  

 

The organization of ion channels or ionotrophic receptors at high-densities at specialized locations in 

the cell membrane is fundamental to the function of neurones. These locations include the synapse, 

the axonal hillock and axonal locations such as nodes of Ranvier in myelinated neurones. The Disks 

Large homologue 4 protein commonly known as SAP-90 or PSD-95 is abundant in the Post Synaptic 

Density (PSD) (Li et al, 2004), and in rat has also been found at axonal juxta-paranodes (Ogawa et al, 

2010) adjacent to nodes of Ranvier. The PSD is a high staining cytoplasmic layer localized at the 

surface of the synaptic membrane (Palay, 1956). The area ascribed to the PSD is of the order of 

0.05µm2 and extends some 35-50nm into the cytoplasm (Harris & Weinberg, 2012). The PSD has a 

laminar structure with N-methyl D-aspartate (NMDA) selective glutamate receptors in the 

membrane closely associated with PSD-95 (Valtschanoff & Weinberg, 2001). Knock down studies 

have shown that the PSD-95 protein plays an important role in the integrity of synapses by 

anchoring receptors (Chen et al, 2015). The PSD-95 protein has been studied in relation to a number 

of disorders of the central nervous system including both acute and chronic conditions (Gardoni et 

al, 2009), which reflects the importance of the protein in neuronal function. 

Aspects of the structural role of the PSD-95 protein in the coordination of channels and receptors 

have been revealed by numerous experiments: Studies in mouse have shown that the PSD-95 

protein organizes ionotrophic receptors and ion channels by forming super-complexes on the mega-

Dalton scale (Frank et al, 2017). Imaging studies have shown that PSD-95 regulates the organization 

of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) selective glutamate receptors in 

the post-synaptic membrane via the formation of domains on the nanometre scale (Nair et al, 2013). 

Using tomographic studies in combination with antibody-labelling separations of PSD-95 molecules 

in postsynaptic isolates of ~13 nm have been observed (Chen et al, 2008). In vitro studies have 

shown the formation of complexes on the association of the cytoplasmic domain of an inwardly 

rectifying Kir2.1 potassium channel and PSD-95 (Fomina et al, 2011).    

PSD-95 is the best-characterized member of the Membrane Associated Guanylate Kinase (MAGUK) 

family (Gomperts, 1996; Won et al, 2017) which also includes PSD-93, SAP-97 and SAP-102. MAGUK 

family proteins contain five linked domains and both PSD-95 and PSD-93 are localised to the 

membrane. A schematic diagram of PSD-95 is shown in Figure 1(a). Experiments in rat have shown 

that PSD-95 localization is via palmitoylation of Cys residues at the amino-terminus (El-Husseini et al, 

2000a). The canonical human isoform of PSD-95 comprises 724 amino acids (Uniprot P78352). The 

domains of PSD-95 are distributed within the primary sequence interspersed with linker peptides of 
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varying lengths (Figure 1(a)). From the N-terminus a 64 residue linker is followed by a PSD-95/Disks 

Large/Zona Occludens protein (PDZ) domain (PDZ1) a short linker (8 residues) and then a second PDZ 

domain (PDZ2), a second stretch of 66 amino acids links to a third PDZ domain (PDZ3) followed by a 

34 residue linker and closely associated SRC (kinase) Homology 3 (SH3) and Guanylate Kinase (GK) 

domain. 

PDZ domains consist of around 90 amino acids and many have a characteristic -Gly-Leu-Gly-Phe- 

sequence and are sometimes named GLGF domains for this sequence. PDZ domains are abundant in 

the human genome and are present in over 400 proteins, often with multiple copies (Kim & Sheng, 

2004). They are also found in other organisms in some having the role of presenting peptides to 

proteases (Inagaki et al, 1996).   PDZ domains have been classified according to the properties of 

their cognate ligands (Songyang et al, 1997; Stricker et al, 1997). The PDZ domains of PSD-95 are all 

class I PDZ domains (Songyang et al, 1997) where the ligand is the Carboxyl-terminus (C-terminus) of 

the partner protein. The type I PDZ ligand has a consensus sequence of the form –X-3–(Ser/Thr/Cys)-

2-X-1-Φ0 where X is any residue and the C-terminal residue Φ0 has an aliphatic side chain.  

A large number of structures of PDZ domains have been determined using Nuclear Magnetic 

Resonance or X-ray crystallography. A schematic diagram of the domain is shown in Figure 1(b), the 

binding cleft for the peptide ligand lies between the βB strand and the long αB alpha helix.  The 

GLGF signature sequence of the PDZ domain is found at the apex of the binding cleft with GLG in the 

βA-βB loop. For type I PDZ domains GLGF interacts with the C-terminus of the partner sequence 

(Doyle et al, 1996). 

A number of ionotrophic synaptic receptors and Potassium ion channels possess PDZ binding motifs 

at their C-termini, and these have been shown to interact with MAGUKs including PSD-95 

(Gomperts, 1996). Recent studies have shown that component proteins of the synapse are able to 

self-assemble into aggregates and the PSD-95 protein is a component of all of these self-assembling 

systems (Zeng et al, 2018; Zeng et al, 2016).  An earlier study dissected the roles of segments of PSD-

95 in clustering Shaker Kv1.4 channels in transfected COS-7 cells (Hsueh et al, 1997). This work found 

that the N-terminal linker region is essential for clustering and that clustering is observed even for 

truncated N-terminal constructs, for example a construct containing only the N-terminal linker and 

PDZ1-2 of PSD-95 mediated clustering with wild-type efficiency. Mutation of Cys residues at residues 

3 and 5 of an N-terminal-linker-PDZ1-2 construct was found to abolish co-immunoprecipitation of 

the truncated protein with full-length PSD-95. This resulted in a hypothesis that inter-molecular 

disulphide linkage of residues in the N-terminal region could be a mechanism for clustering by PSD-

95.   
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Figure 1. PSD-95 and PDZ domains. 

(a) A schematic of the overall structure of PSD-95: Inter-domain linkers are shown as lines, PDZ 

domains are shown as segmented circles. The residue order is indicated by colouring Violet-Red (N-C 

terminus). (b) A cartoon rendering of a PDZ domain, derived from chain A of PDB entry 3rl7 (Zhang et 

al, 2011), coloured according to increasing sequence number (N-terminus, blue; C-terminus red). The 

colour key indicates the secondary structure definitions (Kim & Sheng, 2004) referred to in the 

accompanying table (the βE strand is enclosed by inverted commas as it is not assigned for this 

structure) . Secondary structure elements are shown in a ribbon representation, and the sequence 

order of β-strands indicated by an arrowhead. The cartoon diagram was produced by the UCSF 

Chimera program (Pettersen et al, 2004). 

A structure of the PDZ1-2 dual domain in complex with a peptide derived from the C-terminus of the 

cypin protein (sequence QVVPFSSSV) was obtained via NMR (Wang et al, 2009), (PDB ID 2ka9). 

The ensemble of structures deposited in this study show variation in the relative orientations and 

separation of domains in PDZ1-2. Two crystal structures of the PDZ1-2 fragment of PSD-95 have also 

been solved. A crystal structure of human apo PDZ1-2 from PSD-95 with 4 copies of the dual domain 

in the asymmetric unit is available at a resolution of 3.4 Å (Bach et al, 2012) (PDB ID 3zrt). The overall 

conformation of all four copies of 3zrt:PDZ1-2 is essentially identical although part of PDZ1 in one 

copy of 3zrt:PDZ1-2 is not resolved in the crystal structure. A crystal structure of Rat PDZ1-2 from 

PSD-95 with two copies of the dual domain in the asymmetric unit is available at a resolution of 

2.05Å (Sainlos et al, 2011) (PDB ID 3gsl). A ligating sequence (ETMA) derived from the C-terminus of 

the ionotrophic glutamate receptor Glur6 is fused to the C-terminus of the 3gsl:PDZ1-2 expressed 

protein. This -ETMA ligand sequence is observed to associate exclusively to PDZ1 domains of 

3gsl:PDZ1-2 in the crystal structure.  The gross conformation of the PDZ1-2 domains in 3zrt:PDZ1-2 

and 3gsl:PDZ1-2 differ by a rotation along the axis of the 8-residue inter-domain linker. The inter-

domain rotation is larger for the 3zrt:PDZ1-2 with respect to that between the two copies of PDZ1-2 

in 3gsl:PDZ1-2.  

The interaction of full-length PSD-95 and the tetrameric cytoplasmic domain of the inwardly 

rectifying potassium channel (Kir2.1) leads to the formation of extended molecular complexes as 

seen in earlier work at low resolution (Fomina et al, 2011). The aim of this study was to increase our 

understanding of the molecular details of clustering by studying the essential interacting 

components of this complex, namely the PDZ1-2 fragment pf PSD-95 and the C-terminal peptide 

sequence of Kir2.1, at high resolution.  
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Results 

X-ray crystallography 

 

The detailed interaction of a compatible sequence with both PDZ domains of PDZ1-2 is only resolved 

using a high-resolution structural technique, hence both PDZ1-2 alone and PDZ1-2 plus a ligand 

peptide were studied using X-ray crystallography. A sequence of RRESEI corresponding to the last 6 

residues of Kir2.1 was used. The ESEI sequence comprises a type I PDZ domain interaction motif and 

the preceding RR residues were included to ensure that a peptide amino terminus does not interfere 

with ligand association with the PDZ cleft. These RR residues have also been implicated in receptor 

trafficking (Standley et al, 2000). The RR residues ensure overall charge neutrality and may enhance 

peptide solubility. Crystals of un-ligated PDZ1-2 (apo:PDZ1-2) were obtained  initially and these were 

used to micro-seed drops of PDZ1-2 with ligand.  Crystal structures in the un-ligated (apo:PDZ1-2) 

and ligated (RRESEI:PDZ1-2) state were obtained at resolutions of 2.0 Å (Rfree 26.0%) and 2.1 Å (Rfree 

23.8%) respectively (see Supplementary Table S1).  The crystal structures obtained are in the same 

tetragonal Spacegroup with a very similar unit cell and the same gross PDZ1-2 double domain 

conformation is present in both apo:PDZ1-2 and RRESEI:PDZ1-2 (Figure 2(a)).  The PDZ1-2 complex 

has a direct intra-molecular contact between PDZ1 and PDZ2 formed by interactions between the 

βB-βC loop of PDZ2 and the αA helix of PDZ1. A hydrogen bond is formed between the main chain 

amide O of Ala 106 and the side chain amide NH2 of Gln 181 (N2-O distance of 3.0Å), and there is a 

direct interaction between Pro 101 and Pro 184.  The αA(PDZ1):βB-βC(PDZ2) interaction results in a 

more compact conformation of PDZ1-2 in the structures reported here compared to those found in 

3zrt:PDZ1-2 and 3gsl:PDZ1-2.   

For RRESEI:PDZ1-2 the binding cleft of both PDZ domains is ordered and each binding site shows 

electron density for the RRESEI peptide. All of the ligand residues could be fitted, but the two Arg 

residues had markedly weaker electron density indicating that alternate conformations of these 

residues could be present. Similar interactions between the bound peptide and the clefts of both 

PDZ1 and PDZ2 are seen: The main chain amide linkages of the Ser residue of the incoming RRESEI 

peptide make H-bonds with the βB strand of both PDZ domains. A hydrogen bond is formed 

between the Ser alcohol and a His side chain (PDZ1:130, PDZ2:225) on the αB helix. Detailed 

examination of the electron density maps in the later stages of refinement of RRESEI:PDZ1-2 

revealed weaker electron density for the C-terminal residue of each ligand peptide, with negative 

difference electron density enveloping the terminal carboxylate in difference electron density maps. 

This was interpreted as an alternative conformation of this part of the bound ligand, and was 

modelled with two alternative conformations of the C-terminal (-X-1-Φ0) -EI residues: One 
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conformation has the Ile side chain buried in the binding cleft and the carboxyl terminus of the 

peptide associating with the GLGF motif, as seen in the structures of other Ligand bound Type I PDZ 

domains. The second conformation has the side chain of the Glu residue lying along the binding cleft 

with the Ile side chain making an interaction with Ile100/Ile195 in PDZ1/PDZ2 respectively. This 

model maintains a carboxylate function close to the GLGF motif of each PDZ domain for each 

alternate –EI conformation, whilst accounting for the observed features of the electron density. The 

model has a 0.5% lower R-free value (Brunger, 1992) compared to a single RRESEI conformation 

model (with each Ile sidechain buried in the cleft).  

For Apo:PDZ1-2 the PDZ1 domain binding cleft is ordered but the PDZ2 domain shows disorder in 

both the βA-βB loop and αA helix regions.  Weaker and more diffuse electron density is encountered 

for these segments which is consistent with disorder around the PDZ2 peptide binding cleft, 

including the GLGF motif. The αA helix links directly to the GLGF motif in PDZ2 within the binding 

cleft through main-chain hydrogen bonds between Leu 170 O and Ala 200 (O-N distance of 2.9Å) and 

Gly 171 and Ile 195 (O-N distance of 2.9Å). The electron density of the apo:PDZ2-βA-βB loop can be 

fitted with a dual conformation (Figure 2(b)).  The two conformers are (A), a conformation similar to 

the RRESEI:PDZ1-2-βA-βB loop; and (B) a conformation similar to that found in the βA-βB loop of the 

syntrophin PDZ domain in the crystal structure of the neuronal Nitric Oxide Synthase/Syntrophin PDZ 

heterodimer (Hillier et al, 1999) (PDB ID:1qav). These two apo:PDZ2-βA-βB loop conformations were 

assigned the same occupancy but after refinement the residual B-factors were systematically lower 

for the RRESEI:PDZ1-2 -like conformation indicating a higher occupancy for this conformer. 

In both Apo:PDZ1-2 and RRESEI:PDZ1-2 an additional electron density distribution was found 

adjacent to residues F119 and Y147. In both crystal structures the S-shaped electron density 

resembles a short peptide and has no connectivity linking it to the PDZ1-2 model: N and C-terminal 

residues (respectively GPNGT- and –SNA) from the tag-cleaved protein are not seen in the electron 

density maps. The location of the S-shaped electron density was distant from the C or N-terminus of 

any PDZ1-2 model in the crystal lattice. The electron density could not be accounted for satisfactorily 

by fitting the PEG crystallization precipitant for either Apo:PDZ1-2 or RRESEI:PDZ1-2. The cofactor 

reduced Glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) was used in all but the final protein 

purification step at milli-molar concentration (see Methods). A common association motif for GSH is 

the interaction of an amide plane from GSH with an aromatic residue side chain from the protein - 

for example PDB ID: 5bqg (Schiffler et al, 2016). The S-shaped electron density was fitted effectively 

with a single conformation of GSH with amide plane – aromatic stacking interaction with both F119 

and Y147 (Figure 2(c)).  
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Figure 2. Crystal structure of PDZ1-2 

The crystal structure of Apo: PDZ1-2 and RRESEI: PDZ1-2 are shown overlaid in (a), the PDZ1-2 double 

domain is represented in a similar way to Figure 1, with the associated RRESEI ligands shown in ball-

and-stick form. The protein is coloured in a rainbow fashion from N-terminus to C-terminus with 

PDZ1 in blue-green and PDZ2 in yellow-red, generated with UCSF Chimera. Panel (b) shows the dual 

conformation of GLGF motif of PDZ2 in apo:PDZ1-2 and panel alongside chicken-wire 2Fo-Fc density 

(contour at 0.1 e-Å-3) (c) the 2Fo-Fc density assigned to GSH from apo:PDZ1-2 (0.2 e-Å-3). In b & c the 

model is shown in stick form with bonds to C, N, O, S in yellow, blue, red and green, generated with 

Coot (Emsley et al, 2010).  

Differences between the individual PDZ1 and PDZ2 structures in apo:PDZ1-2 and RRESEI:PDZ1-2 are 

therefore limited to local changes in the vicinity of the peptide ligand binding site. The local disorder 

in apo:PDZ1-2 around the peptide biding site of PDZ2 and the αA helix is not seen in RRESEI:PDZ1-2 

when the RRESEI peptide occupies the binding site. This shows that the peptide ligand binding site of 

PDZ2 is sensitive to the presence of the RRESEI ligand and that this is communicated to the αA helix. 

The peptide ligand binding site is linked to the αA helix via hydrogen bonds between the GLGF motif 

in the binding cleft and the helix in both PDZ1 and PDZ2 domains. 

 

Isothermal Titration Calorimetry 

 

The crystal structure of RRESEI:PDZ1-2 shows that similar non-covalent interactions are observed for 

RRESEI association with both PDZ1 and PDZ2 binding clefts. A comparison of the crystal structures of 

apo:PDZ1-2 and RRESEI:PDZ1-2 indicates an ordering of the GLGF loop and αA helix regions of PDZ2 

after RRESEI association. In contrast the PDZ1 binding cleft is the same in both structures. To further 

inform the observed differences in the association of ligand with PDZ1 and PDZ2, the 

thermodynamic changes on association of PDZ1, PDZ2 and PDZ1-2 domains with RRESEI were each 

measured using Isothermal Titration Calorimetry (ITC) (see Methods). 

The thermogram of the PDZ1-2 and PDZ2 ITC experiment each showed exothermic peaks at every 

ligand injection. The thermodynamic components of binding extracted from these data indicated a 

negative enthalpic contribution (ΔH<0) to the free energy of binding, alongside a negative entropic 

contribution (ΔS<0). For the PDZ1 domain the thermogram was more complex showing exothermic 

binding initially, with a smaller endothermic binding change apparent close to saturation (Figure 3). 

The concentration of binding sites in the ITC experiment appeared considerably higher for PDZ1 and 
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thermodynamic components for this domain indicate a negative enthalpic contribution (ΔH<0) and a 

positive entropic contribution (ΔS>0) (Figure 3.). 

The equilibrium dissociation constant was measured at 6±6μM and 60±2μM for PDZ1 and PDZ2 

respectively. The Kd values obtained for the affinity between the individual PDZ domains and the 

RRESEI peptide are within the range of those found for similar peptides binding to PDZ domains in 

the literature (Wiedemann et al, 2004). For the PDZ1-2 double domain two individual affinities could 

not be distinguished in the ITC measurement and an overall value of Kd of 90±9μM was obtained 

assuming a single class of sites. This value is high compared to the values of Kd obtained for the 

individual domains. 

Figure 3. Isothermal Titration Calorimetry of the Association of PDZ1, PDZ2 and PDZ1-2 

with the RRESEI ligand 

Domain(s) N Kd (μM) ΔH J mol-1 ΔS J mol-1 K-1 

PDZ1 0.61±0.08 6±6 -2502 +91.6 

PDZ2 0.19±0.06 60±6 -48953 -82.8 

PDZ1-2 0.20±0.07 90±9 -64434 -138.1 

ITC traces (top) and saturation analysis (bottom) for PDZ1, PDZ2 and PDZ1-2 each titrated with the 

RRESEI ligand are shown overlaid. The heat change on successive injections of ligand is shown in the 

top panel buffer heat of dilution subtraction (baseline in red). The corresponding binding isotherm 

with fitted curve is shown in the bottom panel. The value of the number of sites per molecule N, 

overall enthalpy change (ΔH) and equilibrium dissociation constant (Kd) obtained from the top and 

bottom traces along with the entropy change (ΔS) derived are given in the accompanying table.  

In the transition from Apo to RRESEI bound state a number of changes occur. The displacement of 

water from the binding cleft, formation of non-covalent PDZ domain-peptide interactions and the 

reduction in the degree of RRESEI structural freedom would appear to be similar for both PDZ1 and 

PDZ2 binding sites. The enthalpic component of the binding energy is mainly due to the formation of 

non-covalent interactions between RRESEI and the PDZ binding site. These interactions are similar 

for both PDZ1 and PDZ2 sites as seen in the RRESEI:PDZ1-2 crystal structure. However a large 

difference in the values of ΔH and ΔS is seen for isolated PDZ1 and PDZ2 domains binding to RRESEI.     

For PDZ2 a net entropy decrease on RRESEI binding is observed. This is consistent with the ordering 

of the PDZ2 domain binding cleft on interaction with the peptide. This is seen when comparing the 

structures as the disordered βA-βB loop and αA helix regions of apo:PDZ1-2 crystal assume a single 

conformation in RRESEI:PDZ1-2.  
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The binding of RRESEI to PDZ1 arises from the concerted contribution of an entropy increase and an 

enthalpy decrease. In this case the interactions are formed between the RRESEI ligand and the 

ordered binding site seen in both the apo:PDZ1-2 and RRESEI:PDZ1-2 crystal structures. The 

additional endothermic contribution seen in the thermogram would tend to reduce the exothermic 

heat change at each ligand injection. Relative to RRESEI binding to PDZ2, the effects of the additional 

endothermic contribution seem to be a foreshortening of the saturation characteristic (leading to an 

increase in both number of binding sites N, and in affinity) along with a reduction in the integrated  

exothermic peak values (leading to a smaller change in enthalpy). This is reflected in the calculation 

of RRESEI:PDZ1 binding parameters: Kd and N from the saturation curve, and ΔH from the integration 

of heat changes.  The entropy change ΔS is a derived parameter (obtained via Kd and ΔH), therefore 

a systematic change in all of thermodynamic parameters for RRESEI:PDZ1 association arises from the 

additional endothermic contribution observed in the case pf PDZ1. Therefore the difference in 

derived entropy changes and affinities between PDZ1 and PDZ2 can be accounted for. However the 

high value of the overall Kd for the RRESEI association with PDZ1-2 compared with the individual 

domains, and the source of additional endothermic element seen in the PDZ1 titration with RRESEI 

require explanation.  

Small angle X-ray scattering.  

  

The single conformation of PDZ1-2 in the crystal structures reported here accommodates binding of 

the RRESEI peptide ligand to both PDZ1 and PDZ2 domains. This conformation is different from those 

seen in the earlier PDZ1-2 crystal structures. The gross form of PDZ1-2 is therefore variable and may 

depend upon the interaction with the peptide ligand. To explore this variation the PDZ1-2 domain 

was examined in solution using Small angle X-ray Scattering (SAXS) in both the apo state and in the 

presence of a 10-fold molar excess of RRESEI. GSH was assigned in the crystal structures. GSH is 

present in the cell and GSH possesses both thiol and carboxylate functions in common with type I 

PDZ ligand sequences.  GSH association with PDZ1-2 was also explored using SAXS.  Data were 

collected on unfractionated samples and on samples fractionated using an in-line Size exclusion 

column prior to the measurement of scattering (see Methods). For each set of SAXS measurements, 

matching scattering data on apo:PDZ1-2 was collected. All data sets are summarized in 

Supplementary Table 2. 

For the fractionated SAXS experiments an absorption chromatogram at a wavelength of 280nm was 

recorded immediately prior to exposure with X-rays. A scattering profile was then recorded for one 

or more fractions. In contrast to the preparative Size exclusion chromatography step (see Methods), 
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a broader highly-absorbing peak was observed in these 280nm chromatograms preceded by a small 

peak/shoulder. The precise form of this main peak varied between sample injections, with flat top; 

unresolved doublet; or a single peak with a shoulder being observed. Where Rg analysis was carried 

out for multiple fractions (June ’16 data) the values of Rg obtained showed no significant variation 

across the main peak.   

For the analysis of the SAXS emphasis was placed on the apo:PDZ1-2 and RRESEI:PDZ1-2 data sets 

collected on unfractionated samples at the DESY P12 beamline, these data sets extend to the highest 

resolution (q≤0.48Å-1) and have the lowest noise levels (See Supplementary Table S2; June ’15 data). 

Subsequently the GSH:PDZ1-2 and fractionated SEC-SAXS data sets were fitted using the formalism 

derived from the analysis of this higher resolution interval data.  

The apo:PDZ1-2 and RRESEI:PDZ1-2 data showed evidence of both inter-particle association effects 

and underlying multiple conformations of PDZ1-2. The level of these two features differed according 

both the concentration of the PDZ1-2 protein and the presence of the RRESEI peptide ligand.  For 

initial analysis, SAXS data projected to infinite dilution was used to ameliorate the presumed effects 

of inter-particle interference (see Methods).  Dummy atom modelling of the SAXS data was limited 

to a truncated resolution range and gave a dumbbell like shape but with additional envelope 

features (Supplementary Figure S1.).  

Ensemble model analysis based upon linked PDZ1 and PDZ2 domains was undertaken to account for 

variation in the gross form of PDZ1-2  (Bernado et al, 2007). The SAXS curve is very sensitive to the 

separations of protein domains in the sample and the ensemble analysis gave a clear indication that 

there were different domain separations represented in the SAXS data (see Methods). The presence 

of two or more particular conformations of PDZ1-2 was seen in contrast to a continuum of 

conformers like those derived from NMR.  

An alternative explanation for the distributions seen in the ensemble analysis is the formation of 

inter-molecular complexes. A very compact structure (Rg ~21.2Å) consistently assigned in the 

ensemble analysis of Apo:PDZ1-2 is not represented by the crystal structure reported here or any of 

the preceding crystal structures (Bach et al, 2012; Sainlos et al, 2011). This domain configuration 

could arise from the close approach of two PDZ domains from separate PDZ1-2 molecules occurring 

on the formation of oligomers. Should these inter-molecular interactions be spatially specific in 

nature their effects would not be removed by projection of SAXS curves to infinite dilution.  

Oligomer Model Construction. 
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Crystal contacts and PDZ1-2 conformations drawn from existing crystal structures were used to 

generate oligomers for fitting the SAXS data. The rationale for this approach was that at the ultra-

high protein concentrations represented in protein crystals, inter-molecular interactions would 

appear as crystal contacts. Dimeric and trimeric oligomers of PDZ1-2 were constructed using: (i) The 

extended 3zrt:PDZ1-2 monomer, with (ii) two crystal contacts present in the 3gsl:PDZ1-2 crystal 

lattice, between αB(PDZ2):βD-βE(PDZ1) and αA(PDZ2): βB-βC(PDZ1) (shown in Supplementary Figure 

S2).  These components give rise to dimer and trimer forming interactions between 3zrt:PDZ1-2 

monomers and using these symmetry components more extended arrays of PDZ1-2 can be 

constructed (see Methods).  

There are a finite number of ways that single molecules can arrange themselves in extended 

repeating arrays in 3-dimensions (Hahn, 1983).  Therefore the assignment of a Spacegroup to the 

oligomeric structures encountered for PDZ1-2 was investigated.  A cubic I213 Spacegroup with a unit 

cell parameter |a|= 148Å could be assigned to the oligomers of PDZ1-2 in an unambiguous manner 

(see Methods). The αB(PDZ2):βD-βE(PDZ1) and αA(PDZ2): βB-βC(PDZ1) interfaces are properties of 

this arrangement and a further PDZ1:PDZ1 interaction is predicted by the molecular packing. Various 

oligomers can be reproduced by selecting the appropriate combinations of symmetry operations 

from this I213 “scaffolding Spacegroup”.   

Order of Oligomer Assembly. 

 

The formation of any protein-protein complex is governed by the abundance of the assembling 

components and the affinity of the components for one another. In the scaffolding Spacegroup each 

PDZ1-2 monomer makes two interactions of the form αB(PDZ2):βD-βE(PDZ1),  two of αA(PDZ2):βB-

βC(PDZ1) and one PDZ1:PDZ1 interaction. There is no reliable independent measurement of affinity 

for these three individual interactions.  The interactions are all non-covalent with hydrogen bonding 

and ion pair interactions dominating each interface. Therefore in the analysis of assembly it was 

assumed that each of these interactions affinities are similar in magnitude, whilst considering the 

formation of oligomers as the overall concentration of PDZ1-2 increases. The order of assembly is 

then determined via the principle of avidity: A meta-stable complex occurs when multiple (avid) 

interactions form between binding partners because of the factorial increase in affinity. In other 

words interactions at two or more separate sites would need to be broken at the same time for a 

complex so formed to dissociate. 

A PDZ1-2 dimer may form through any of the interactions listed above, with few restrictions on the 

gross conformation of PDZ1-2.  If a 3zrt:PDZ1-2 like conformation is adopted by the binding partners 
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two αB(PDZ2):βD-βE(PDZ1) interactions can form at the same time (Figure 4. (a)2e). This “double” 

dimer would therefore be meta-stable over the other pairwise interactions due to avidity. This 

dimer/monomer mixture can be refined against SAXS data (see Methods), with good agreement 

achieved for lower concentrations of PDZ1-2 (SEC-SAXS or data extrapolated to zero concentration). 

Proceeding from this meta-stable dimer a further complex could be formed by either an 

αA(PDZ2):βB-βC(PDZ1) or a PDZ1:PDZ1 interaction. Either a dimer:monomer interaction or a 

dimer:dimer interaction would be possible and the affinity of these would be the same. Therefore a 

dimer:monomer complex would be favoured initially until the concentration of dimers exceeded the 

concentration of monomers. There would be few restrictions on the conformation of the associating 

monomeric PDZ1-2. 

The addition of another monomer to this dimer:monomer complex to form a tetramer could again 

occur through any of the aforementioned interactions. In one particular case, where the preceding 

dimer:monomer interface  was formed via αA(PDZ2):βB-βC(PDZ1) interaction, a further monomer 

may add forming two αA(PDZ2):βB-βC(PDZ1) interactions; again subject to the adoption of a 

3zrt:PDZ1-2 like conformation for all PDZ1-2 copies. This tetramer complex (Figure 4(a)4e) would be 

meta-stable since in the oligomer so formed each PDZ1-2 is involved in at least two interactions. The 

meta-stable tetramer complex has three copies of PDZ1-2 related by a 3-fold rotation axis and two 

copies related by a 2-fold rotation axis.  This configuration can be refined against SAXS data as 

mixture with the PDZ1-2 monomer, good agreement is achieved for lower concentrations where the 

RRESEI ligand is present. The angle between these 3-fold and 2-fold symmetry elements is variable in 

the resulting refined models with a larger angle (≈ 90O) seen for refinement with data collected on 

more dilute samples.  A consequence of a large angle is that the addition of more monomers to the 

tetramer via αB(PDZ2):βD-βE(PDZ1) interactions would be sterically hindered.   

In the scaffolding Spacegroup the angle between the 3-fold and 2-fold symmetry elements is fixed at 

54.7O.  Thus a particular conformation of the meta-stable tetramer is required for assembly into 

even higher order structures, in a similar way to the requirement of the monomeric form of PDZ1-2 

to adopt the 3zrt:PDZ1-2 conformation for complex formation. When the scaffolding Spacegroup 

tetramer configuration is used two tetramers can associate to form an octamer by forming two 

αB(PDZ2):βD-βE(PDZ1) interactions. In one of the three possible configurations of this octamer an 

additional PDZ1:PDZ1 contact is also made. This particular configuration would therefore be 

favoured as three interactions are formed on assembly (Figure 4(a)8e). Subsequent additions of 

tetramers each making three interactions may then be made for 12 (Figure 4(a)12e), 16, 20 and 24-
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mer oligomers, the latter corresponding to the components of the unit cell of the scaffolding 

Spacegroup.  

SAXS data fitting 

  

Oligomers drawn from the scaffolding Spacegroup were assessed for fitting the SAXS curves (Figure 

4. (c)-(h)). As variation in the structures of monomeric PDZ1-2 was also evident this was captured by 

the inclusion of three representative monomer structures – the compact version of PDZ1-2 reported 

here, plus two PDZ1-2 structures extracted from a representative ensemble analysis run on SAXS 

data extrapolated to zero concentration using the EOM program (Bernado et al, 2007) (see 

Methods). The EOM derived monomers were similar in form to structures found in 3gsl:PDZ1-2, or 

2ka9:PDZ1-2, having no direct, non-covalent, intra-molecular PDZ1-PDZ2 contacts.  Agreement with 

the SAXS profile was improved, in particular for RRESEI:PDZ1-2, at all concentrations by the inclusion 

of oligomers derived from the scaffolding Spacegroup. Volume fractions assigned to the various 

oligomers for apo:PDZ1-2 and RRESEI:PDZ1-2 are shown in Figure 4(d,f). The scattering data 

collected in the presence of GSH was fitted simply through direct application of this model. In the 

case of GSH:PDZ1-2 the relative concentration of GSH and PDZ1-2 vary for each Scattering 

experiment (see Methods): Here the higher order oligomers are associated with the highest 

GSH:PDZ1-2 ratio (Figure 4(h)). The methodology deployed to interpret the scattering data is 

compelling because relatively few degrees of freedom are required to describe the complete 

structural model, and variation of oligomer populations with PDZ1-2 concentration is readily 

accounted for.  Compared to the dummy atom modelling with data projected to infinite dilution the 

values of Χ2 are similar: For RRESEI:PDZ1-2 Χ2 values of 8.74, 2.71 and 3.71 were obtained for 

concentrated, diluted and SEC data respectively, the equivalent values for Apo:PDZ1-2 are 6.31,1.62 

and 2.67 and for GSH:PDZ1-2, 1.41, 0.33 and 4.21. The Oligomer based fitting is an improvement as 

scattering data over the complete momentum transfer interval recorded is included (Figure 4(c, e, 

g)). 

For all of the SAXS experiments reported here, lower concentrations of PDZ1-2 arise from a higher 

concentration sample, either through dilution, or for the fractionated data via diffusion during 

passage down a Size exclusion column (see Methods). We assume that the timescales of the 

biophysical experiments here are long enough such that equilibrium conditions pertain. Some 

hysteresis in the formation of assemblies appears to be present as the larger oligomers persist after 

dilution. This may reflect a difference in assembly through the progressive formation of larger and 

larger complexes over dis-assembly via the dissociation of smaller components such as monomers. 

Data fitting with OLIGOMER was restricted to the metastable complexes identified in the 
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considerations of avidity (monomer, dimer, tetramer, octamer, 12, 16, 20 and 24-mer oligomers). In 

the case of apo:PDZ1-2 monomer dimer and tetramer oligomers are sufficient to account for the 

scattering (Figure 4(f)). In the case of RRESEI:PDZ1-2 oligomers extending up to a 24-mer are needed 

to account for the observed scattering profile (Figure 4(d)). Fitting of SAXS curves was limited to 

oligomers of up to 24 copies of PDZ1-2 as this corresponds to the number of general equivalent 

positions in the unit cell of the I213 Spacegroup (Hahn, 1983). Some marginal improvements in the 

agreement of the curve with the data were observed if larger oligomers were included. However the 

inclusion of more than one unit cell of a three dimensional lattice model would imply some 

constructive interference in the Scattering: As such this may break assumptions inherent in the 

methodology used to generate calculated SAXS curves which are fitted. The GSH:PDZ1-2 data 

requires fewer oligomers drawn from the scaffolding Spacegroup with good agreement from 

oligomers of up to 8 copies of GSH:PDZ1-2 (Figure 4(h)). 

Figure 4. Oligomer fitting of SAXS data.    

Selected PDZ1-2 oligomers 1e, 2e, 4e, 8e and12e are shown in (a) where “e” denotes the extended 

3zrt:PDZ1-2 conformation. The symmetry operations drawn from the scaffolding Spacegroup 

required for the construction of the PDZ1-2 oligomers used in fitting are given in (b).  

Transformations applied to the fractional coordinates of the PDZ1-2 monomer ((a).1e) given in lower 

case (x, y, z), and those applied to the meta-stable tetramer ((a).4e) in capital letters.  Fitted SAXS 

curves are shown alongside histograms of the oligomer populations in (c)-(h). Scattering curves are 

plotted as Log(I) versus q throughout (where I is the scattering intensity and q is momentum 

transfer). High concentration data curves are shown in red with fitted curves in green, dilutions in 

blue with fitted curve in cyan and SEC-fractionated samples in magenta with fitted curves in yellow. A 

multiplication factor has been applied to the raw data in some cases to separate curves along the 

ordinate (Log(I)) axis. The Histograms show the relative populations of various oligomers determined 

in the fitting analysis. The populations were determined by multiplying the volume fraction assigned 

by the OLIGOMER program (Franke et al, 2017; Konarev et al, 2003) by the oligomer number and 

then renormalizing all fractions to sum to 1. Hence the columns show the proportion of PDZ1-2 

molecules assigned to each fraction. The “1c.” oligomer shown on the abscissa maps to compact 

PDZ1-2, the 2 “eom” oligomers to uncoupled versions of PDZ1-2 derived from analysis of 

RRESEI:PDZ1-2 with the EOM program (Bernado et al, 2007),  2e-24e are drawn from the scaffolding 

Spacegroup.  

Compatibility of RRESEI and GSH ligands with the oligomers 
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The thermodynamic parameters extracted from the ITC analysis of PDZ1-2:RRESEI  binding are not 

simply related to their counterparts extracted for isolated domains. This suggests that either 

binding-site interference or intermolecular interactions may be at play. The crystal structures of 

PDZ1-2 do not support any mechanism of direct site interference for a short peptide like RRESEI, 

whereas the SAXS measurements show that the RRESEI enhances the formation of PDZ1-2 

oligomers. Despite the presence of the PDZ1 domain in PDZ1-2 the endothermic peaks observed 

near-saturation for PDZ1 are not seen in titrations of PDZ1-2 with RRESEI. Association of RRESEI with 

PDZ1-2 is also correlated with a lower population of the compact form of PDZ1-2. The transition 

from compact to more extended PDZ1-2 increases the number of conformations that can be 

adopted by PDZ1-2; alongside the replacement of an intra-molecular interaction with a solvent 

interaction. The increased number of gross conformational states would lead to an increase in 

entropy +ΔS and the exchange of interactions a small change in enthalpy ΔH. According to the SAXS 

analysis presented here the αB(PDZ2):βD-βE(PDZ1) double dimer forms in the apo case but the 

population is enhanced by the addition of RRESEI. This configuration would be favoured over a direct 

interaction between RRESEI:PDZ1 domains. The formation of the double-dimer fixes the 

conformation of PDZ1-2 alongside the formation of non-covalent interactions at the two PDZ2:PDZ1 

interfaces (giving thermodynamic contributions -ΔS and -ΔH). The additional factors leading to 

RRESEI:PDZ1-2 oligomerization therefore make diverse thermodynamic contributions. These 

additional interactions could readily account for the differences between the separate PDZ domains 

and the double domain seen in the ITC titrations with RRESEI.  

The RRESEI ligand can be accommodated within the αB(PDZ2):βD-βE(PDZ1) interface after the 

adjustment of side chain rotamers of aromatic residues Y63 and Y147 of PDZ1-2. The ligand peptide 

may then participate in a continuous β-sheet with RRESEI intercalated between the βA strand of 

PDZ1 (forming parallel β-sheet interactions) and the βB strand of PDZ2 (forming anti-parallel β-sheet 

interactions). The GSH molecule identified in the Apo:PDZ1-2 and RRESEI:PDZ1-2 structures 

associates with Y147 and F119. A GSH molecule at this site on PDZ1 would be presented to the PDZ2 

binding cleft on formation of the αB(PDZ2):βD-βE(PDZ1) interface. The GSH contains thiol and 

carboxylate GSH can readily form interactions within the binding cleft.  The GSH site found the PDZ1-

2 crystal structures is therefore likely to contribute to the affinity of the αB(PDZ2):βD-βE(PDZ1) 

interface, but GSH would be excluded from the interface if a peptide ligand was present in the PDZ2 

cleft. Therefore both GSH and RRESEI are able to knit the αB(PDZ2):βD-βE(PDZ1) interface together.  

The other contact used in defining the I213 scaffolding lattice is αA(PDZ2): βB-βC(PDZ1). There is no 

direct involvement of binding clefts in this interface. The relationship between the stability of the αA 
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region in PDZ2 and the association of RRESEI at the PDZ2 cleft indicates that ligand recognition may 

be an indirect factor in the formation of this contact.  

A direct interface between copies of PDZ1 is predicted within the I213 scaffolding lattice. An 

interface of this type can form between isolated PDZ1 domains.  The SAXS analysis indicated that the 

formation of this interface is important for larger oligomers like those required for fitting 

RRESEI:PDZ1-2: In turn suggesting that the binding of RRESEI enhances the formation of the 

interface. This would explain the unusual behaviour of the PDZ1 domain in ITC where an additional 

endothermic heat change is resolved close to saturation with the RRESEI ligand: The additional heat 

change observed being due to the association of RRESEI:PDZ1 domains with one another.  In the ITC 

experiment the PDZ1 domain is successively diluted in the measurement cell by the addition of 

aliquots of the RRESEI solution. Thus any association of PDZ1 domains must be RRESEI mediated. 

Interfaces between copies of peptide bound PDZ domains have been seen in crystal structures, for 

example PDB ID 1oby (Kang et al, 2003). The alternative orientation of RRESEI with the C-terminus 

emergent from the PDZ1 ligand binding cleft seen in refinement of the RRESEI:PDZ1-2 crystal 

structure appears to be compatible with this interface in the scaffolding Spacegroup. When this 

orientation is present additional interactions are made at the interface including the insertion of 

Asn72 between the bound ligand and αB helix of PDZ1. However as the scaffolding arrangement is 

effectively determined by SAXS analysis, which is limited to a lower resolution, structural details of 

this type should be treated with caution. 

PDZ1-2 oligomers in the presence of GSH alone are more limited in extent than those in the 

presence of RRESEI. The influence of GSH seems to be primarily in the αB(PDZ2):βD-βE(PDZ1) 

interface. Using the scaffolding Spacegroup it is possible to devise octamer and dodecamer 

assemblies of PDZ1-2 tetramers which do not have a PDZ1:PDZ1 interaction (a dodecamer can be 

formed from tetramer symmetry operations in similar manner to figure 4(b) X, Y, Z; Y,-Z,-X+1/2; -

X+1/2, Y, -Z). The shorter GSH peptide ligand may not significantly enhance the PDZ1:PDZ1 interface 

predicted in the scaffolding Spacegroup and this may explain why oligomers are more limited in 

extent in the presence of GSH. 

Discussion  

 

The preparation of sub-cellular neuronal compartments such as PSDs for imaging or extraction of 

proteins often necessitates harsh treatments such as mechanical disruption, multiple centrifugation 

steps and extensive dilution (Carlin et al, 1980). A recent report also indicates that detergent-specific 
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effects can occur when isolating component oligomers from PSD fractions (Lautz et al, 2019). So 

many of the non-covalent interactions revealed here are likely to be compromised in sub-neuronal 

isolates. Therefore the approach of assembling component elements taken in this study has the 

power to reveal new information. In their dissection of the clustering properties of PSD-95 Hsueh et 

al., noted that “A rafting mechanism for clustering of multimeric channels … could still be 

accomplished by a single PDZ domain per PSD-95 monomer if PSD-95 self-associates to form 

multimers”. The work here shows that extensive association of PSD-95 can occur but this is acutely 

sensitive to the binding ligand. Also since the association is driven by relatively weak non-covalent 

interactions a high concentration of PSD-95 is required. 

 

The role of the peptide ligand. 

 

A significant feature of the Apo:PDZ1-2 crystal structures reported here is the disorder of the PDZ2 

cleft and the PDZ2 αA helix. In contrast for 3gls:PDZ1-2 the vacant PDZ2 ligand binding site is 

ordered for both copies of PDZ1-2 (this is also true of 3zrt:PDZ1-2 although lower resolution is a 

factor for this structure). In both 3gls:PDZ1-2 and 3zrt:PDZ1-2 the binding cleft of each PDZ2 domain 

is involved in the αB(PDZ2):βD-βE(PDZ1) interaction with a PDZ1 domain from another PDZ1-2. This 

αB(PDZ2):βD-βE(PDZ1) inter-molecular contact may therefore stabilize the conformation of the 

vacant PDZ2 ligand binding site. In 3gls:PDZ1-2 inter-molecular contacts between Tyr 147 and His 

225, and Glu 65 and Ser 173 are formed.  In 3gls:PDZ1-2 the αA helix of PDZ2 is additionally 

stabilized by a crystal contact αA(PDZ2): βB-βC(PDZ1) with a second PDZ1-2 molecule.   

The two bound RRESEI peptides in the RRESEI:PDZ1-2 structure show similar features including 

weaker electron density at their C-terminus, which is interpreted here with a dual conformation of 

the terminal EI residues of both of the bound peptide ligands. Both PDZ1 and PDZ2 peptide binding 

clefts appear ordered in RRESEI:PDZ1-2.  The disorder of the C-terminal residues of the RRESEI ligand 

in the PDZ1 cleft seen in RRESEI:PDZ1-2 would appear to be an unexpected result given the ordered 

nature of the unoccupied PDZ1 site in apo:PDZ1-2. The alternate bound conformation of RRESEI 

lacks the hydrophobic group inserted into the cleft but forms a contact with a residue in a loop 

immediately preceding the αA helix.  

The stability of the PDZ2 peptide ligand cleft is enhanced when inter-molecular contacts are made 

between the cleft, the adjacent αA helix or when a peptide ligand is bound. This indicates that there 

is likely to be a synergy between the conformation of the PDZ2 cleft/PDZ2 αA helix, and the 
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presence of the peptide ligand.  This can be mediated by the GLGF sequence which links these two 

sub-structures via non-covalent interactions. 

The gross structures of 3gsl:PDZ1-2 is less compact than RRESEI:PDZ1-2 because the intra-molecular 

αA(PDZ1): βB-βC(PDZ2) interaction in RRESEI:PDZ1-2  is not formed in 3gsl:PDZ1-2. In the 3gls crystal 

structure the –ETMA ligand and the PDZ1 cleft are ordered and the Met residue forms a 

hydrophobic contact with Ile 100. There is no intra-molecular contact between the βB-βC loop of 

PDZ2 and the αA helix of PDZ1.This raises the possibility that a synergy between the binding cleft 

and the αA helix of PDZ1 also exists: The ligand peptide may induce a conformational change in the 

peptide binding cleft which is relayed to the αA helix by the GLGF region and a hydrophobic contact 

between the ligand and Ile-100 which in turn de-couples the αA(PDZ1): βB-βC(PDZ2) intra-molecular 

interaction.  

Taken together these facets indicate that a subtle induced fit mechanism may be at work for the 

interaction of RRESEI with PDZ1-2. RRESEI interaction at PDZ1 induces conformational changes which 

in turn are relayed to the αA helix of PDZ1. An uncoupled conformation of PDZ1-2 results from the 

dissociation of the intra-molecular interaction. In contrast RRESEI peptide interaction at PDZ2 

induces a single ordered conformation of the GLGF bearing cleft, which in turn is relayed to the αA 

helix of PDZ2 favouring the ordered conformation of this helix seen in RRESEI:PDZ1-2. 

Some variation in the intra-domain separation of PDZ1 and PDZ2 has also been reported in NMR 

studies (Wang et al, 2009), and domain separation was enhanced in the presence of a ligand.  

Modelling of domain separation variation of this nature using ensemble model-fitting software 

(Bernado et al, 2007) was effective for SAXS data extrapolated to zero concentration where 

contributions from oligomers are smaller. 

The role of the conformation of PDZ1-2. 

 

The gross form of the PDZ1-2 domain is like a “dumbbell” and two peaks consistent with this 

structure are clearly evident in the Pair Distance distribution histograms derived from the scattering 

curves (see Supplementary materials). Underlying this overall form were systematic differences 

between both the scattering curves and their corresponding transformed pair distance distribution 

functions according to the concentration of PDZ1-2 and the presence of peptide ligands. Pair 

distributions of PDZ1-2 in complex with a peptide based inhibitor of PSD-95 clustering also showed a 

similar form (Bach et al, 2012): The pair distribution function of PDZ1-2 in presence of a monomeric 
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inhibitor shown for this work appears to show a sharp peaks in P(r), which is qualitatively similar to 

that encountered in the RRESEI:PDZ1-2 case here (see Supplementary materials).   

The population of the compact form of PDZ1-2 is low for the high concentration of RRESEI:PDZ1-2 as 

shown by the SAXS analysis (Figure 4(d)), with a small population of the compact form seen only for 

diluted RRESEI:PDZ1-2 (Figure 4(d)). Thus the RRESEI:PDZ1-2 crystal structure described here 

represents a minority conformer in solution, which may explain the requirement for seeding in the 

formation of RRESEI:PDZ1-2 crystals (the seeding promoting nucleation at lower RRESEI:PDZ1-2 

concentration where there is a significant level of the compact monomeric form). In contrast in the 

apo case the compact form of PDZ1-2 is present at an increased concentration and the PDZ1-2 inter-

molecular interactions are more limited (Figure 4(f)). This indicates a preference for the 

decoupled/extended conformation in the presence of bound ligand. A synergy between the 

association of RRESEI peptide at the PDZ1 binding cleft, the conformation of the αA helix of PDZ1 

and the gross conformation of PDZ1-2 is a likely reason for this.  

A major determinant in the formation of the I213 scaffolding lattice revealed here is the gross 

conformation of the PDZ1-2 domain. The trimer-containing oligomers which in turn lead to the cubic 

packing arrangement require the PDZ1-2 domain to adopt an extended (3zrt:PDZ1-2 -like) form.  A 

first step in the establishment of this extended conformation is the decoupling of the compact form 

of PDZ1-2. The ligand PDZ2 interaction is therefore key to the trimer forming interaction (αA(PDZ2): 

βB-βC(PDZ1)) and in turn fundamental to the I213 scaffolding lattice identified here. Additionally a 

ligand sequence incorporated at the αB(PDZ2):βD-βE(PDZ1) interface may change the affinity of this 

interaction. The properties of residues “X” in the sequence –X-3–(Ser/Thr/Cys)-2-X-1-Φ0 from the 

partner channel may modulate the affinity of MAGUK scaffolding interactions.  In the work described 

here the presence of a Glu residue at X-1 appears to be important in allowing an alternate peptide 

ligand conformation. Additionally the aliphatic side chain at Φ0 may have an influence on either the 

perturbation of the PDZ ligand binding cleft in the buried conformation, or the formation of a 

contact with the loop adjacent to the αA helix. High concentrations of MAGUK proteins are present 

in functional compartments of neurones alongside their partner receptors and channels. The NMDA 

receptor present in the PSD is assembled from combinations of four ε and ζ subunits (Hess et al, 

1998), the ε subunits have a C-terminal sequence of –E-3-S-2-(D/E)-1-V0. Hence the NMDA receptor 

also possesses carboxylic acid bearing residues at the X-1 position and will have similar effects in 

PDZ1-2 as RRESEI. 

The PDZ1-2 domain forms the core of a MAGUK scaffold. 
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The PSD-95 protein contains five modules only two of which are considered in the work reported 

here; hence the arrays shown may be affected by the other domains of the protein. The PDZ1-2 

module of PSD-95 is bracketed by two long unstructured peptide linkers (Figure 1.1) which will allow 

relative freedom for the PDZ1-2 module to form interactions with other copies of PDZ1-2 close by. 

However the closest interaction partner for an isolated PDZ1-2 unit will be PDZ3. It is relevant 

therefore to examine whether the PDZ3 domain could form similar domain-domain interactions to 

those found in the PDZ1-2 scaffolding Spacegroup. The precise affinity of any PDZ:PDZ interaction 

will be governed by the amino acids forming interfaces including any associated ligand peptides, but 

compatible secondary structure elements also need to be in place.  PDZ3 has additional secondary 

structure elements after the βF strand and also has a truncated βB-βC loop (Doyle et al, 1996).  This 

means that PDZ3 could substitute for PDZ2 in the scaffolding Spacegroup (αB(PDZ3):βD-βE(PDZ1); 

αB(PDZ2):βD-βE(PDZ3) and αA(PDZ3):βB-βC(PDZ1) could all form). PDZ3 can form the 

(RRESEI:PDZ1):(RRESEI:PDZ3) interaction, however the domain could not form an αA(PDZ2):βD-

βE(PDZ3) interaction. Therefore PDZ3 cannot fully substitute for PDZ1 in the scaffolding Spacegroup. 

Based upon this simple analysis PDZ3 is likely to integrate with the scaffold.  As such the PDZ1-2 

domain may form a core scaffold which can be decorated by PDZ3. It is important to note that in the 

scaffolding Spacegroup all copies of PDZ1-2 form two αB(PDZ2):βD-βE(PDZ1) interactions. The 

avidity due to this dual interaction means that the dual domain inter-molecular interaction is likely 

to displace any PDZ1-2:PDZ3 intra-molecular interaction on the close approach of two PDZ1-2 units.  

The PSD-95 N-terminal linker has been found to be essential for clustering (Hsueh et al, 1997). The 

N-terminal linker requirement is likely due to membrane localization which is a factor in maintaining 

a high local concentration of PSD-95 near the membrane. There are variations in the N-terminal 

linkers with the second isoform of PSD-95 having a longer (98 residue) linker. In addition the closely 

related PSD93 MAGUK has been shown to be palmitoylated at the N-terminus (in Rat) (El-Husseini et 

al, 2000b) and may participate in the formation complexes similar to those found here.    

The SAXS experiments indicate that the formation of extended oligomers of PDZ1-2 requires 

saturating concentrations of type I PDZ peptide ligands. These sequences are found in the cytoplasm 

at the ends of long unstructured regions at the C-termini of trans-membrane ion channels, this 

condition is also satisfied close to the surface of a membrane bearing a high density of such 

channels. Likely arrangements of PDZ1-2 oligomers are shown in Figure 5(a,b). Extended oligomers 

were observed in earlier work with the RRESEI containing the Kir2.1 cytoplasmic domain and full-

length PSD-95 (Fomina et al, 2011) with both components in the solution phase. A PDZ1-2 oligomer 

coincident with the 31 screw axis of the scaffolding Spacegroup could form the core of these 
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structures as illustrated in Figure 5(c).  In order to form a 2 dimensional net PDZ1:PDZ1 interactions 

are necessary to link within and between these extended oligomers (Figure 5(a,b)). As indicated in 

Figure 5(b) the PDZ1:PDZ1 interactions lie toward one side of the net shown.  The ligands required to 

enhance the interfaces between those copies of PDZ1-2 are available close to the membrane 

surface. 

Figure 5. Higher order PDZ1-2 structures.  

 

Plan and end elevation views of a PDZ1-2 net are shown in (a) and (b) respectively, each PDZ1-2 

domain is represented by a surface envelope. An oligomer coincident with the 31 axis of the 

scaffolding Spacegroup is picked out in (a) and (b) and shown as a scaled inset in (c).  All scale bars 

are 148Å and a unit cell outline for the scaffolding Spacegroup is included with the molecular 

representations. The electron micrograph shown in (c) was selected from the data for PSD-95 and 

Kir2.1 complexes  (Fomina et al, 2011) and rendered with ImageJ software (Schneider et al, 2012), 

molecular representations are from UCSF Chimera.  

The scaffold Spacegroup has optimal properties 

 

Scaffolds formed in vivo would therefore be subject to the high concentration of both ligand 

sequence and MAGUK, which is limited to a volume close to the membrane.  This will allow the 

formation of a net of ligated PDZ1-2 but a deeper 3-dimensional array of PDZ1-2 cannot form. GSH is 

an indigenous cellular peptide, the SAXS work here shows that GSH has similar effects on PDZ1-

2:PDZ1-2 association as the RRESEI ligand. These effects are evident at mM concentrations of GSH.  

GSH pervades the cytoplasm of cells at 0.5-10mM concentration (Wang & Ballatori, 1998). However 

GSH:PDZ1-2 oligomers are more limited in extent. Thus nets formed by means of ligated PDZ1-2 

scaffolds may be maintained through the integration of GSH, but cannot be significantly extended by 

incorporation of GSH.   

In common with all cubic Space groups I213 is isotropic (the same in three orthogonal directions) on 

the mesoscopic scale. Hence the packing arrangement dictated by the scaffolding Spacegroup could 

be preserved whilst following the membrane curvature seen in specialized structures such as 

synaptic boutons or cylindrical axons. Long bi-directional nets can readily be formed (Figure 5.) and 

these arrangements are compatible with the restrictions of peptide ligand availability close to a 

surface. The assembly based upon the meta-stable tetramers the assembly naturally follows the 

network of crossed 31 screw axes which are parallel to “isotropic” body diagonal directions of the 

I213 scaffolding lattice (Figure 5 (a)).  A net formed in this way has regularly spaced voids (Figure 
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5(a)) allowing space for other components to integrate with the scaffold. The receptors and channels 

organized by this scaffold would follow this executive organization with an underlying repeating unit 

of the order of 14.8nm determined by the unit cell of the I213 scaffolding lattice.   

Scaffold modulation 

 

A compelling feature of the symmetry of the scaffolding arises if one considers breaking the precise 

symmetry of the PDZ1-2 double dimer (seen in Figure 4(a)2e). This asymmetry can be 

accommodated with a revised P213 scaffolding Spacegroup with an identical unit cell length. Thus as 

long as the residues involved in the αA(PDZ2):βD-βE(PDZ3) and PDZ1:PDZ1 contacts are compatible, 

the packing of heterogenous PDZ1-2 domains can occur in a similar way.  Other MAGUK proteins are 

found alongside PSD-95 in synaptic fractions including SAP97 (Li et al, 2004). The PDZ1-2 regions of 

the canonical isoforms of PSD-95, SAP97, PSD93 and SAP102 have an amino acid identity of 72%. The 

PDZ1-2 region of SAP97 has an identity of 89% with PSD-95 but is not localized to the membrane via 

post-translational modification like PSD-95 (and PSD93). It has been shown that PSD-95 and PSD-93 

can hetero-multimerize (Kim et al, 1996) hence mixed MAGUK oligomers may form via PDZ1-2 

interactions, in the case of SAP97 with fewer restrictions on orientation due to membrane 

localization.  Figure 6(a) shows the P213 packing with the sequence variation across PSD-95, SAP97, 

PSD-93 and SAP102 mapped onto the structure. It is evident that the PDZ1-2 scaffold could 

accommodate heterogeneity in the PDZ1-2 domains.    

Figure 6. Additions to the PDZ1-2 scaffold. 

 

Sequence variation in the PDZ1-2 fragment across the MAGUK proteins is represented in (a). A 

sequence alignment obtained from the program ClustalW (Larkin et al, 2007) is mapped onto the 

packing arrangement with the locations of identical residues coloured blue, similar residues white 

and residues with different properties red. (b) shows the packing arrangement with PDZ1-2 displayed 

in a similar manner to Figure 4(a) and the nNOS PDZ domain (black) in association with PDZ1. The 

panels in (c) show two views of a dodecamer PDZ1-2-3 model and a PSD-95 model, the core PDZ1-2 

scaffold is shown in yellow with PDZ3 in blue for the PDZ1-2-3 model and PDZ3-SH3GK in magenta 

for the PSD-95 model. All panels were generated with UCSF Chimera  

Additional compatible PDZ domains can be incorporated into the PDZ1-2 scaffold replacing PDZ1 or 

PDZ2 in the scaffold Spacegroup. Figure 6(c) shows this process for the PDZ3 domain from PSD-95 

(PDB ID 1bef: (Doyle et al, 1996)). PDZ3 can enhance the binding between tetramers by forming 

additional contacts to itself or to copies of PDZ1-2. In the model shown in Figure 6(c) this is the case 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/775726doi: bioRxiv preprint 

https://doi.org/10.1101/775726
http://creativecommons.org/licenses/by/4.0/


24 
 

for 8/12 PDZ3 domains in the modelled dodecamer, the PDZ3:PDZ1-2 contacts could be inter or 

intra-molecular in nature as restricted by the PDZ1-2-PDZ3 linker. Extending this formalism it is 

possible to gain some insight into the formation of whole-MAGuK oligomers. Using  ZO-1 PDZ3-SH3-

GK structure (Nomme et al, 2011) as a template, a model of the same region of PSD-95 can be 

realized by docking the structures of PDZ3 and SH3-GK (McGee et al, 2001). The modelled PDZ1-SH3-

GK structure can then be docked onto the scaffold in the same way as for PDZ3. Athough as there is 

a clear conformational difference between the ZO-1 SH3-GK and PSD-95 SH3-GK any resulting 

analysis can only be approximate. This model is shown in Figure 6(c) using a 

(RRESEI:PDZ1):(RRESEI:PDZ3) contact for docking the PDZ1-SH3-GK addition. It is clear that the full-

length protein can be incorporated into extended oligomers such as those observed in earlier 

Electron Microscopy images coincident with a 31 screw axis. The linking of these together to form a 

net would require alternate conformations of PSD-95 or enzymatic cleavage to remove SH3-GK, or 

PDZ3-SH3-GK.     

PSD-95 and SAP97 are substrates for the calpain family of calcium dependent proteases (Jourdi et al, 

2005; Lu et al, 2000) which are implicated in synaptic plasticity (Baudry & Bi, 2016). Calpain cleavage 

of PSD-95 initially gives two fragments of PSD-95 of molecular weight ~50 and 36kDa as measured by 

SDS-PAGE and western blotting.  The sequence weights of these fragments and the epitope site of 

the antibody used in western blotting is consistent with PSD-95 cleavage in the linkers between 

PDZ2 and PDZ3 (liberating the ~50kDa fragment) and between PDZ3 and SH3 (liberating the 36kDa 

fragment). The calpain-2 (catalytic) domain of the enzyme has a type I PDZ binding motif at the C-

terminus (-FSVL) indicating that the enzyme can bind to type I PDZ domains to enhance the 

efficiency of target protein cleavage. Thus cleavage of MAGUKs by calpain may represent a calcium-

dependent maturation process whereby the remnant PDZ1-2 can form oligomeric arrays. PSD-95 can 

be removed from the synapse via ubiquitination of a P/E/S/T rich motif: This sequence is located in 

the N-terminal linker region between the Cys-palmitoylation sites and the PDZ1 domain (Colledge et 

al, 2003). This indicates that a mechanism of removal for both full length and truncated PSD-95 in 

place, alongside a calpain degradation pathway together allowing a dynamic scaffolding structure to 

exist.   

The core of a MAGuK scaffold layer can be formed by the association of ligated PDZ1-2 domains 

along directions parallel to two of the body diagonals of the scaffold unit cell as seen in Figure 5.  

Additional partner proteins may then integrate with this scaffold at available sites. The integration 

may be either via the incorporation of a compatible C-terminal sequence, or through the association 

of compatible PDZ domain(s) in the manner discussed above. A laminar model of the PSD 
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(Valtschanoff & Weinberg, 2001) indicates that the nNOS protein is found in abundance at the 

cytoplasmic side of a PSD-95 enriched layer. The nNOS protein has an N-terminal PDZ domain that 

can afford integration with the PSD-95 scaffold. The PDZ domain of nNOS interacts with other PDZ 

domains via the insertion of a β-hairpin into the binding cleft as resolved in the crystal structure of 

the domain with syntrophin PDZ (Hillier et al, 1999). The equivalent interaction of the nNOS PDZ 

domain with the PDZ1 domain of PDZ1-2 in the scaffolding Spacegroup is shown in Figure 6(b). The 

binding cleft of PDZ1 is accessible in the PDZ1-2 scaffold and the β-hairpin can interact through 

association with the cleft. The PDZ1 domain is located at the rim of the voids shown in Figure 5(a), 

hence an association can form between nNOS and a core scaffold.   

Modulation of the scaffold structure and in turn the underlying organization of channels may be 

afforded by relatively minor modifications to the ligand or the PDZ domain though post-translational 

modification.  For instance phosphorylation of S/T residues in the type I PDZ sequence motifs are 

likely to affect the formation of oligomers. The Ser residue in RRESEI has a very high phosphorylation 

likelihood, as does the equivalent residue at the termini of the NMDA receptor  (NetPhos 3.1 sever 

scores of 0.99 and 0.98 respectively (Blom et al, 1999)), and whilst a sequence bound at PDZ2 in the 

scaffold may be protected from kinases, one bound at PDZ1 is accessible as demonstrated for the 

addition of the nNOS PDZ domain.  

Conclusions 
 

The PDZ1-2 component of PSD-95 is known to be an essential component for receptor clustering at 

the synapse and presumably other locations such as juxta-paranodes. This study shows that PDZ1-2 

oligomerization can be accomplished by the dual domain and a ligating peptide alone – whole 

receptor proteins are not required. The PDZ domain itself may be considered to be an interacting 

element, interactions between PDZ domains are modulated by the properties of a bound peptide 

ligand. On binding a suitable peptide ligand particular structural elements of the PDZ1-2 domain are 

stabilized with mediation by the GLGF motif. and in turn favour the formation of oligomers.    

The mechanism of clustering of PDZ1-2 is the formation of inter-molecular oligomers which follow a 

cubic packing rule and hence a highly organized scaffold underlies the formation of clusters.  The 

ubiquitous intracellular peptide GSH can also induce the formation of inter-PDZ1-2 oligomers at 

concentrations comparable to those found in the cytoplasm. GSH may therefore be important in 

maintaining the fidelity of MAGUK induced clusters.  
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Materials and Methods 

Protein production 

 

All chemicals were obtained from Sigma-Aldrich (Fancy Road, Poole, Dorset BH12 4QH, UK) unless 

stated. 

 

The sequence for PSD-95 PDZ1-2 (corresponding to residues 55-249 [98-292] of the UniProt ID 

P78352 [P78352-2]); PDZ1 55-152 [98-195] and PDZ2 154-249 [197-292] and PDZ3 303-415 [346-

458], were cloned into a pOPINF expression vector (Berrow et al, 2007). The resulting protein is 

expressed with a HRV 3C protease cleavable hexa-histidine tag appended at the N-terminus of the 

protein. Tag-cleaved proteins have Gly-Pro followed by the protein sequence of interest. The 

sequence Molecular weight of the PDZ1-2 cleaved construct is 20.8 kDa. 

Proteins were expressed after transformation into E. coli strain BL21(DE3) (New England Biolabs,75-

77 Knowl Piece, Wilbury Way, Hitchin, Herts SG4 0TY UK.). Cultures were initially propagated in 

Double Yeast-Tryptone media supplemented with 50µg/ml Ampicillin at 37OC in shake flasks with 

200rpm orbital shaking. Protein expression was induced at a culture optical density at 600nm of 0.6-

0.8 by supplementing with 0.1mM isopropyl-β-D-thiogalactopyranoside.  The cultures were then 

incubated at 16OC for 16-20 hours before harvesting of cells by centrifugation at 6,000×g.  Cell 

pellets were flash frozen and stored at -70 OC. 

Chromatography steps were carried out using an Akta FPLC system, controlled by UNICORN 5.01 

software (GE Healthcare, The Grove Centre, White Lion Road, Amersham, Bucks, HP7 9LL, UK.). E. 

coli cells were resuspended in lysis buffer: 20 mM Na2HPO4/NaOH, 0.5 M NaCl, pH8.5, 1 mM reduced 

GSH, “Complete” mini EDTA-free protease inhibitor cocktail used at the manufacturer’s (Roche 

Diagnostics, Charles Avenue, Burgess Hill, West Sussex, RH15 9RY, UK.) recommended 

concentration, supplemented with 100 mg/l DNAse1. The cell suspension was sonicated (Bandelin 

Sonopuls HD3200, with TT13/F2 probe, Bandelin Electronic, GmbH & Co. KG, Heinrichstrasse 3-4, 

12207 Berlin, Germany) on ice until the suspension was homogeneous. The lysate was then 

centrifuged at 39,000g to remove unbroken cells before application of the supernatant to a Ni-NTA 

agarose resin column (QIAGEN Ltd. Skelton House, Lloyd St. North, Manchester, M15 6SH, UK). The 

affinity column was washed with lysis buffer supplemented with 10mM imidazole to remove weakly 

interacting proteins. Immobilized protein was then eluted in a stepwise manner with lysis buffer 

supplemented with 200mM imidazole. Desalting chromatography was performed using a HiPrep 
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26/10 column (GE Healthcare). Tag cleavage was carried out overnight at 4 OC on a roller with 10 

units of HRV 3C protease (Novagen/Merck chemicals Boulevard Industrial Park, Padge Road, 

Beeston, Nottingham, NG9 2JR, UK) per mg of protein. A negative Ni-NTA affinity purification step 

was carried out to remove uncleaved product, the flow through from this step was concentrated 

using a centrifugal concentrator and applied to a Superdex200 10/300 GL (GE Healthcare) size 

exclusion column equilibrated with a “Standard” buffer of 20 mM Tris-HCl, 150 mM NaCl, pH8.5. 

PDZ1-2, PDZ1 and PDZ2 showed a single band on a Coomassie stained SDS-PAGE gel and a single 

highly symmetric peak in size exclusion at a retention volume consistent with the expected 

Molecular Weight of the construct. 

 

X-ray crystallography 

Crystallization and Data collection 

 

PDZ1-2 protein from a single size exclusion chromatography peak was pooled and concentrated with 

centrifugal concentrator to a concentration of ~0.75mM. Vapour diffusion sitting drop 96-well 

crystallisation plates were set up using an automated liquid handler (Mosquito Crystal, ttp Labtech, 

Melbourn Science Park, Melbourn, Herts, SG8 6EE, UK.). The volume ratio of protein and screen 

solution was 200:200nL. Each drop was equilibrated against a 100µL well volume at 4 OC. Crystals of 

Apo:PDZ1-2 with a maximum dimension of 250 µm and a tetragonal bipyramid habit were observed 

after 4 weeks from crystallization with a screen solution containing 0.2M calcium acetate, 0.1M 

sodium cacodylate pH6.5, 40% v/v PEG300. 

 

A number attempts were made to crystallize RRESEI:PDZ1-2 without a seeding step, these were 

unsuccessful. A large number of clear wells were seen in crystal screens, which is consistent with 

high solubility of the protein-ligand complex limiting nucleation.  Start and ending protein 

concentrations in the vapour diffusion based crystallization trials were ≈0.5 and 1 mM respectively.  

PDZ1-2 crystals in the presence of ligand were obtained via Matrix micro-seeding (D'Arcy et al, 

2007). A PDZ1-2 solution containing  an excess concentration of the ligand peptide RRESEI at 98% 

purity (Peptide Protein Research Ltd., Bridge House Farm, 184 Funtley Road, Funtley, Fareham PO15 

6DP, UK.) was prepared by supplementing a 1mM solution of PDZ1-2 with 10mM of the RRESEI 

peptide and incubating for 4 hours at 4 OC on a roller. Crystallisation trials were set up using a 

Mosquito (TTP Labtech) liquid handling robot, with screens obtained from Molecular Dimensions 

(Unit 6 Goodwin Business Park, Willie Snaith Road, Newmarket, Suffolk, CB8 7SQ, UK.). The seed 
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stock was prepared by mixing a drop containing Apo:PDZ1-2 crystals (volume ≤ 400 nl) with 350 μl of 

the corresponding reservoir and pulverizing the crystal using a micro-seed bead (Molecular 

Dimensions). The seed stock, the protein, and the crystallisation screen reagent were dispensed 

consecutively to form drops comprising 150 nl protein solution: 50nl seed suspension: 200 nl 

reservoir. Crystals of maximum dimension 250 µm with a tetragonal bipyramid habit were observed 

after 1 week in two screen solutions containing (a) 0.2 M NaCl, 0.1 M Na/K phosphate, pH 6.2, 50% 

v/v PEG200; and (b) 0.2M Li2SO4, 0.1M TRIS pH8.5, 40% v/v PEG400.  

 

For both  Apo:PDZ1-2  and PDZ1-2+RRESEI crystals were harvested into fibre loops and flash cooled 

in liquid nitrogen directly from crystallization drops. Diffraction data were collected from a single 

crystal at the Diamond Light Source. Crystallographic data was processed using the Xia2 expert 

system, CCP4 software and XDS integration software (Collaborative Computational Project, 1994; 

Evans, 2006; Kabsch, 2010; Winter, 2010; Winter et al, 2013). Subsequent data analysis was 

facilitated by programs from the CCP4 suite. The crystal structure reported here for PDZ1-2+RRESEI 

crystals is from the PEG200 condition given above which showed higher resolution diffraction (2.1 

versus 2.4 Å).  

 

Crystallographic structure solution, model building and refinement.  

 

Crystal structures of PDZ1 and PDZ2 from human SAP-97 (Zhang et al, 2011)(PDB IDs: 3rl7, 3rl8) have 

been determined at high resolution in complex with a ligand peptide with sequence RHSGSYLVTSV. 

The two PDZ domains have a high level of sequence identity with their counterparts in PSD-95. 

Molecular replacement was carried out with the models prepared from one domain from each of 

these structures, using the Chainsaw program (Stein, 2008) and the sequence of the expressed 

construct. Molecular replacement of the Apo crystal structure was effected with the program 

PHASER (Mccoy et al, 2007) and gave a solution with Log-likelihood gain of 771 and one copy each of 

PDZ1 and PDZ2 in the asymmetric unit. Clear electron density for unique residues in the individual 

domains was observed as was connecting density for the linker region between the two domains. 

The resulting initial model was examined to identify the linked PDZ1-2 double domain. The Ligand 

soaked crystal structure was solved by cross phasing using a partially refined Apo:PDZ1-2 model, 

followed by rigid body refinement. For the crystals grown in the presence of the RRESEI ligand, clear 

and unbroken electron density was seen for the main chain of ESEI residues in the initial Fo-Fc 

difference electron density map. Model building was carried out using the program Coot (Emsley et 

al, 2010), interspersed with refinement using REFMAC5 (Murshudov et al, 1997). In the refinement 
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process each of the domains in PDZ1-2 was assigned to a rigid body and tensors describing 

Translation, Libration and their correlation were used in REFMAC5 to describe anisotropy in the 

model (Winn et al, 2001). Data collection and refinement parameters are included in the 

Supplementary Table 1. 

Isothermal Titration Calorimetry 

 

Isothermal Titration Calorimetry (ITC) experiments were carried out using a MicroCal VP-ITC 

(Malvern/Panalytical Ltd., Enigma Business Park, Grovewood Road, Malvern, WR14 1XZ, UK.) 

instrument. All samples were prepared in the aforementioned Standard buffer and this buffer was 

used in control experiments to measure the heat change on dilution.  A 5mM concentration of the 

RRESEI ligand was placed in the syringe with either PDZ1-2; PDZ1 or PDZ2 placed in the cell at a 

nominal concentration of 0.13mM.  ITC experiments were conducted at 25OC. After an initial priming 

injection, 19 consecutive 10µL aliquots were injected into the cell each over 4.8s and the heat 

change recorded over a 250s interval before the next injection. Data analysis was performed using 

OriginR 5.0 software (OriginLab, Silverdale Scientific Ltd., Silverdale House, 111 Wendover Road, 

Stoke Mandeville, Bucks, HP22 5TD, UK.). 

 

Small Angle X-ray Scattering 

 

SAXS data collection 

 

Small Angle X-ray Scattering (SAXS) data was collected on PDZ1-2 in two modes at two beamlines. In 

the case where the RRESEI peptide ligand was present the protein sample was prepared in the same 

way described for protein crystallization. In the cases where reduced Glutathione (GSH) is present 

the protein sample was diluted with a 20mM concentration of GSH prepared in Standard buffer to 

achieve the stated concentrations. Unfractionated SAXS data was collected on 20µL solution samples 

at fixed concentrations alongside the corresponding buffer reserved from the final chromatography 

step. For Size Exclusion Chromatography SAXS (SEC-SAXS), scattering experiments were carried out 

after fractionation using an Agilent 1260C HPLC system (Agilent Technologies LDA UK Ltd., Life 

Sciences and Chemical Analysis group, Lakeside, Cheadle Royal Business Park, Stockport Cheshire, 

SK8 3GR, UK.), and data were collected on samples eluted from a 4.6ml Shodex Kw403 silica 

chromatography column (Showa Denko Europe GmbH, Konrad-Zuse-Platz 3, 81829 Munich, 

Germany). Two collection modes were used for SEC-SAXS: (1) where the liquid chromatography flow 
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is paused and data images are recorded and (2) where data is continuously recorded and images 

selected corresponding to SEC peak fractions are subsequently combined. In the SEC-SAXS case the 

buffer data for background subtraction was selected from frames within the size exclusion run.  

Data images were recorded on area detectors and reduced to 1-dimensional scattering profiles by 

beamline software. These scattering profiles were compared within each data set and those showing 

evidence of radiation damage (diagnosed by enhanced scattering at low q at the expense of high q 

scattering (Jacques et al, 2012)) excluded before the profiles were merged using PRIMUS (Konarev et 

al, 2003). Supplementary Table 2 summarizes the SAXS data sets recorded. Detailed results are 

shown for the unfractionated SAXS at highest resolution for Apo:PDZ1-2 and RRESEI:PDZ1-2 and 

GSH:PDZ1-2, and for SEC-SAXS SAXS with paused chromatography for Apo:PDZ1-2 and RRESEI:PDZ1-

2 and GSH:PDZ1-2.  Equivalent results were found for the integrated peak SAXS (Jun ’16) and lower 

resolution unfractionated native (Sept’16).   

Initial analysis of SAXS profiles  

 

Data were collected on Apo:PDZ1-2, RRESEI:PDZ1-2 and GSH:PDZ1-2. In each case data quality was 

excellent with low noise levels even for data collected on diluted samples at higher q values. The 

scattering profiles obtained were significantly different according to exposure to RRESEI ligand or the 

presence of GSH. Initial data analysis showed that for the unfractionated SAXS data in all cases the 

Guinier regions were non-linear. The estimates of maximum pair distance (Dmax) values obtained 

from the Pair distance distribution function also differed with the concentration of the sample, with 

larger values of Dmax correlating with higher concentrations of PDZ1-2. In each case 

(Apo/RRESEI/GSH) the fractionated (SEC-)SAXS data indicated a more homogenous sample when 

compared to the unfractionated SAXS data.  

The scattering curves recorded in the unfractionated SAXS case indicated that inter-particle 

interaction was occurring (Jacques & Trewhella, 2010). Comparing the scaled scattering curves at 

different concentrations at low values of q indicated that a very small amount of “repulsive” inter-

particle interference was present in the Apo:PDZ1-2 case (a lower I(q) compared to the curve 

recorded after dilution). A much larger “attractive” interference (a raised I(q) compared to the curve 

recorded after dilution) was observed for RRESEI:PDZ1-2.  There are no Cys residues in the sequence 

of the PDZ1-2 expressed protein hence the direct association of PDZ1-2 via disulphide bonding is not 

possible. In each case Kratky plots of the SAXS data did not indicate significant overall change in the 

folding of the protein (Rambo & Tainer, 2011). In all cases the symptoms of inter-particle 

interactions were alleviated by dilution, therefore the inter-particle interactions observed are 
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reversible. The inter-particle interactions are consistent with non-covalent associations between 

copies of PDZ1-2. Initial analysis was performed using unfractionated SAXS data collected on 

Apo:PDZ1-2 and RRESEI:PDZ1-2. The data at fixed concentrations  (≈0.72 and 0.35mM) were 

projected to zero concentration using PRIMUS (Konarev et al, 2003) to minimize the inter-particle 

effects on the scattering curves (Figure 7(a,b)).  

Analysis using dummy atom models (DAMMIF) (Franke & Svergun, 2009) was undertaken  The 

agreement with the data curves reasonable although data were truncated (q ≤ observed Rg/8) by 

DAMMIF to allow dummy atom modelling. For data collected in the presence of RRSEI the data 

range was 0.015 < q < 0.300 Å-1, Χ2 value 8.7; in the Apo case 0.011 < q < 0.204 Å-1, Χ2 = 6.7.  The 

modelling gave envelopes which would accommodate the PDZ1-2 model but with additional dummy 

atom distributions (Supplementary Figure 1). 

Model based analysis of SAXS data.  

 

Model based analysis with the models from Ensemble Optimization Method (EOM) (Bernado et al, 

2007) software using the data extrapolated to zero, was carried out with a limit of q=0.4Å. The 

analysis gave different histogram distributions of model Radius of gyration according to the presence 

or absence of RRESEI: A sharper Rg histogram distribution for Apo:PDZ1-2 data compared to a 

broader population for RRESEI:PDZ1-2 (Figure 7(e,f)). The agreement of the models derived from the 

EOM analysis was best over the mid-q range of the curve and poorer at higher and low q values 

(Figure 7(c,d)). The representative models generated by EOM generally contained a model with an Rg 

of around 25Å with a high weight assigned, alongside one or more compact models (Rg in the range 

21-24Å).     

Figure 7. Initial Model based analysis of apo:PDZ1-2 and RRESEI:PDZ1-2 SAXS data. 

 

Scattering data are plotted as Log(I) versus momentum transfer with the projected data in green and 

calculated fitted curves shown in blue. The extrapolation of data to infinite dilution for apo:PDZ1-2 

and RRESEI:PDZ1-2 recorded at the DESY synchrotron in June ’15 (see supplementary Table 2) are 

shown in (a) and (b) respectively, with high concentration data shown in red.  (c) and (d) show the 

Ensemble model analysis fit (Bernado et al, 2007), with the selected model histogram in (e) and (f): 

Population is plotted on the ordinate and Rg on the abscissa, black points are pool models and red 

points models selected from the pool, with error bars extracted from 20 duplicate runs. (g) and (h) 

show monomer-oligomer refinements (Petoukhov et al, 2012) in each case an extended monomer 

(Figure 4(a)1e) is refined alongside the oligomer shown as an inset.    
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EOM analysis at fixed concentrations (≈0.72 and 0.35mM) for the Apo:PDZ1-2 gave good agreement 

over the mid-range of data (Χ2 values for the concentrated data ~5). However the EOM histograms 

gave bifurcated distributions of models with different weights of the two peaks for different 

concentrations. The minor peak at Rg 22.5Å shown for the Apo extrapolated data histogram (Figure 

7(e)) is increased at the expense of the major peak around 24Å. In the case of the RRESEI:PDZ1-2 at 

fixed concentrations (≈0.72 and 0.35mM) the agreement obtained with the data by EOM was very 

poor (Χ2 values for the 0.72mM data > 999), with large differences at both low and high q. The model 

histograms gave a single broad peak at each concentration, but the peak was skewed toward higher 

Rg values for the data at higher concentration.   

Construction of Oligomer models for SAXS fitting.  

 

Oligomer models were constructed from combinations of a known conformation of PDZ1-2 and 

known inter-molecular interfaces derived from X-ray crystal structures. All of the PDZ1 and PDZ2 

domains in both the 3gsl and 3zrt crystal structures take part in the same PDZ1:PDZ2 heterodimeric 

interaction shown in Supplementary Figure S2(a). The αB helix adjacent to the unoccupied peptide 

binding cleft of each PDZ2 domain associates with the βD-βE loop from PDZ1. The significance of this 

interaction is shown by the fact that the 3zrt structure can be solved by molecular replacement using 

an ensemble made from the two PDZ1:PDZ2 heterodimers present in the asymmetric unit of 3gsl: 

Using the CCP4 program PHASER (Mccoy et al, 2007) and the deposited Crystallographic data a Log 

Likelihood gain of 1337 was obtained for 4 copies of the ensemble: The Log Likelihood gain value 

may be enhanced by the Non-crystallographic symmetry implied by the presence of multiple copies 

of the heterodimer, but it is much greater than the threshold of 8 which indicates a correct solution. 

Therefore this αB(PDZ2):βD-βE(PDZ1) interface was used as an oligomeric contact. One obvious 

oligomer is the double dimer of which there are 2 copies in the asymmetric unit of 3zrt:PDZ1-2. 

Both PDZ1-2 crystal structures reported were found to have an intra-molecular contact formed 

between the βB-βC loop of PDZ1 and the αA helix of PDZ2. A similar inter-molecular contact was 

found in the 3gsl structure with the αA helix of PDZ2 forming a contact with the βB-βC loop of PDZ1 

(in 3gsl a Cα-Cα distance of 5.3Å is obtained between Ala 199 in chain A and Asp 90 of chain B after 

the application of the symmetry operation 1-x, ½+y,-z). This αA(PDZ2): βB-βC(PDZ1) crystal contact 

(shown in Supplementary Figure S2(b)), was also used as an oligomeric contact. On combining the 

αA(PDZ2): βB-βC(PDZ1) interaction with the 3zrt-like conformation of PDZ1-2 it was clear that a 

trimeric complex could also form.   
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Initial modelling of apo:PDZ1-2 and RRESEI:PDZ1-2 SAXS curves projected to zero concentration was 

undertaken using these models. Monomer/oligomer fractions were refined using the ATSAS program 

SASREFMX  (Petoukhov et al, 2012) and encouraging results were obtained for both Apo:PDZ1-2 and 

RRESEI:PDZ1-2 curves projected to zero concentration (Figure 7(g,h)). In the Apo:PDZ1-2 case the 

combination of  3zrt:PDZ1-2  along with a dimer of the same (similar to one half of the asymmetric 

unit of the 3zrt:PDZ1-2 crystal structure, Figure 7(g) inset) was effective in SAXS curve fitting at low-

medium resolution (Figure 7(g)) and gave Χ2 values of ≈16. In the case of RRESEI:PDZ1-2 the 

3zrt:PDZ1-2 conformation plus a trimer of the same (Figure 7(h) inset) was similarly effective (Χ2 

values of ≈28, Figure 7(h)).  The SASREFMX analysis also provided a refined model for a trimer of 

RRESEI:PDZ1-2. The application of this simple oligomer model was also more effective in fitting the 

RRESEI:PDZ1-2 curves at fixed concentrations giving a marked improvement in agreement (Χ2 values 

≈60 and 30 for 0.72 and 0.36mM scattering curves respectively) over the previous EOM based 

analysis. Using the dimer interface seen in 3zrt:PDZ1-2 along with the trimer determined by 

SAXREFMX allows the generation of extended oligomers.  It was found that a trimeric oligomer of 

extended PDZ1-2 could interact with a copy of itself through the formation of a dimer-of-trimers, 

with a local interface equivalent to the double dimer found in the 3zrt structure. These types of 

interactions could then be propagated to form more extended oligomers including the formation of 

a trimer of trimers with 3-fold screw-rotational symmetry. Further combinations of these trimers 

indicated that extended arrays could be formed, including linear and branched arrays. The inclusion 

of these types of oligomers in SAXS fitting of RRESEI + PDZ1-2 data at fixed concentrations using the 

ATSAS program OLIGOMER (Franke et al, 2017; Konarev et al, 2003) again improved the fit of the 

data. 

Assignment of the I213 Spacegroup to the packing arrangement of the PDZ1-2 oligomers 

 

Exploring the structures formed by the association of trimers of PDZ1-2 revealed the presence of 

parallel 3-fold rotation and 31 screw axes and, separately, parallel 2-fold rotation axes each in 

orthogonal directions. These symmetry elements are present in multiple directions only in cubic 

Space Groups (Numbers 195 to 230 in International Tables for Crystallography volume A (Hahn, 

1983)). From the set of 13 chiral cubic Space Groups those possessing 4 or 41 axes could be 

eliminated, and as the 3-fold axes do not intersect in the extended oligomers, and 2-fold axes are 

present the only possible Spacegroup conforming to the symmetry elements encountered is I213 

(Number 199) (Hahn, 1983). 
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The unique unit cell parameter (a) for the cubic lattice and the position of the PDZ1-2 domain with 

respect to the coordinate origin then required definition.  This was accomplished via generating a 

trimeric arrangement of 3 PDZ1-2 double domains. Firstly a model of the PDZ1-2 double dimer was 

obtained. Domains from the PDZ1-2:RRESEI crystal structure were docked onto the 3zrt:PDZ1-2 

conformation and restrained refinement of this structure against RRESEI:PDZ1-2 SEC-SAXS data was 

carried out using SASREFMX. Inter-domain restraints were obtained from the αB(PDZ2):βD-βE(PDZ1) 

interface in the 3gls:PDZ1-2 crystal structure and monomer + symmetric dimer model was refined. 

The resulting dimer was similar in form to those found in the 3zrt crystal structure but with a slightly 

increased twist of the dimer about the interface perpendicular to the 2-fold axis.  The twofold 

rotational symmetry axis of this dimer was then oriented with reference to a set of mutually 

perpendicular right-handed axes x, y and z such that, the 2-fold axis was in a direction perpendicular 

to the z/y plane and intersecting the x axis. A trimer of dimers can then be generated by rotation 

about the resultant vector of the x, y and z axes. The rotation of the dimer about the 2-fold axis and 

the displacement of the dimer from the z/y plane Δx, were adjusted so that the contact between 

dimers in the trimer was similar to the αA(PDZ2): βB-βC(PDZ1) crystal contact found in 3gsl:PDZ1-2. 

The position of PDZ1-2 was then fixed as one copy within the dimer of trimers and |a| the unit cell 

length could then be defined as 4×(Δx)=148Å. The precision of this process is dependent upon the 

accuracy of the dimer model and the positioning of this model in space. When generating the trimer 

of dimers the interval of rotation about the 2-fold axis was 5O and the interval in Δx was 1Å. Thus the 

imprecision is likely to be dominated by the error in the SASREFMX refinement of the dimer at a 

q(max) of  0.4Å-1 - on this basis the error is estimated to be (2π)/(2×q(max)) ≈ 8Å.   

Using the I213 Spacegroup with cell length |a|=148 Å, alongside the origin determined as described 

above allowed any packing arrangement to be faithfully reproduced based on a single copy of the 

extended PDZ1-2 molecule. The two inter-molecular contacts namely the αB(PDZ2):βD-βE(PDZ1)  

and the αA(PDZ2): βB-βC(PDZ1) are features of this lattice (Supplementary Figure 2(a,b)). For the 

final model the αB(PDZ2):βD-βE(PDZ1) PDZ1:PDZ2 dimer was re-docked into the unit cell in order to 

preserve the fidelity of the interface precisely. Minor side-chain clashes in models were resolved by 

adjusting rotamers in COOT followed by geometrical refinement in REFMAC5.  
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