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Highlights 

• Preference-based decisions are subjective and require self-reflection 

• Neural responses to heartbeats interact with subjective value encoding in vmPFC  

• This interaction predicts choice precision 

• The influence of neural responses to heartbeats is specific to subjective decisions 
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Summary 

Forrest Gump or Matrix? Choosing which movie you prefer is a subjective 

decision that entails self-reflection, a feature unaccounted for by known neural 

mechanisms of valuation and choice. Here, we show that subjective valuation is 

functionally coupled to the neural circuitry monitoring physiological variables, i.e. 

the simplest biological form of self-reflection. Human participants chose which 

movie they preferred, or performed a control objective discrimination that did not 

require self-reflection. Using magnetoencephalograpghy, we measured heartbeat-

evoked responses (HERs) before option presentation, and retrieved the decision 

network during choice. In subjective preference-based decisions only, HERs 

modulated the encoding of chosen value, in ventro-medial prefrontal cortex, and 

this neural interaction increased choice precision. Results could not be trivially 

explained by changes in cardiac activity or in arousal. The neural monitoring of 

physiological variables thus supports subjective valuation based on self-reflection 

and improves the consistency of decisions based on subjective values.  
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Introduction 
 

Do you prefer Forrest Gump or Matrix? The decision is subjective: only you 

know which movie you like best. The subjective values used in preference-based 

decision making are internally generated, intrinsically private, and entail self-

reflection. In contrast, the evidence required to decide which of the two words 

‘listen’ and ‘look’ has more characters is publicly available to any reader of this 

article. Given that a 'ground truth' exists – six letters in 'listen', four in 'look', this 

perceptual decision can be operationally defined as objective. The comparison 

between subjective preference-based and objective perceptual decisions revealed 

that the ventro-medial prefrontal cortex (vmPFC) is particularly engaged when 

comparing two options based on their subjective values1–3. However, subjective 

values have been considered so far as quantities already present in the 

environment, similar to sensory evidence4. Current approaches thus leave 

unspecified the biological mechanisms supporting the self-reflection intrinsic to the 

assignment of subjective values to different options. 

 

 The self-reflection required for preference-based decisions might 

derive from the simplest biological implementation of self-reflection, i.e., the 

monitoring of one’s current physiological state5–9 required to decide which behavior 

is best suited to restore homeostatic balance and ensure the integrity of the living 

organism. In other words, the organism takes into account its internal state to 

assign a value to a given option4,10– and might do so even for subjective choices 

that have no immediate physiological consequences. The neural response reflecting 

the constant and automatic cortical monitoring of heartbeats, also known as the 
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heartbeat-evoked response (HER)11,12, is related to subjective, self-related cognitive 

processes in vmPFC13–15. HERs in vmPFC are thus a likely candidate neural 

mechanism underlying the self-reflection required for subjective valuation. We thus 

hypothesized that fluctuations in HERs should affect valuation in subjective 

preference-based decisions, but not in decisions such as perceptual 

discriminations, based on objective evidence publicly available in the outside world. 

 

We asked participants to perform either a subjective, preference-based 

choice, or a control, objective perceptual discrimination, between two visually 

presented movie titles (Fig. 1), while their neural and cardiac activity were measured 

with magnetoencephalograhy (MEG) and electrocardiography (ECG), respectively. 

Each trial began with a symbol instructing participants which type of decision to 

perform. In subjective preference trials, participants selected the movie they 

preferred, while in objective perceptual discrimination trials they had to indicate 

which movie title was written with the highest contrast. We measured HERs during 

the instruction period, i.e. before option presentation. According to our hypothesis, 

we found that HERs are differently involved in the preparation to subjective and 

objective decisions. In addition, HERs influenced the precision of the neural 

encoding of subjective value and improved choice consistency in preference-based 

decisions, but they did not impact the objective, perceptual decisions.   
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Results  

 

Behavioral results  

Participants were asked to choose between two simultaneously presented 

movie titles according either to their subjective preferences or to the visual contrast 

of movie titles, as indicated by trial-by-trial instructions presented before the 

alternatives (Fig. 1A). Decision difficulty, operationalized as the difference between 

the two options (difference between likeability ratings measured one day before the 

MEG session in the preference task (Supplementary Fig.1), difference between 

contrasts in the perceptual task), had the expected impact on behavior in both 

tasks. Accuracy increased and reaction times decreased for easier decisions (Fig. 

1C; preference task, one-way repeated measure ANOVA, main effect of difficulty: 

accuracy, F(3,60) = 99.25, p < 10-15; RT, F(3,60) = 41.14, p < 10-13 ;  perceptual task, 

main effect of difficulty: accuracy, F(3,60) = 280.2, p < 10-15; RT, F(3,60) = 87.67, p < 10-

15). Preference and perceptual decisions were matched in accuracy (two-way 

repeated measures ANOVA, main effect of task on accuracy, F(1,20) = 0.38, p = 0.55, 

interaction between task and difficulty, F(3,60) = 2.53, p = 0.07). Preference-based 

decisions were generally slower (two-way repeated measures ANOVA, main effect 

of task, RT, F(1,20) = 57.64, p < 10-6) and reaction times decreased less rapidly for 

easier decisions (interaction effect between task and difficulty, F(3,60) = 4.08, p = 

0.01). Participants only used task-relevant information (subjective preference value 

or objective contrast) to reach their decision, since non-relevant information could 

not predict choice (Fig. 1D; Supplementary Table 1).   
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Fig. 1. Experimental design and behavioral results. A, Trial time-course. After a fixation 

period of variable duration, a symbol (square or diamond) instructed participants about the 

type of decision they had to perform on the upcoming movie titles, a subjective preference-

based choice or an objective perceptual discrimination task. Decision type varied on a trial-

by-trial basis. The two movie titles then appeared above and below fixation and remained 

on screen until response or until 3 seconds had elapsed. B, Rationale for data analysis. 

Left, heartbeat-evoked responses (HERs) were computed during the instruction period, 

before option presentation, by locking MEG activity to the T-waves of the 

electrocardiogram. Right, response-locked MEG activity during choice was modeled on a 

trial-by-trial basis with a GLM to isolate the spatio-temporal patterns of neural activity 

encoding value. The central question is whether HERs before option presentation and value 

encoding interact. C, Behavioral results. In both tasks accuracy increased (F(3,60) = 99.25, 

p < 10-15) and response times decreased (F(3,60) = 41.14, p < 10-13) for easier choices (i.e. 

larger difference in subjective value for preference-based decisions, or difference in 

contrast for perceptual ones). D, Only task-relevant information significantly contributed to 

choice in both preference-based and perceptual decisions as estimated by logistic 

regression (two-tailed t-test against zero). Each dot represents one participant. **p<0.01.  
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Neural responses to heartbeats are larger when preparing for preference-

based decisions  

Because preference-based choices are intrinsically subjective and require 

self-reflection, we hypothesized that HERs would be larger when preparing for 

subjective, preference-based decisions than when preparing for objective, 

perceptual ones. We found that HERs during the instruction period, before option 

presentation, were indeed larger when participants prepared for preference-based 

decisions than for perceptual ones (Fig. 2A, 2B; non-parametric clustering, 201-262 

ms after T-wave, sum(t) = 1789, Monte Carlo cluster level p = 0.037). The cortical 

regions that mostly contributed to this effect (Fig. 2C, Table 1) were localized in 

right and left anterior vmPFC (areas 11m and 14 bilaterally; cluster peak at MNI 

coordinates, [1 57 -21] and [-3 47 -6]), in the right post-central complex ([32 -22 56]) 

and right supramarginal gyrus ([41 -33 43]).  

 

The HER difference between subjective preference-based trials and objective 

perceptual discrimination trials was not accompanied by any difference in ECG 

activity (Supplementary Table 2), in cardiac parameters (inter-beat intervals, inter-

beat intervals variability, stroke volume) or arousal indices (alpha power and pupil 

diameter) measured during the instruction period (Supplementary Table 3). 

Importantly, the difference was time-locked to heartbeats (Monte-Carlo p=0.026. 

see Methods for details).  

 

The subjective value of the chosen option is encoded in medial prefrontal 

cortices in preference-based decisions 
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We then identified when and where subjective value was encoded during 

preference-based choice. First, we modeled single trial response-locked neural 

activity at the sensor level using a GLM (GLM1a, see Methods), using as regressors 

the subjective values of the chosen (ChosenSV) and unchosen (UnchosenSV) options, 

as well as the response button used. Neural activity over frontal sensors encoded 

the subjective value of the chosen option in two neighboring time-windows (ßChosenSV, 

first cluster: -580 to -370 ms before response, sum(t)=-7613, Monte Carlo p = 

0.004. Second cluster: -336 to -197 ms before response, sum(t) = -4405, Monte 

Carlo p= 0.033; Fig. 2D and Fig. 2E). No cluster of neural activity significantly 

encoded the subjective value of the unchosen option. Motor preparation was 

encoded later in time in two posterior-parietal clusters of opposite polarities (ßButton 

Press, negative cluster: -287 to -28 ms before response, sum(t) = -10918, Monte 

Carlo p = 0.003; positive cluster: -373 to -196 ms before response, sum(t) = 5848, 

Monte Carlo p = 0.02).  

To identify the cortical regions contributing to the encoding of subjective 

value at sensor-level, we used the same model (GLM1a) to predict source-

reconstructed activity averaged in the time-window identified at sensor level (-580 

to -197 ms before response). A network of medial regions comprising right posterior 

vmPFC (area 32 and 24, cluster peak at MNI coordinates: [7 40 0]), right dorso-

medial prefrontal cortex (dmPFC, area 8m, [5 30 40]), bilateral occipital poles ([6 -77 

11], [-1 -85 16]) and mid-posterior insula ( [-34 -27 17]) encoded the subjective value 

of the chosen option (Fig. 2F; Supplementary Table 4).   
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Fig. 2. HERs and subjective value encoding. A, Topography of the significant HER 

difference between preference-based and perceptual decisions during the instruction 

period (201-262 ms after T-wave, cluster Monte Carlo p = 0.037). B, Time-course of HER (± 

SEM) for preference-based and perceptual decisions in the cluster highlighted in white in A. 

The portion of the signal (50 ms after T-wave) still potentially contaminated by the cardiac 

artifact appears in lighter color. The black bar indicates the significant time-window. C, 

Brain regions mostly contributing to the HER difference between preference-based and 

perceptual decisions (at least 20 contiguous vertices with uncorrected p < 0.005). D, 

Topography of the significant encoding of the chosen option subjective value (-580 to -197 

ms before response) during choice in preference-based trials. E, Time-course (± SEM) of 

the GLM parameter estimate for the chosen option subjective value in the cluster 

highlighted in white in D. Black bars indicate significant time-windows. F, Brain regions 

mostly contributing to the encoding of the subjective value of the chosen option (at least 20 

contiguous vertices with uncorrected p < 0.005). *p<0.05, **p<0.01.  
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Table 1. HER difference between preference-based and perceptual decisions. MNI 

coordinates correspond to the voxel with maximal t-value.  

 

HER amplitude modulates trial-by-trial subjective value encoding in right 

vmPFC 

We thus show that two different sub-regions of vmPFC were involved at 

different moments in a trial: during the instruction period, HERs differed when 

participants prepared for preference-based vs. perceptual decisions in left and right 

anterior vmPFC, and during the choice period, subjective value was encoded in 

right posterior vmPFC. We then addressed our main question: does the amplitude 

of neural responses to heartbeats during the instruction period affect the encoding 

of subjective value during choice in vmPFC (Fig. 1B)?  

We first focused on right vmPFC, which shows both a differential HER during 

instructions anteriorly and a parametric encoding of subjective value during choice 

posteriorly. For each participant, we median-split preference-based choice trials 

according to HER amplitude in anterior r-vmPFC during instruction period. We then 

determined the strength of subjective value encoding during choice in posterior r-

vmPFC separately for trials with small vs. large HERs, by regressing posterior r-

vmPFC activity against the subjective value of the chosen option. Subjective value 

encoding was significantly modulated by HERs (Fig. 3A), with greater encoding for 

Peak t AAL atlas label  Peak t MNI coordinates (mm) t-value 

R Gyrus Rectus  [1 57 -21] 4.68 

L medial orbitofrontal  [-3 47 -6] 3.76 

R Post central complex [32 -22 56] 5.57 

R supramarginal gyrus [41 -33 43] 3.98 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    11 

large HER trials compared to small HER trials (two-tailed paired t-test on ßChosenSV in 

large vs. small HER trials, t(20) = 2.52, p = 0.02). This effect was confined to the right 

hemisphere: HER amplitude during instruction presentation in left anterior vmPFC 

did not influence subjective value encoding in right posterior vmPFC during choice 

(median split of trials according to HERs amplitude in left anterior vmPFC, 

comparison of ßChosenSV in right vmPFC, two-tailed paired t-test, t(20) = 0.83, p = 

0.42, BF = 0.40). Importantly, HER amplitude did not vary with pupil diameter or 

alpha power during choice (Supplementary Table 5), indicating that strength 

encoding is not driven by an overall change in brain state. In addition, the influence 

of HER amplitude was specific to value encoding since it did not affect the visual 

responses evoked by option presentation (Supplementary Table 5).  
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Fig. 3. The interaction between HER and value encoding accounts for inter-individual 

choice consistency and trial-by-trial intra-individual choice precision. A, Parameter 

estimates for the encoding of the subjective value of the chosen option in posterior r-

vmPFC during choice significantly differ in trials with large vs. small HERs in anterior r-

vmPFC during instructions (p = 0.02). B, Activity in posterior r-vmPFC depends not only on 

the chosen option subjective value, but also on the HER during instructions and on the 

interaction between HER and value. C, The magnitude of the interaction between HER and 

value encoding positively predicts inter-individual variability in choice consistency D, 

Participants’ choices were separately modeled according to the trial-by-trial neural 

interaction between HER (in anterior r-vmPFC) and subjective value encoding (in posterior 

r-vmPFC). Lines represent model fit, dots participants’ behavior. Error bars represent SEM. 

E, Parameters estimates for the psychometric functions in D show a steeper slope for trials 

with large interaction between HER and value-related vmPFC activity (p = 0.037). Decision 

criterion is unaffected. *p<0.05, **p<0.01.  
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The interaction between HER amplitude and subjective value encoding in 

right vmPFC was further tested using a full parametric approach. Here (GLM2), we 

predicted the activity of posterior r-vmPFC during choice from the subjective value 

of the chosen option, the HER amplitude in anterior r-vmPFC during instruction 

period and the interaction between these two terms (Fig. 3B). Since the posterior 

vmPFC region of interest was defined based on its encoding of the chosen value, 

the parameter estimate for chosen value was, as expected, large (ßChosenSV = -0.06 ± 

0.02, two-tailed t-test against 0, t(20) = -3.37, p = 0.003). Activity in posterior vmPFC 

was also predicted by the amplitude of HERs occurring about 1.5 s earlier, during 

the instruction period, independently from the chosen value (ßHER = 0.04 ± 0.02, 

two-tailed t-test against 0, t(20)= 2.13, p = 0.046), and importantly by the interaction 

between HERs and chosen value (ßHER* ChosenSV = -0.05 ± 0.02, two-tailed t-test 

against 0, t(20)= -2.41, p = 0.025). Both the median-split analysis and the parametric 

model thus reveal a significant interaction between the amplitude of HERs during 

instruction period and the neural encoding of subjective value during choice.  

 

We then verified that the effect on the neural encoding of subjective value 

was specific to HER amplitude, and not due to an overall baseline shift in anterior r-

vmPFC during the instruction period. We ran an alternative model (GLM3) in which 

the activity in posterior r-vmPFC was predicted from the subjective value of the 

chosen option, the activity in anterior r-vmPFC averaged during the whole 

instruction period, i.e. activity not time-locked to heartbeats, and the interaction 

between the two terms. This analysis revealed that while the subjective value of the 

chosen option still significantly predicted the activity of posterior r-vmPFC (ßChosenSV 
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= -0.05 ± 0.02, two-tailed t-test against 0, t(20) = -3.27, p = 0.004), the other two 

terms did not (activity in anterior r-vmPFC averaged during instruction period: ßBL 

vmPFC = 0.006 ± 0.03, two-tailed t-test against 0, t(20) = 0.22, p = 0.83, BF = 0.25; 

interaction: ßBL vmPFC* ChosenSV -0.03 ± 0.02, two-tailed t-test against 0, t(20) = -1.55, p 

= 0.14, BF = 1.14). The encoding of subjective value is thus specifically modulated 

by HER amplitude in anterior r-vmPFC and not by an overall baseline shift unrelated 

to heartbeats in the same region.  

The functional coupling between HERs and subjective value encoding was 

also region specific: HER amplitude in anterior r-vmPFC did not modulate the 

strength of value encoding in any other value-related regions (dmPFC, occipital 

poles and posterior insula; all p ≥ 0.13, all BF ≤ 0.81; Supplementary Table 6). 

Conversely, HERs outside anterior r-vmPFC did not significantly interact with value 

encoding in posterior r-vmPFC. Splitting trials based on the amplitude in the two 

other cortical regions showing differential heartbeats-evoked responses (Fig. 2C) 

showed no significant modulation of value encoding in right posterior vmPFC (post-

central complex: two-tailed paired t-test, t(20)= -1.41, p = 0.17, BF = 0.90; right 

supramarginal gyrus: two-tailed paired t-test, t(20)= -1.96, p = 0.06, BF = 2.41).  

 

 

The interaction between HER and value encoding affects choice consistency 

To which extent does the interaction between HER and value encoding in 

vmPFC influence behavior? We first tested whether the interaction between HER 

and value encoding relates to inter-individual differences in choice consistency, i.e. 

whether participants selected the movie to which they had attributed the greatest 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    15 

likeability rating the day before. Given the overall high performance in preference-

based decisions, which may reduce our ability to detect significant relationships, we 

computed mean choice consistency using the top-50% most difficult trials (i.e. trials 

above median difficulty in each participant). We regressed the model parameter of 

the interaction between HER and value encoding (ßHER*ChosenSV obtained from GLM2) 

against mean choice consistency across participants. The larger the interaction 

between HER and value encoding, the more consistent were participants in their 

choices (ßrobust = 0.41, R2 = 0.22, t(19) = 2.29, p = 0.03; Fig. 3C). In other words, 22% 

of inter-individual difference in behavioral consistency is explained by the 

magnitude of the interaction between HER and value encoding. This correlation with 

behavior was specific to the interaction parameter: inter-individual differences in 

choice consistency could not be predicted from the model parameter estimate of 

HER (ßHER from GLM2; ßrobust = 0.02, R2 = 4*10-4, t(19) = 0.09, p = 0.93, BF = 0.39), 

nor from the parameter estimate of value  (ßChosenSV from GLM2; ßrobust = -0.19, R2 = 

0.04, t(19) = -0.88, p = 0.39, BF = 0.52). None of the personality traits tested nor 

interoceptive ability, assessed with the heartbeat counting task, significantly co-

varied with the interaction between HER and subjective value encoding 

(Supplementary Table 7).  

 

So far, results are based on parameter estimates computed across trials for a 

given participant. To assess within-participant trial-by-trial influence of the 

interaction between HERs and subjective value encoding on behavior, we 

computed the z-scored product of the HER amplitude in anterior r-vmPFC during 

the instruction period and the value-related activity in posterior r-vmPFC during 
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choice. We then median-split the trials according to this product and modeled 

participants’ choices separately for trials with a small vs. large interaction (Fig. 3D). 

When the interaction was large psychometric curves featured a steeper slope, 

corresponding to an increased choice precision (two-tailed paired t-test, t(20)= -2.24, 

p = 0.037; after removal of the unique outlier with a slope estimate exceeding 3 SD 

from population mean, t(19) = -3.30, p = 0.003; Fig. 3E), while decision criterion was 

not affected (two-tailed paired t-test, t(20)= -1.20, p = 0.25, BF = 0.64; after outlier 

removal t(19) =-0.96, p = 0.35, BF = 0.46; Fig. 3E).  

 To control for the specificity of the interaction, we estimated the 

psychometric function on trials median-split on HER amplitude alone but found no 

difference in choice precision (two-tailed paired t-test, t(20)= 0.41, p = 0.69, BF = 

0.27) nor in criterion (two-tailed paired t-test, t(20)= 0.52, p = 0.61, BF = 0.29). 

Similarly, median-splitting trials on value-related posterior r-vmPFC activity alone 

revealed no difference in the psychometric curve (two-tailed paired t-test, slope, 

t(20)= 0.21, p = 0.84, BF = 0.25; criterion: t(20)= -0.57, p = 0.58, BF = 0.30). Therefore, 

our results indicate that trial-by-trial choice precision is specifically modulated by 

the interaction between HERs in anterior r-vmPFC and value-related activity in 

posterior r-vmPFC. 

 

Altogether, these results indicate that the interaction between HER amplitude 

and subjective value encoding accounts both for within-subject inter-trial variability, 

and for inter-individual differences in preference-based choice consistency.   
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HER influence is specific to preference-based choices 

Finally, we tested whether the influence of HER was specific to subjective 

value or whether it is a more general mechanism modulating all types of decision-

relevant evidence. To this aim, we analyzed perceptual discrimination trials using 

the same approach as for preference-based trials. First, we modeled the single trial 

response-locked MEG sensor-level data using a GLM (GLM1b) with the parameters 

accounting for choice in the perceptual task (i.e. contrast of the chosen option – 

ChosenCtrs – and the contrast of the unchosen option – UnchosenCtrs), as well as 

response button. We then identified the time windows where the contrast of the 

chosen option, unchosen option and response button were encoded 

(Supplementary Table 8) and determined the cortical regions contributing to the 

encoding of the contrast of the chosen option (Supplementary Fig. 2, 

Supplementary Table 9). Finally, we median-split perceptual trials according to the 

amplitude of HERs in anterior r-vmPFC. The encoding strength of the contrast of 

the chosen option did not depend on heart-evoked responses amplitude in any of 

the contrast-encoding regions (all p ≥ 0.26, BF ≤ 0.62; Supplementary Table 10). 

The results thus indicate that HER amplitude in r-vmPFC specifically influences the 

cortical representation of subjective value.	  
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Discussion   

We show that preference-based choice consistency depends on the 

influence that neural responses to heartbeats exert on the neural representation of 

subjective value in vmPFC. Preparing for the subjective preference-based decisions 

led to larger responses to heartbeats than preparing for the objective discrimination 

task, in vmPFC and post-central gyrus, two regions known to respond to heartbeats 

12–15. HERs during task preparation influenced the neural representation of decisional 

evidence in the subjective task only. The interaction between HERs and subjective 

value encoding was specific to vmPFC, showing that this region - known to play a 

role in both valuation16–18 and self-related cognition19,20 - integrates those two 

processes. HERs' multiplicative influence on subjective value benefitted behavior, 

improving choice precision at the single trial level, and predicted inter-individual 

variability in choice consistency. HER influence could not be trivially explained by 

changes in cardiac parameters (heart rate, heart rate variability, ECG, stroke 

volume) or changes in arousal (pupil diameter, alpha power), indicating that the HER 

effect corresponds to change in the quality of the neural monitoring in cardiac 

inputs, rather than to changes in cardiac inputs or in overall brain state. Our results 

thus differ from previous observations in risky decisions, where changes in 

peripheral bodily signals predicted behavioral performance21. Altogether, our results 

indicate that the self-reflection intrinsic to preference-based decisions involves the 

neural read-out of a physiological variable and its integration in the valuation 

process.  
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We successfully replicated with MEG the cortical valuation network 

described in the fMRI literature 3,22,23, including dmPFC and vmPFC, during the 

choice period. These findings are interesting per se, as data on the temporal course 

of value-based choices in the human prefrontal cortex remain scarce 24–26. Here, we 

find that the chosen value is robustly encoded in the valuation network from 600 ms 

to 200 ms before motor response, with a temporal (but not spatial) overlap with 

motor preparation. Note that we did not find a robust encoding of the unchosen 

value, in line with electrophysiological recordings in the monkey orbitofrontal cortex 

where the encoding of the chosen value dominates 25,27–29. The encoding of the 

chosen value interacted with HER specifically in vmPFC. In the objective 

discrimination task, the contrast of the chosen option was encoded, among other 

regions, in posterior parietal cortex, consistent with monkey electrophysiology 

literature30,31. Importantly, HERs did not exert any influence on the neural encoding 

of objective perceptual evidence. This result might seem at odds with previously 

reported effects of HERs on sensory evidence during visual detection at threshold15. 

As opposed to the perceptual discrimination task used here, visual detection at 

threshold is intrinsically subjective, as participants are asked to report their 

fluctuating experience in response to physically and objectively constant stimuli 32,33.  

 

What is the nature of the interaction between HERs and value encoding in 

vmPFC? Because fluctuations in HERs occurred during task preparation, before 

option presentation, their influence on value encoding might generally pertain to the 

interaction between ongoing activity (during task preparation) and stimulus-evoked 

activity (in response to option presentation). However, the interaction with value 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    20 

encoding was specific to the transient neural activity evoked by heartbeats; no 

interaction between overall ongoing activity in vmPFC and value encoding could be 

found. In addition, HERs modulated value encoding in a multiplicative manner. Our 

results thus differ from a previously reported vmPFC baseline-shift additive effect in 

pleasantness ratings 34. A more detailed mechanistic account of how the response 

to heartbeat influences the subjective valuation process taking place about 1.5 

second later remains to be established. Still, our results offer a new perspective on 

the unspecified 'neural noise' driving fluctuations in choice consistency35–37: in 

subjective preference-based decisions, choice consistency is specifically affected 

by the interaction between neural responses to heartbeats and neural evaluation. 

 

Decisions on primary goods such as food take into account internal state to 

select options that preserve the integrity of the organism that needs to be fed and 

protected. We show here that the subjective valuation of cultural goods, that rely on 

the same cortical valuation network as employed for primary goods 36–39, has 

inherited a functional link with the central monitoring of physiological variables. 

Even when choosing between cultural goods that do not fulfill any immediate basic 

need, the neural monitoring of heartbeats supports self-reflection underlying 

evaluation, contributes to the precision of subjective decisions and fosters the 

stable expression of long-lasting preferences that define, at least in part, our 

identity.  
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Methods 

 

Participants  

24 right-handed volunteers with normal or corrected-to-normal vision took 

part in the study after having given written informed consent. They received 

monetary compensation for their participation. The ethics committee CPP Ile de 

France III approved all experimental procedures. Three subjects were excluded 

from further analysis: one subject for too low overall performance (74%, 2 standard 

deviations below the mean = 87.6%), one subject was excluded for excessive 

number of artifacts (29.7% of trials, above 2 standard deviations, mean = 7%), one 

subject was excluded because the ICA correction of the cardiac artifact was not 

successful.  

21 subjects were thus retained for all subsequent analyses (9 male; mean 

age: 23.57 ± 2.4 years; mean ± SD).  

 

Tasks and procedure  

Participants came on two consecutive days to the lab (mean elapsed time 

between the two sessions 22.28 ± 3.55 hours) to complete two experimental 

sessions. The first session was a likability rating on movies (behavior only), from 

which we drew the stimuli used in the second experimental session, during which 

brain activity was recorded with magnetoencephalography (MEG).  

Rating session. We selected 540 popular movies form the Web (allocine.fr) 

whose title maximal length was 16 characters (spaces included). DVD covers and 

titles of the pre-selected movies were displayed one by one on a computer screen 
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and subjects had to indicate whether they had previously watched the currently 

displayed movie by pressing a 'yes' or 'no' key on a computer keyboard, without 

any time constraint (Supplementary Fig. 1A). Participants were then presented with 

the list of movie titles they had previously watched and asked to name the 2 movies 

they liked the most and the two they liked the least. Participants were explicitly 

instructed to use these 4 movies as reference points (the extremes of the rating 

scale) to rate all other movies. Last, the titles and the covers of the movies 

belonging to the list were displayed one by one at the center of the computer 

screen in random order. Participants assigned to each movie a likability rating by 

displacing (with arrow keys) a cursor on a 21-points Likert scale and validated their 

choice with an additional button press (Supplementary Fig. 1B). Likability ratings 

were self-paced and the starting position of the cursor was randomized at every 

trial.  

Stimuli. Experimental stimuli consisted of 256 pairs of written movie titles 

drawn from the list of movies that each participant had rated on the first day. Each 

movie title was characterized along two experimental dimensions: its likability rating 

(as provided by the participant) and its contrast. The mean contrast was obtained 

by averaging the luminance value (between 40 and 100; grey background at 190) 

randomly assigned to each character of the title. We manipulated trials difficulty by 

pairing movie titles so that the differences between the two items along the two 

dimensions (i.e., likability and contrast) were parametric and orthogonal. 

Additionally, we controlled that the sum of ratings and the sum of contrast within 

each difficulty level was independent of their difference and evenly distributed. Each 

pair of stimuli was presented twice in the experiment: one per decision type. A 
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given movie title could appear in up to 10 different pairs. The position of the movie 

titles on the screen was pseudo-randomly assigned so that the position of the 

correct option (higher likeability rating or higher contrast) was fully counter-

balanced.  

Experimental task. On the second day, subjects performed a two-alternative 

forced-choice (2AFC) task while brain activity was recorded with MEG. At each trial, 

participants were instructed to perform one of the two decisions types on the pair of 

movie titles (Fig. 1A): either a preference decision, in which they had to indicate the 

item they liked the most, or a perceptual discrimination, in which they had to 

indicate the title written with the higher contrast. Each trial began with a fixation 

period of variable duration (uniformly distributed between 0.8 and 1.2 seconds in 

step of 0.05 s) indicated by a black fixation dot surrounded by a black ring (internal 

dot, 0.20° of visual angle; external black ring, 0.40° of visual angle), starting from 

which participants were required not to blink anymore. Next, the outer ring of the 

fixation turned either into a square or a diamond (0.40° and 0.56° visual angle, 

respectively) indicating which type of decision participants were to perform 

(preference-based or perceptual, counter-balanced across participants), for 1.5 

seconds. Then, the outer shape turned again into a ring and two movie titles 

appeared above and below it (visual angle 1.09°). Options remained on screen until 

response was provided (via button press with the right hand) or until 3 seconds had 

elapsed. After response delivery, movie titles disappeared and the black fixation dot 

surrounded by the black circle remained on screen for 1 more second. The central 

dot turned green and stayed on screen for variable time (uniformly distributed 

between 2.5 and 3 seconds in step of 0.05 s), indicating participants that they were 
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allowed to blink before the beginning of next trial. Each recording session consisted 

of 8 blocks of 64 trials each.  

Prior to the recording session, participants familiarized themselves with the 

experimental task by carrying out 3 training blocks. The first 2 blocks (10 trials each) 

comprised trials of one type only, hence preceded by the same cue symbol. The 

last block contained interleaved trials (n=20), as in the actual recording. The movie 

pairs used during training were not presented again during the recording session.  

Heartbeat counting task. After performing the 8 experimental blocks, we 

assessed participants’ interoceptive abilities by asking them to count their 

heartbeats by focusing on their bodily sensations, while fixating the screen 42. 

Subjects performed six blocks of different durations (30, 45, 60, 80, 100, 120 

seconds) in randomized order. No feedback on performance was provided. Since 

the acquisition of our dataset, this widely used paradigm has been criticized in 

several respects 43–45.  

Questionnaires. Once subjects left the MEG room, they filled 4 questionnaires 

in French: Beck’s Depression Inventory (BDI) 46, Peter’s et al. Delusions Inventory 

(PDI) 47, the Trait Anxiety Inventory (STAI) 48 and the Obsessive-Compulsive 

Inventory (OCI) 49.  

Recordings  

Neural activity was continuously recorded using a MEG system with 102 

magnetometers and 204 planar gradiometers (Elekta Neuromag TRIUX, sampling 

rate 1000 Hz, online low-pass filter at 330 Hz). Cardiac activity was simultaneously 

recorded (BIOPAC Systems, Inc.; sampling frequency 1000 Hz; online filter 0.05-35 

Hz). The electrocardiogram was obtained from 4 electrodes (2 placed in over the left 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    25 

and right clavicles, 2 over left and right supraspinatus muscles 50) and referenced to 

another electrode on the left iliac region of the abdomen, corresponding to four 

vertical derivations. The four horizontal derivations were computed offline by 

subtracting the activity of two adjacent electrodes. Additionally, we measured beat-

to-beat changes in cardiac impedance, to compute the beat-by-beat stroke volume 

(i.e. the volume of blood ejected by the heart at each heartbeat 51). Impedance 

cardiography is a non-invasive technique based on the impedance changes in the 

thorax due to the changes in fluid volume (blood). A very low-intensity (400 μA rms) 

high frequency (12.5 kHz) electric current was injected via two source electrodes: 

the first one was placed on the left side of the neck and the second 30 cm below it 

(roughly on the sixth rib). Two other monitoring electrodes (placed 4 cm apart from 

the source ones: below the source electrode on the neck and above the source 

electrode on the rib cage) measured the voltage across the tissue. To determine left 

ventricular ejection time, aortic valve activity was recorded by placing an a-

magnetic homemade microphone (online band-pass filter 0.05-300 Hz) on the chest 

of the subject.  

Pupil diameter and eye movements were tracked using an eye-tracker device 

(EyeLink 1000, SR Research) and 4 electrodes (2 electrodes placed on the left and 

right temples and 2 electrodes placed above and below participant’s dominant eye).  

 

Cardiac events and parameters  

Cardiac events were detected on the right clavicle-left abdomen ECG 

derivation in all participants. We computed a template of the cardiac cycle, by 

averaging a subset of cardiac cycles, which was then convolved with the ECG time 
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series. R-peaks were identified as peaks of the result of the convolution, normalized 

between 0 and 1, exceeding 0.6. All other cardiac waves were defined with respect 

R-peak. In particular, T-waves were identified as the maximum amplitude occurring 

within 420 milliseconds after the Q-wave. R-peak and T-wave automatic detection 

was visually verified for each participant. 

Inter-beat intervals (IBIs) were defined for each phase of the trial as the 

intervals between two consecutive R-peaks. More specifically, we considered for 

‘fixation’, ‘instruction period’ and ‘response’ phases the two R-peaks around their 

occurrence. IBIs during ‘choice’ were based on the two R-peaks preceding 

response delivery. Inter-beat variability was defined as the standard deviation 

across trials of IBIs in a given trial phase. 

Stroke volume was computed according to the formula 51,52:  

𝑆𝑉 =  𝜌 ×
𝐿!

𝑍𝑜! × 𝐿𝑉𝐸𝑇 ×  
𝑑𝑍

𝑑𝑇(!"#)
 

where 𝜌 is the resistivity of the blood (135 Ohms*cm) 53, 𝐿! is the distance 

between the two source electrodes, 𝑍𝑜!  is the base impedance,  𝐿𝑉𝐸𝑇  is the 

systolic left ventricular ejection time (in seconds), 𝑑𝑍/𝑑𝑇(!"#)  is the largest 

impedance change during systole (Ohms/sec). Note that because we obtained 

stroke volume by injecting a current at 12.5 kHz, rather than the more typical 

frequency of 100 kHz, absolute stroke volumes are systematically underestimated, 

but relative values are preserved. 

 

MEG data preprocessing 

External noise was removed from the continuous data using MaxFilter 

algorithm. Continuous data were then high-pass filtered at 0.5 Hz (4th order 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    27 

Butterworth filter). Trials (defined as epochs ranging from fixation period to 1 

second after response) contaminated by muscle and movement artifacts were 

manually identified and discarded from further analyses (6% of trials on average, 

ranging from 0% to 15%).  

Independent component analysis (ICA) 54, as implemented in FieldTrip 

Toolbox 55 was used to attenuate the cardiac artifact on MEG data. ICA was 

computed on MEG data epoched ±200 ms around the R-peak of the ECG, in data 

segments that were free of artifacts, blinks and saccades above 3 degrees. The 

number of independent components to compute was set to be equal to the rank of 

the MEG data. Mean pairwise phase consistency (PPC) was estimated for each 

independent component56 with the right clavicle-left abdomen ECG derivation signal 

in the frequency band 0-25 Hz. Components (up to 3) that exceeded 3 standard 

deviations from mean PPC were then removed from the continuous data.  

To correct for blinks, 2-seconds segments of data were used to estimate 

blink and eye-movement components. Mean PCC was then computed with respect 

to vertical EOG signal, and components exceeding mean PCC + 3 standard 

deviations were removed from continuous data. The procedure was iterated until no 

component was beyond 3 standard deviations or until 3 components in total were 

removed. Stereotypical blink components were manually selected in two 

participants as the automated procedure failed to identified them.  

ICA-corrected data were then low-pass filtered at 25 Hz (6th order 

Butterworth filter) 

 

Trials selection 
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Trials had to meet the following criteria to be included in all subsequent 

analysis: no movement artifacts, sum of blinking periods less than 20% of total trial 

time, at least one T-peak during instruction period (cf. HERs section), and reaction 

time neither too short (at least 250 ms) nor too long. To identify exceedingly long 

RTs, we binned the trials of each task in 4 difficulty levels based on the difference of 

the two options (i.e., difference in ratings in preference-based choice and difference 

in contrast for the perceptual ones). Within each difficulty level, for correct and error 

trials separately, we excluded the trials with reaction times exceeding the 

participant's mean RT + 2 standard deviations.  

The average number of trials retained per participant was 421.67 ± 43.36 

(mean ± SD). 

 

Heartbeat evoked responses 

Heart-evoked responses were computed on MEG data time-locked to T-

wave occurring during the instruction period. T-waves had to be at minimum 400 

ms distance from the subsequent R-peak. In order to avoid contamination by 

transient visual responses or by preparation to the subsequent visual presentation, 

we only retained T-waves that occurred at least 300 milliseconds after the onset of 

the instruction cue and 350 milliseconds before the onset of options presentation. If 

more than one T-wave occurred in this period, HERs for that trial were averaged. 

HERs were analyzed from T-wave + 50 ms to minimize contamination by the 

residual cardiac artifact 57 after ICA correction. 

We verify that differences in HERs between the two types of decision were 

truly locked to heartbeats, and that a difference of similar magnitude could not arise 
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by locking the data to any time point of the instruction period. To this end, we 

created surrogate timings for heartbeats (within the instruction period), to break the 

temporal relationship between neural data and heartbeats, and computed surrogate 

HERs. We created 500 surrogate heartbeat data set, by permuting the timings of 

the real T-wave between trials belonging to the same decision type (i.e., the timing 

of the T-wave at trial i was randomly assigned to trial j). We then searched for 

surrogate HER differences between trial types using a cluster-based permutation 

test 58 (see below). For each of the 500 iterations, we retained the value of the 

largest cluster statistics (sum(t)) to estimate the distribution of the largest difference 

that could be obtained randomly sampling ongoing neural activity during the same 

instruction period. To assess statistical significance, we compared the cluster 

statistics from the original data against the distribution of surrogate statistics. 

 

Nonparametric statistical testing of MEG data 

HERs difference between preference-based and perceptual trials during 

instruction presentation was tested for statistical significance using cluster-based 

permutation two-tailed t-test 58 as implemented in FieldTrip toolbox 55, on 

magnetometer activity in the time-window 50-300 ms after T-wave. This method 

defines candidate clusters of neural activity based on spatio-temporal adjacency 

exceeding a statistical threshold (p < 0.05) for a given number of neighboring 

sensors (n=3). Each candidate cluster is assigned a cluster-level test statistics 

corresponding to the sum of t values of all samples belonging to the given cluster. 

The null distribution is obtained non-parametrically by randomly shuffling conditions 

labels 10,000 times, computing at each iteration the cluster statistics and saving the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2020. ; https://doi.org/10.1101/776047doi: bioRxiv preprint 

https://doi.org/10.1101/776047
http://creativecommons.org/licenses/by-nc-nd/4.0/


    30 

largest positive and negative t sum. Monte Carlo p value corresponds to the 

proportion of cluster statistics under the null distribution that exceed the original 

cluster-level test statistics. Because the largest chance values are retained to 

construct the null distribution, this method intrinsically corrects for multiple 

comparisons across time and space. Controls analyses involving the clustering 

procedure were performed with the same parameters.  

The significance of beta time-series obtained from GLM analyses at the 

sensor level was obtained using cluster-based permutation two-tailed t-test against 

zero. 

 

Bayes factor  

We used Bayes factors (BF) to quantify the evidence in support of the null 

hypothesis (H0 = no difference between 2 measures). To this aim, we computed the 

maximum log-likelihood of a gaussian model in favor of the alternative hypothesis 

and for the model favoring the null adjusting the effect size to correspond to a p = 

0.05 for our sample size (n = 21 for all analyses except for pupil for which n = 16 

and for 3 ECG derivations for which n=20). Finally, we computed Bayesian 

information criterion and the corresponding Bayes factor. As a summary indication, 

BF < 0.33 provides substantial evidence in favor of the null hypothesis, BF between 

0.33 and 3 does not provide enough evidence for or against the null 59.  

For regression analyses, Bayes Factor was computed using the online 

calculator tool (http://pcl.missouri.edu/bf-reg) based on Liang and colleagues 60. 

Generalized linear model on response-locked single trials  
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To analyze how task-related variables are encoded in neural activity during 

decision, we ran a generalized linear model (GLM) on baseline-corrected (-500 to -

200 ms before instruction presentation) single trial MEG data time-locked to button 

press. We predicted z-scored MEG activity at each time-point and channel using 

task-relevant experimental variables. For preference-based decisions we modeled 

MEG activity as:   

 

𝑀𝐸𝐺!,! =  𝛽! + 𝛽!!!"#$!" +  𝛽!"#!!"#$%& + 𝛽!"##$% !"#$$ (𝐺𝐿𝑀1𝑎) 

 

where t and c represent MEG activity at time-point t at channel c, 𝛽!  is the 

intercept, 𝛽!!!"#$%& are the z-scored ratings of the chosen option, 𝛽!"#!!"#$%& is the 

z-scored rating of the alternative unchosen option and 𝛽!"##$% !"#$$ is a categorical 

variable representing motor response (i.e. top or bottom). Similarly, for perceptual 

decisions we used:   

 

𝑀𝐸𝐺!,! =  𝛽! + 𝛽!!!"#$%&'" +  𝛽!"#!!"#$%&'" + 𝛽!"##$% !"#$$ (𝐺𝐿𝑀1𝑏) 

 

where 𝛽!!!"#$%&'"  and 𝛽!"#!!"#$%&'"  are the z-scored contrast of the chosen and 

unchosen option, respectively.  

This procedure provided us with time series of beta values at each channel 

that could be tested against zero for significance using spatio-temporal clustering 

58. Once significant clusters encoding task-related variables were identified at the 

sensor level, we reconstructed the cortical sources corresponding to the sensor-

level activity averaged within the significant time-window. We modeled source-
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reconstructed neural activity with the same GLMs to identify the cortical areas 

mostly contributing to the significant sensor-level effect.  

Generalized linear model on posterior right vmPFC 

To quantify the influence of HER in anterior r-vmPFC during instructions on 

subjective value encoding during choice, we modeled the activity of posterior r-

vmPFC, encoding subjective value with the following GLM:  

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟– 𝑣𝑚𝑃𝐹𝐶 =  𝛽! + 𝛽!!!"#$!" +  𝛽!"# + 𝛽!"#∗!"#$%&'( (𝐺𝐿𝑀2) 

 

where, 𝛽! is the intercept, 𝛽!!!"#$!" are the z-scored ratings of the chosen option, 

𝛽!"#  is the z-scored activity in the anterior right vmPFC cluster defined by 

comparing HERs in preference-based vs. perceptual choices  and 𝛽!!!"#$!"∗!"# is 

the interaction term obtained by multiplying the z-scored previous predictors.  

To verify that the interaction between subjective value encoding and HER 

amplitude was specifically time-locked to heartbeats and not a general influence of 

baseline activity in anterior r-vmPFC, we ran an alternative model to explain 

posterior r-vmPFC activity:  

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟– 𝑣𝑚𝑃𝐹𝐶 = 𝛽! + 𝛽!!!"#$!" +  𝛽!" !"#$% + 𝛽!" !"#$%∗!!!"!"#$  (𝐺𝐿𝑀3) 

 

where, 𝛽! is the intercept, 𝛽!!!"#$!" are the z-scored ratings of the chosen option, 

𝛽!" !"#$% is the z-scored activity in anterior r-vmPFC during instructions averaged 

across the whole instruction period, not time-locked to heartbeats and 

𝛽!" !"#$%∗!!!"#$%& is the interaction between the two preceding predictors.  
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Note that regressors are not orthogonalized in any of the GLMs. 

 

Anatomical MR acquisition and preprocessing  

An anatomical T1 scan was acquired for each participant on a 3 Tesla Siemens 

TRIO (n = 2) or Siemens PRISMA (n = 20) or Siemens VERIO (n = 2). Cortical 

segmentation was obtained by using automated procedure as implemented in the 

FreeSurfer software package 61. The results were visually inspected and used for 

minimum-norm estimation.  

 

Source reconstruction  

Cortical localization of neural activity was performed with BrainStorm toolbox 

62. After co-registration of individual anatomy and MEG sensors, 15,003 current 

dipoles were estimated using a linear inverse solution from time-series of 

magnetometers and planar gradiometers (weighted minimum-norm, SNR of 3, 

whitening PCA, depth weighting of 0.5) using overlapping-spheres head model. 

Current dipoles were constrained to be normally oriented to cortical surface, based 

on individual anatomy. Source activity was obtained by averaging sensor-level time-

series in the time-windows showing significant effects (difference between HERs 

and beta values different from zero), spatially smoothed (FWHM 6 mm) and 

projected onto standard brain model (ICBM152_T1, 15,003 vertices). Note that 

sources in subcortical regions cannot be retrieved with the reconstruction method 

used here. 

To assess which cortical areas contributed the most to the effects observed 

at the sensor-level, we ran parametric two-tailed t-test and reported all clusters of 
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activity spatially extending more than 20 vertices with individual t-values 

corresponding to p < 0.005 (uncorrected for multiple comparisons). We reported the 

coordinates of vertices with the maximal t value and their anatomical labels 

according to AAL atlas 63. For clusters falling into prefrontal cortices, we reported 

the corresponding areas according to the connectivity-based parcellation 

developed by Neubert and colleagues 64.  

 

Pupil data analysis 

Pupil data that contained blinks (automatically detected with EyeLink 

software and extended before and after by 150 ms), saccades beyond 2 degrees 

and segments in which pupil size changed abruptly (signal temporal derivative 

exceeding 0.3, arbitrary unit) were linearly interpolated. All interpolated portions of 

the data that exceeded 1 second were removed from further analyses. Continuous 

pupil data from each experimental block were then band-pass filtered between 0.01 

and 10 Hz (second order Butterworth) and z-scored. 16 subjects were retained for 

pupil analysis; 5 subjects were excluded due to too low quality of data. Pupil 

analysis was performed in two ways: 1) averaged pupil diameter in the same time 

period used for HER computation (i.e., 300 ms after instruction presentation until 

350 ms before options display) and 2) averaged pupil diameter in the time-window 

spanning 1 second before button press until its execution.  
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Supplementary figures 

 
Supplementary Fig.1. A, During the first behavioral session, participants indicate 

which movies (out of 540) they had watched. B, Likability display for the movies 

participants indicated to have watched.  
 

Supplementary Fig.2. Cortical regions encoding the contrast of the chosen option 

(for peak MNI coordinates see Supplementary Table 9) 257 to 25 ms before 

response in perceptual trials.   
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Supplementary Tables 
 

Supplementary Table1. Logistic regression against choice, for task-

relevant and task-irrelevant stimulus information.  

Regressor 

Preference decisions 

two-tailed t-test against 0 

(uncorrected p) 

Perceptual decisions 

two-tailed t-test against 0 

(uncorrected p) 

ChosenSV 
p = 3.8*10-8, 

t(20) = 8.59 

p = 0.27, 

t(20) = -1.14 

UnchosenSV 
p = 1.46*10-10, 

t(20) = -11.95 

p = 0.45, 

t(20) = 0.78 

ChosenCtrs 
p = 0.62, 

t(20) = -0.50 

p = 1.36*10-11, 

t(20) = 13.65 

UnchosenCtrs 
p = 0.08, 

t(20) = 1.83 

p = 1.05*10-10, 

t(20) = -12.17 

Button Press 
p = 0.07, 

t(20) = -1.88 

p = 0.44, 

t(20) = -0.79 
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Supplementary Table 2. None of the vertical and horizontal ECG 

derivations differ between preference-based and perceptual decisions 

during HER effect (201-262 ms after T-wave).  

ECG 

derivation 

μV 

Mean ± SEM 

preference 

μV 

Mean ± SEM 

perceptual 

Two-tailed 

paired t-test 

(uncorrected p) 

Bayes 

Factor 

Candidate 

cluster 

Vertical 1 
113.23 ± 

32.91 

113.47 ± 

33.41 

t(20) = -0.11, 

p = 0.91 

0.24 

Substantial 
None 

Vertical 2 
47.60 ± 

14.66 

47.40 ± 

14.93 

t(20) = 0.11 

p =0.91 

0.24 

Substantial 
None 

Vertical 3 
203.53 ± 

59.92 

203.88 ± 

60.42 

t(19) = -0.22, 

p = 0.83 

0.25 

Substantial 
None 

Vertical 4 
112.13 ± 

41.56 

112.37 ± 

41.72 

t(20) = -0.14, 

p = 0.89 

0.24 

Substantial 
None 

Horizontal 1 
-65.63 ± 

28.76 

-66.07 ± 

28.80 

t(20) = 0.97, 

p = 0.34 

0.47 

Inconclusive 
None 

Horizontal 2 
155.21± 

54.81 

155.41± 

54.74 

t(19) = -0.38, 

p = 0.71 

0.26 

Substantial 
None 

Horizontal 3 
-91.13 ± 

28.09 

-90.95 ± 

27.98 

t(19) = -0.68, 

p = 0.51 

0.33 

Inconclusive 
None 

Horizontal 4 
1.10 ± 

23.43 

1.10 ± 

23.58 

t(20) = 0.00, 

p = 0.99 

0.24 

Substantial 
None 
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Supplementary Table 3. Cardiac parameters and arousal measures 

during instructions do not differ between preference-based and 

perceptual decisions. 

Measure 
Mean ± SEM 

preference 

Mean ± SEM 

perceptual 

Two-tailed 

paired t-test 

(uncorrected p) 

Bayes 

Factor 

Inter-beat 

interval (ms) 
862.81 ± 28.10 863.49 ± 28.05 

t(20)= -0.55 

p = 0.59 

0.30 

Substantial 

Inter-beat 

variability (ms) 
65.14 ± 5.74 65.24 ± 5.47 

t(20) =-0.07 

p = 0.94 

0.24 

Substantial 

Stroke volume 

(ml) 
39.97 ± 8.11 40.54 ± 8.74 

t(20) = -0.85 

p = 0.40 

0.40 

Inconclusive 

Pupil diameter 

(a.u.) 
-0.075 ± 0.05 -0.073 ± 0.05 

t(15) = -0.08 

p = 0.94 

0.23 

Substantial 

Alpha power 

(fT2/Hz) 
182  ± 22 179 ± 22 

t(20) = 1.17 

p = 0.26 

0.62 

Inconclusive 
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Supplementary Table 4. Cortical regions encoding the subjective value 

of the chosen option. MNI coordinates are reported for the maximum t-

value in the voxel cluster.   

Peak t AAL atlas label Peak t MNI coordinates (mm) t-value 

R anterior cingulate gyrus [7 40 0] 4.52 

R medial frontal gyrus [5 30 40] 3.73 

R calcarine sulcus [6 -77 11] 4.17 

L cuneus [-1 -85 16] 3.85 

L Rolandic operculum [-34 -27 17] 4.48 

 

Supplementary Table 5. Arousal states and physiological parameters do 

not differ between low and high HER amplitude in preference trials 

Measure 
Low HER 

(Mean ± SEM) 

High HER 

(Mean ± SEM) 

Two-tailed t-test 

(uncorrected p) 

Bayes 

Factor 

Pupil diameter (a.u.) during 

option presentation, [-1 0] s 
0.27 ± 0.07 0.24 ± 0.07 

t(15) = 0.57,  

p = 0.58 

0.29 

Substantial 

Pupil diameter (a.u.) during 

value encoding  

[-0.580 -0.197] s 

0.32 ± 0.08 0.29 ± 0.08 
t(15) = 0.57,  

p = 0.58 

0.29 

Substantial 

Alpha power (fT2/Hz) max 

15 channels during option 

presentation, [-1 0] s 

1.24 x 102 ± 

0.14 x 102 

1.25 x 102 ± 

0.13 x 102 

t(20) = -0.42,  

p = 0.68 

0.27 

Substantial 

Alpha power (fT2/Hz) in the 

value encoding cluster  

[-0.580 -0.197] s 

0.56 x 102 ± 

0.03 x 102 

0.56 x 102 ± 

0.03 x 102 

t(20) = -0.71, 

p = 0.48 

0.35 

Inconclusive 

RMS of visual response to 

options (fT) [0-250] ms 
62.8 ± 2.43 62.5 ± 2.40 

t(20) = 0.28 

p = 0.78 

0.25 

Substantial 
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Supplementary Table 6. HER amplitude in anterior r-vmPFC does not 

modulate subjective value encoding in other value-related regions. 

 

Region 

Two-tailed paired t-test  

on ßChosenSV 

HER - vs. HER + 

Bayes Factor 

dmPFC t(20) = -0.89, p = 0.38 
0.43 

Inconclusive 

R occipital t(20) = -0.86, p = 0.40 
0.41 

Inconclusive 

L occipital t(20) =  -1.60, p = 0.13 
0.81 

Inconclusive 

Posterior Insula t(20)= 1.00, p = 0.33 
0.49 

Inconclusive 
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Supplementary Table 7. Robust linear regression of parameter estimate 

ßHER x ChosenSV on personality questionnaires and interoceptive 

accuracy. 

Questionnaire 
Score  

(Mean ± SEM) 

Robust regression 

coefficient, t-value, 

uncorrected p 

Bayes Factor 

BDI 4.67 ± 1.12 
ß = -1 x 10-3, 

t(19) = -0.17, p = 0.87 

0.40 

Inconclusive 

STAI 37.19 ± 1.78 
ß = 2 x 10-3, t(19) = 0.90, 

p = 0.38 

0.52 

Inconclusive 

OCI 11.48 ± 1.54 
ß = -3 x 10-3, 

t(19) = -1.23, p = 0.22 

0.70 

Inconclusive 

PDI 20.19 ± 3.24 
ß = -4 x10-4, t(19) = -0.32, 

p = 0.75 

0.60 

Inconclusive 

Interoceptive 

accuracy 
0.80 ± 0.03 

ß = -0.1, t(19) = -0.73, 

p = 0.48 

0.48 

Inconclusive 
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Supplementary Table 8. MEG clusters encoding perceptual-relevant 

variables 

Encoded variable 
Time with respect to 

button press 
Cluster statistics 

Contrast chosen option [-257 -25] ms 
Sum(t) = 8121, Montecarlo 

p = 0.005 

Contrast unchosen option 

(positive cluster) 
[-250 -79] ms 

Sum(t) = 6182, Montecarlo 

p = 0.008 

Contrast unchosen option 

(negative cluster) 
[-211 -88] ms 

Sum(t) = -4127, 

Montecarlo p = 0.04 

Button press (positive 

cluster) 
[-193 0] ms 

Sum(t) = 11103, 

Montecarlo p = 0.0004 

Button press (negative 

cluster) 
[-222 0] ms 

Sum(t) = -10395, 

Montecarlo p = 0.0004 

 

Supplementary Table 9. Cortical regions encoding the contrast of the 

chosen option during perceptual choice. MNI coordinates are reported 

for the maximum t-value in the voxel cluster.   

Peak t AAL atlas label 
Peak t MNI coordinates 

(mm) 
t-value 

L midcingulate area [-11 -27 43] 5.14 

L superior frontal gyrus [-15 7 71] 4.70 

L inferior parietal lobule [-47 -55 53] 4.25 

R inferior parietal lobule [44 -42 49] 5.51 
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Supplementary Table 10. Encoding strength for contrast during 

perceptual decisions did not depend on HER amplitude in anterior r-

vmPFC 

Region 
Two-tailed paired t-test  

HER - vs. HER + 
Bayes Factor 

L midcingulate area 
t(20) = 1.17, 

p = 0.26 

0.62 

Inconclusive 

L superior frontal gyrus 
t(20) = 0.90, 

p = 0.38 

0.43 

Inconclusive 

L inferior parietal lobule 
t(20) = 0.11, 

p = 0.92 

0.24  

Substantial 

R inferior parietal lobule 
t(20) = 0.79, 

p = 0.44 

0.38 

Inconclusive 
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