Abstract
It is well established that lack of physical activity is detrimental to overall health of an individual. Modern day activity trackers enable individuals to monitor their daily activity to meet and maintain targets and to promote activity encouraging behavior. However, the benefits of activity trackers are attenuated over time due to waning adherence. One of the key methods to improve adherence to goals is to motivate individuals to improve on their historic performance metrics. In this work we developed a machine learning model to dynamically adjust the activity target for the forthcoming week that can be realistically achieved by the activity-tracker users. This model prescribes activity target for the forthcoming week. We considered individual user-specific personal, social, and environmental factors, daily step count through the current week (7 days). In addition, we computed an entropy measure that characterizes the pattern of daily step count for the current week. Data for training the machine learning model was collected from 30 participants over a duration of 9 weeks. The model predicted target daily count with mean absolute error of 1545 steps. The proposed work can be used to set personalized goals in accordance with the individual’s level of activity and thereby improving adherence to fitness tracker.