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Abstract 9 

One major challenge of using the phylogenetic comparative method (PCM) is the analysis of the 10 

evolution of interrelated continuous and discrete traits in a single multivariate statistical 11 

framework. In addition, more intricate parameters such as branch-specific directional selection 12 

have rarely been integrated into such multivariate PCM frameworks. Here, originally motivated 13 

to analyze the complex evolutionary trajectories of group size (continuous variable) and social 14 

systems (discrete variable) in African subterranean rodents, we develop a flexible approach using 15 

approximate Bayesian computation (ABC). Specifically, our multivariate ABC-PCM method 16 

allows the user to flexibly model an underlying latent evolutionary function between continuous 17 

and discrete traits. The ABC-PCM also simultaneously incorporates complex evolutionary 18 

parameters such as branch-specific selection. This study highlights the flexibility of ABC-PCMs 19 

in analyzing the evolution of phenotypic traits interrelated in a complex manner. 20 

 21 
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 3 

Introduction 24 

Phylogenetic comparative methods (PCMs) provide a powerful statistical framework for 25 

investigating the patterns and processes of trait evolution (Felsenstein 1985; Harvey & Pagel 26 

1991; Nunn 2011; Garamszegi 2014a, 2014b). The recent development of PCMs permits 27 

analyses of biologically interrelated discrete and continuous variables in a single multivariate 28 

statistical framework (Table 1). The development of such multivariate PCMs is crucial for two 29 

reasons. First, conducting two separate univariate analyses for a continuous trait and a discrete 30 

trait is redundant when the two variables are interrelated. Second, and more importantly, separate 31 

univariate analyses will miss the opportunity to consider important biological links between 32 

these traits.  33 

The threshold model (Felsenstein 2005, 2012) was among the first PCMs to fully 34 

combine both discrete and continuous traits. The idea of the threshold model was originally 35 

developed in quantitative genetics by Wright (1934) to understand how multiple underlying 36 

genetic loci contribute to categorical traits such as the number of digits in guinea pigs. The 37 

threshold model assumes an unobservable continuous trait called ‘liability’ that underlies a 38 

discrete trait of interest. Because the liability is a continuous trait, Brownian motion has been 39 

conventionally used to model its evolution. Then, the state of the discrete trait of interest is 40 

determined by whether the liability trait value is below or above a particular threshold. This 41 

model allows users to incorporate both continuous and discrete traits in a straightforward way, as 42 

well as to estimate the covariance between the liability trait and other continuous traits of 43 

interest. However, because liability is unobservable, it is impossible to directly infer a latent 44 

function between the discrete trait and other observable continuous traits of interest. Moreover, 45 

although it is convenient to assume that the discrete trait is determined by a simple threshold 46 

(which can be treated as a probit link function in a framework of a phylogenetic generalized 47 

linear mixed model, PGLMM; Hadfield 2015; also see Ives and Garland 2014), it is unclear if 48 

the assumption is always biologically valid. At the very least, it is desirable for researchers to be 49 

able to assume other forms of latent functions (Fig. 1). 50 

In addition to Felsenstein’s threshold model, other methods that can link discrete traits and 51 

continuous traits have been proposed (Ives & Garland 2010, 2014; Hadfield and Nakagawa 52 

2009; Hadfield 2015; see Table 1). For example, Ives and Garland (2010) developed a 53 

phylogenetic logistic regression to test the effects of observable continuous independent traits on 54 

a discrete dependent trait (phylogenetic logistic regression, Ives & Garland 2010). Hadfield and 55 

Nakagawa proposed a phylogenetic generalized linear mixed model employing a Bayesian 56 

approach (MCMCglmm, Hadfield and Nakagawa 2009; Hadfield 2015; also see Ives and 57 
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Garland 2014 for other approaches and a comparison of their performance). These approaches 58 

successfully extended traditional linear models to enable nonlinear link functions (logit function 59 

in a phylogenetic logistic regression; logit or probit functions in MCMCglmm) between discrete 60 

and continuous traits. Notably, a probit-GLM can be mathematically equivalent to the threshold 61 

model (see Hadfield 2015). However, limitations to these models still exist. For example, the 62 

model by Ives and Garland (2010) assumes that the continuous traits are known values measured 63 

empirically and does not allow the continuous traits to evolve along the tree (see Felsenstein 64 

2012 and Hadfield 2015 for models that do not have such assumption; but also see Ives and 65 

Garland 2014 for analyses of the relatively small effects of phylogenetic signal on continuous 66 

traits). Moreover, the link function in the models is predetermined. In most cases, equipped 67 

functions (e.g., logit or probit functions) are those that have useful mathematical properties for 68 

analyzing a relationship between discrete and continuous traits. Still, cases may exist in which it 69 

is biologically valid to establish a more complicated function between discrete and continuous 70 

traits. Therefore, it is ideal to prepare a framework that enables researchers to examine a flexible 71 

function to test specific hypotheses of interest.  72 

Furthermore, analyses will be even more complex if additional variables of interest are 73 

included, such as the presence of branch-specific directional selection (Kutsukake and Innan 74 

2013, 2014). This complication often prevents the description of a likelihood function of the 75 

model, which most conventional PCMs require (e.g., the maximum likelihood, Bayesian 76 

approach). The aforementioned PCMs (Felsenstein 2005, 2012; Ives and Garland 2010, 2014; 77 

Hadfield and Nakagawa 2009; Hadfield 2015) cannot incorporate branch-specific directional 78 

selection into their models.  79 

Here, we propose a PCM using approximate Bayesian computation (ABC) to overcome the 80 

difficulties discussed above (Fig. 2). ABCs have been shown to facilitate flexible analyses in a 81 

comparative framework and therefore have increasingly been applied to PCMs with intricate 82 

evolutionary scenarios (Bokma 2010; Slater et al., 2012; Kutsukake and Innan 2013, 2014; Janzen 83 

et al. 2015; Harano & Kutsukake 2018). Briefly, an ABC-PCM estimates parameters of interest by 84 

simulating phenotypic evolution without a likelihood function (Beaumont 2010; Bertorelle et al. 85 

2010; Csillery et al. 2010). The proposed parameters are accepted only when the simulated data 86 

and real data are similar, and the accepted data comprise posterior distributions of parameters. 87 

Thanks to this flexibility, ABC-PCMs enable researchers to test evolutionary models whose 88 

likelihood function is mathematically intractable.  89 

Our initial motivation for extending ABC-PCMs was to analyze a heterogeneous evolutionary 90 

pattern between group size and social system in African subterranean mole rats (family 91 
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Bathyergidae; Table 2). In this clade, species have varied social structures that span solitary, 92 

social, and eusocial states. Eusociality has independently evolved twice: in naked mole rats 93 

(Heterocephalus glaber) and in Damaraland mole rats (Fukomys damarensis) (Jarvis 1981; 94 

Sherman et al. 1991; Bennett & Faulkes 2000; Faulkes & Bennett 2013). We hypothesized that 95 

the probabilities of evolutionary transitions among eu/social and solitary states (discrete trait) 96 

change depending on group size (continuous trait). To capture all of these complex evolutionary 97 

features, we are required to incorporate (1) the evolutionary trajectory of sociality and group 98 

size, (2) the parameters for the trait-dependent latent functions, and (3) the presence of branch-99 

specific directional selection on group size in the two eusocial species. Certain aspects of these 100 

features can be analyzed using previous methods; however, it is not possible to incorporate all 101 

factors in a single model with those methods. Then, based on the example data, we discuss how 102 

this ABC-PCM can be used for inferring other similar complex evolutionary processes. 103 

 104 

Methods 105 

ABC-PCM 106 

Our ABC-PCM extends a previously developed framework (Fig. 2; Kutsukake & Innan 2013, 107 

2014) designed to analyze heterogeneous evolutionary modes whose likelihood is not 108 

straightforward to describe. We assume knowledge of the species tree Y, which consists of 109 

information on tree shape and the lengths of all branches in the topology. We also assume that 110 

trait data at the tips of the tree D have been observed.  111 

In bivariate analyses of continuous and discrete traits, several causational patterns are 112 

possible. For example, a discrete trait can be determined by a continuous trait that evolves on its 113 

own, or vice versa. Alternatively, it is also possible to assume no a priori causality between the 114 

continuous or discrete traits (Hadfield and Nakagawa 2009; Ives and Garland 2010). Any of 115 

these cases can be modeled by the ABC-PCM framework proposed in this paper. Moreover, this 116 

framework can be used regardless of whether a given value is latent (e.g., liability in the 117 

threshold model) or measurable.  118 

We hereafter consider a simple case of interrelated evolution in which a continuous trait 119 

determines a discrete trait. In our example study of African subterranean mole rats, both traits 120 

were measurable. 121 

Briefly, our ABC-PCM process is implemented as follows (see Fig. 2 for a visual 122 

schematic). 123 

 124 

Let Λ be the parameter set to be estimated based on a hypothesis.  125 
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(Step 1) Determine prior distributions for all parameters in Λ. If prior biological 126 

knowledge is available, it can be used to set informative (i.e., strong) prior distributions. 127 

(Step 2) Parameters used in the simulation (Λ’) are randomly generated from the prior 128 

distributions.  129 

(Step 3) Using Λ’, the trait evolution is simulated on the phylogeny Y. In the current 130 

model, the trait simulation has two parts corresponding to continuous and discrete trait 131 

evolution (Fig. 1).  132 

(Step 3a) The continuous trait evolves via Brownian motion (Felsenstein 1985; note 133 

that other evolutionary models can be used; see Kutsukake and Innan 2013).  134 

(Step 3b) Then the discrete trait is determined according to the probability of 135 

transition between two states (A and B) as a function of the continuous trait. Note 136 

again that this setting can be relaxed such that causation between continuous and 137 

discrete traits can be flexibly changed according to a hypothesis of interest. Here, 138 

p(x) is the probability function that state A changes to B given the continuous trait x. 139 

Similarly, q(x) is the probability that state B changes to A given the continuous trait 140 

x (Fig. 1).  141 

(Step 4) Calculate the likelihood by comparing simulated data Q with the real data D and 142 

determine whether the parameter set is accepted or rejected. A joint probability (full 143 

likelihood) for the comparison of n species can be calculated. In most cases, this 144 

probability is difficult to obtain. In such cases, a composite likelihood that is proportional 145 

to the full likelihood can be used as an approximate proxy. Intraspecific variation in the 146 

trait data can be considered by assuming a certain distribution for the trait when 147 

calculating the likelihood.  148 

Then the acceptance or rejection of the parameters can be determined based on the 149 

likelihood . Several methods of judgment exist (Marjoram et al. 2003; Marjoram and 150 

Tavare 2006).  151 

(Step 5) Repeat Steps 2–4 until a sufficient number of parameters Λ’ is accepted. Then, 152 

posterior distributions and credible intervals can be estimated.  153 

 154 

Although the fundamental structure of ABC is straightforward, the number/choice of summary 155 

statistics and the width of tolerance for judging the acceptance or rejection of simulated data at 156 

Step 4 are controversial, and there is no general consensus on the choice of summary statistics 157 

and tolerance (Beaumont et al. 2002; Csillery et al. 2010; Leuenberger & Wegmann 2010). In 158 
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this study, we use a combination of perfect match and joint probability as summary statistics (see 159 

Acceptance and summary statistics below for details).  160 

  161 

Application—social evolution in African mole rats  162 

One example of complex evolution where continuous and discrete traits are interrelated is 163 

social evolution. Sociality in animals can be characterized using a discrete classification based on 164 

mating and/or social systems (e.g., Shultz et al. 2011). Average group size of a species, a 165 

continuous trait, is also an important variable in characterizing sociality in animals (e.g., 166 

comparative analyses: Faulkes et al. 1997; Sheehan et al. 2015). Loss of sociality is correlated 167 

with a decrease in group size (secondary loss of sociality; Wcislo & Danforth 1997; Beauchamp 168 

1999; Sheehan et al. 2015). Likewise, cooperative social systems are likely to appear as the 169 

group size increases (e.g., limited dispersal by ecological constraints: Emlen 1982; Duffy & 170 

Macdonald 2010). Thus, the complex social evolution across African mole rats is an ideal system 171 

to test our framework. Here, species-specific sociality and the mean group size for each species 172 

(x) are the target traits.  173 

 174 

Dataset 175 

We surveyed the literature for field data on the sociality (solitary, social, or eusocial), mean 176 

group size, and/or distribution of group sizes in each species (Table 2). When the distribution of 177 

group size was available, we calculated its mean and standard deviation for each species. For 178 

solitary species, we regarded the mean group size as one. In reality, however, their group sizes 179 

can deviate from this value, because females may have dependent, pre-dispersal offspring; thus, 180 

the group size of solitary species can also have a distribution. Therefore, we incorporated a 181 

realistic value for the variance of solitary species (Table 2). We used the phylogeny presented in 182 

Faulkes et al. (2004), who used mitochondrial genes 12s rRNA and cyt b. The mean value of the 183 

estimated divergent interval in millions of years was used as the length of each branch. 184 

 185 

Parameter set and trait simulation 186 

The trait simulation included six parameters to be estimated: the group size of the most 187 

recent common ancestor (MRCA) (q), the rate of evolution (µ), the parameters of directional 188 

selection (kn and kd), and the parameters for latent functions (a and b, or c and d, depending on 189 

the model used; see next section). Table 3 shows the notation and settings of the prior 190 

distributions.  191 

The evolutionary process of the continuous trait was as follows. First, we generated the 192 
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values of six parameters from the prior distributions. Then, based on the proposed value of x at 193 

the root (i.e., the group size of the MRCA, θ), we randomly determined the state (i.e., sociality) 194 

of the MRCA by either p(x) or q(x). The number of evolutionary events that change traits (i.e., 195 

either an increase or decrease in group size) on each branch was respectively modeled as a 196 

random number from a Poisson distribution with a mean equaling the product of the evolutionary 197 

rate, µ (trait change per million years), and branch length τ (millions of years). The degree of 198 

trait change by one evolutionary event is a random value from an exponential distribution, with 199 

its mean being an arbitrary value φ (set to 0.01). φ corresponds to the average effect of one 200 

change on the trait value. We used an exponential distribution because a change in trait due to 201 

one evolutionary event would have small effects on traits in most cases, and large effects less 202 

frequently. Thus,  203 

Δ+ = Pois(µ × τi) × exp(φ) … trait increase in a branch 204 

Δ– = Pois(µ × τi) × exp(φ) … trait decrease in a branch 205 

where τi is the length of the ith branch. The total trait change on the branch is calculated as Δ+ – 206 

Δ–. 207 

Changes in group size caused by one evolutionary event would depend on the initial group 208 

size. For example, an increase in the group size by one individual will have different biological 209 

meanings in solitary and eusocial species. Therefore, we transformed the value of group size to a 210 

natural logarithmic scale during trait simulation. Because the mean group size x cannot be less 211 

than one, we enforced a lower bound of one. That is, when a trait change resulted in a value less 212 

than one on a branch, the change was not implemented. 213 

We also tested whether there were selective pressures for increasing group size in the two 214 

branches leading to eusocial species. In our ABC-PCM model, the parameter k represents 215 

directional selection (Kutsukake & Innan 2013, 2014). The selection parameter k biases the 216 

number of positive or negative trait changes such that the number of trait changes Pois(µ × τi) × 217 

exp(φ) is multiplied or divided by k, respectively (see Kutsukake & Innan 2013 for more details). 218 

Thus,  219 

Δ+ = Pois(µ × τi × k) × exp(φ) … trait increase in a branch 220 

Δ– =Pois(µ × τi / k) × exp(φ) … trait decrease in a branch 221 

and again, the total trait change on the branch is calculated as Δ+ – Δ–. 222 

When k = 1, the evolutionary mode of trait evolution is asymptotically identical to the 223 

Brownian motion. On the other hand, a significant departure of k from 1 is used as a signature of 224 

directional selection. 225 
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In this analysis, we set selection parameters for the branches for both naked mole rats and 226 

Damaraland mole rats as kn and kd, respectively (Table 3), to test our hypothesis that branch-227 

specific selective pressure has increased group size in eusocial species (Jarvis & Bennett 1993; 228 

Young et al. 2015). When the 95% CI of the posterior distribution of k was larger than 1, it was 229 

considered a signature of directional selection for larger group size.  230 

 231 

Models of latent evolutionary functions 232 

At each evolutionary step, the discrete trait value was determined by the continuous trait value 233 

according to the latent functions (see Step 3b of ABC-PCM). Because the shape of this function 234 

between sociality and group size was unknown, we took advantage of the flexibility of our ABC-235 

PCM framework and tested two examples of evolutionary models with different transition 236 

functions, p(x) and q(x). We note that this framework is not limited to these two models but can 237 

use any function, depending on the focal biological traits and hypotheses of interest. For 238 

simplicity, we set the latent evolutionary functions such that p(x) + q(x) = 1, but this is not 239 

required if one desires otherwise. 240 

 241 

Model 1: Logistic function 242 

In this model, we used a logistic function as the latent evolutionary function, which was similar 243 

to a previous model using a generalized linear model for a binary dependent term (Ives and 244 

Garland 2010). The transition functions p(x) and q(x) were defined as follows: 245 

p(x) = 1–1/(1 + exp(–a × (x–b))) 246 

q(x) = 1/(1 + exp(–a × (x–b))) 247 

The parameter a determined the curvature of p(x) and q(x), i.e., the effects of the group size on 248 

sociality (Fig. 1). When a is equal to 0, p(x) and q(x) are flat and the transition between social and 249 

solitary is independent of group size (Fig. 1, right). When a is positive, a species with large group 250 

size is likely to be social; when a is negative, a species with large group size is likely to be solitary. 251 

Importantly, when |a| is large enough, the transition between social and solitary is determined by 252 

a certain group size, which virtually behaves like a step function (Fig. 1, left). The parameter b is 253 

the x value at which p(x) and q(x) equal 0.5, and determines the group size at which the probability 254 

of transitioning from solitary to social becomes larger than the probability of the reverse. Because 255 

the curvature and midpoint of p(x) and q(x) (i.e., a and b) were unknown a priori, we set broad 256 

prior distributions of a and b (Table 3).  257 

 258 

Model 2: Exponential function 259 
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In the second model, we used an exponential function as the latent evolutionary function. We set 260 

the transition functions p(x) and q(x) as follows: 261 

 262 

 263 

 264 

 265 

 266 
 267 

These functions describe an exponential decrease or diminishing increase in the transition 268 

probability, and a given species with a mean group size of one is always a solitary species. Similar 269 

to a and b in model 1, c and d determine the curvature of the exponential function and the point at 270 

which the exponential decrease/increase begins, respectively. Note that one side of the exponential 271 

function used here is asymptotically equal to either 0 or 1 when x is sufficiently large, but that of 272 

the other side is not; therefore, we set the probability of state change as 0 or 1 when x is smaller 273 

than d, at which the functions reach 0 or 1, respectively.  274 

 275 

Acceptance and summary statistics 276 

Among ABC-PCMs, no clear consensus has been reached concerning the number/choice of 277 

summary statistics or the width of tolerance for judging the acceptance or rejection of simulated 278 

data. In the present analyses, we used two summary statistics to assess the fit of the simulated 279 

data to actual data. First, for the discrete variable (i.e., sociality), we only accepted simulations in 280 

which the simulated data were a perfect match to the real data. For the continuous variable, we 281 

used a conventional method that uses a joint probability (Kutsukake & Innan 2013, 2014); we 282 

first calculated the probability that the real trait value is gained under a simulated trait value for 283 

all 10 species. When calculating the probability, group size (back-transformed to an arithmetic 284 

scale from a log-transformed value) was assumed to be normally distributed with a mean and 285 

standard deviation equal to those of the real data. Then we calculated the product of those 10 286 

probabilities and used the joint probability as a summary statistic. Simulated parameter sets were 287 

accepted in proportion to the joint probability. For example, if the joint probability was 0.8 for a 288 

simulation, the parameter set of the simulation has an 80% chance of being accepted. Because 289 

the joint probability can be considered a direct likelihood, this method is superior to the standard 290 
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ABCs, which depend on the choice of summary statistics and arbitrary tolerance (discussed in 291 

Kutsukake & Innan 2013, 2014).  292 

In total, 500 parameter sets were collected for estimating posterior distributions. All 293 

results were visualised using R version 3.5.3 (R Core Team 2017). The simulation code was 294 

written in C and is available in a public repository (https://github.com/YukiHaba/ABC-PCM).  295 

 296 

Results 297 

Model 1: Logistic functions 298 

When the latent evolutionary function was logistic, the social system of the MRCA was 299 

estimated to be solitary in 61.4% of the cases (Fig. 2a, node A). The accepted functions of the 300 

transition probabilities varied widely (Fig. 3a), but showed several consistent patterns. First, the 301 

curvature parameter of functions, a, was positive in all cases (Table 3, Fig. 3b; see 302 

Supplementary material for a low risk of type I error), indicating that the probability of transition 303 

from a solitary to social species increased as group size increased. In addition, p(x) typically 304 

increased rapidly around x = 2 to 4, which corresponded to the peak of the posterior distribution 305 

of b (Table 3, Fig. 3c).  306 

At each internal node before reaching the common ancestor of social species, the inferred 307 

social system was predominantly solitary (Fig. 2a). The common ancestor of solitary species was 308 

likely to be solitary (Fig. 2a, node C), and a similar pattern was evident at the node of the 309 

common ancestor of B. janetta and B. suillus. By contrast, at the nodes leading to the clade of 310 

Fukomis, predominantly social states were inferred (Fig. 2a, node B). The estimated group sizes 311 

were consistent with the inferred social systems at internal nodes (Fig. 2b–d); the more social the 312 

system was likely to be, the larger the group size. 313 

We detected marginal directional selection for increasing group size in the branch that led 314 

to naked mole rats (the proportion of kn < 1 was 6.4%, Fig. 2f). By contrast, we did not detect 315 

significant directional selection in the branch leading to another eusocial species, Damaraland 316 

mole rats (the proportion of kd < 1 was 15.8%, Fig. 2g). Based upon this non-significant result 317 

for kd, we repeated the estimation after excluding kd (i.e., directional selection was assumed only 318 

for the branch leading to naked mole rats), but the results did not change qualitatively (data not 319 

shown). 320 

 321 

Model 2: Exponential functions 322 

With the exponential latent evolutionary functions, the MRCA was inferred to be solitary in 323 

60.4% of the cases (Fig. 4a, node A), similar to model 1. Again, although the accepted functions 324 
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of the transition probabilities between social and solitary varied (Fig. 5a), the curvature of p(x), 325 

c, was always positive (Table 3, Fig. 5b; see Supplementary material for a low risk of type I 326 

error).  327 

Group size and sociality at each internal node were almost identical to those in model 1. 328 

Within the clade of Fukomis, we inferred predominantly social states (Fig. 4a, node B) and 329 

relatively large group sizes (Fig. 4c). Within the clade of Bathyergus and Georychus, in contrast, 330 

the social system at each node was consistently solitary (Fig. 4a, node C) and the group size was 331 

around 2 to 4 (Fig. 4d).  332 

We detected significant directional selection for increasing group size in the branch 333 

leading to naked mole rats (the proportion of kn < 1 was 3.4%; Fig. 4f). However, we did not 334 

detect significant directional selection in the branch to eusocial Damaraland mole rats (the 335 

proportion of kd < 1 was 16.2%; Fig. 4g). Again, based on this non-significant result for kd, we 336 

repeated the estimation after excluding kd (i.e., directional selection was assumed only for the 337 

branch leading to naked mole rats); however, the result did not change qualitatively (data not 338 

shown). 339 

 340 

Discussion  341 

This study proposes an extension of a previously described ABC-PCM (Kutsukake & Innan 342 

2013, 2014) to analyze complex evolutionary scenarios in which discrete and continuous traits 343 

are biologically interwoven. This is the first ABC-PCM framework that allows simultaneous 344 

analyses of the interdependent evolution of discrete and continuous traits. In addition, our model 345 

offers at least two advantages over other existing methods.  346 

First, this study incorporated a feature that has rarely been included in a PCM framework: 347 

branch-specific directional selection (Kutsukake & Innan 2013, 2014; Harano & Kutsukake 348 

2018). This inclusion was possible thanks to the flexibility of the ABC-PCM, which does not 349 

require the mathematical expression or analytic solution of a likelihood function. Second, our 350 

multivariate model can incorporate flexible user-defined functions that describe the evolutionary 351 

relationship between continuous and categorical traits. Previous methods can incorporate 352 

nonlinear functions such as logit and probit functions (Ives and Garland 2010; Hadfield & 353 

Nakagawa 2009; Hadfield 2015), but the choice of a latent function is less flexible than in our 354 

present method. Another well-established method for simultaneously analyzing both continuous 355 

and categorical traits is the threshold model (Felsenstein 2005, 2012). The threshold model is 356 

equivalent to a phylogenetically controlled linear model with a probit latent function (see 357 

Supplementary Material in Hadfield 2015 for a useful graphical representation). Although the 358 
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assumption is mathematically convenient for analyses, it may be an oversimplification of the 359 

evolutionary relationship between the continuous and categorical traits of interest.  360 

Applying this new approach to data on African subterranean rodents, we estimated the 361 

intricate evolutionary trajectory of sociality and group size. Two models with different latent 362 

evolutionary functions were tested: logistic and exponential. Although the exponential function 363 

has not been used in previous PCMs, we believe that this function is suitable for our study 364 

species for two reasons. First, group size should have a minimum value of one, and second, a 365 

species whose group size is one must be a solitary species. Although these functions have 366 

different mathematical characteristics and are not nested, they have common features such as a 367 

monotonic increase and an asymptotical approach from one to zero. Potentially due to these 368 

common features, the estimated parameters showed similar posterior distributions. In both 369 

models the social state of the MRCA was not decisively solitary or social, and its estimated 370 

group size varied (node A in Figs. 2a and 4a).  371 

The latent evolutionary functions p(x) and q(x) had a consistent pattern in both models 372 

(Figs. 3 and 5). Namely, most of the accepted functions had a steep transition around a group 373 

size of 2 to 4. This indicates that this particular window of group size was an evolutionary 374 

tipping point of the transition between solitary and social states. This study is the first to 375 

quantitatively infer the range of group size that is crucial to the evolution of sociality in this 376 

clade.  377 

 We tested differential selective pressure on group size in the branches leading to the two 378 

eusocial species in this clade (kn and kd); we detected directional selection (kn) for larger group 379 

size in the branch leading to naked mole rats in model 2 (Fig. 4f) but not in model 1 (Fig. 2f). In 380 

both models, a selective pressure was not detected in the branch leading to Damaraland mole rats 381 

(kd, Figs. 2g and 4g). Thus, although both species are deemed eusocial, the two species may have 382 

undergone qualitatively different evolutionary paths (Burda et al. 2000). Future studies should 383 

explore the differences in the ecological and evolutionary causes of the evolution of these two 384 

eusocial species.  385 

One critical limitation of this case study was the relatively low sample size (10 species; 386 

see Supplementary material). This sample size is caused by three inevitable limitations. First, the 387 

family Bathyergidae is a monotypic group composed of less than 20 OTUs, which is an 388 

inevitable constraint on sample size. Second, detailed data for group size are not available for all 389 

species of this family, which further limits the available data. Finally, and most importantly, 390 

expanding the number of study species to include closely related non-subterranean species is 391 

questionable, as it is highly likely that the underground ecological niche has affected predation 392 
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pressure and consequently sociality. More broadly, it remains unclear whether heterogeneity of 393 

traits other than the traits of interest would affect biological interpretation in PCM studies based 394 

on a large sample size. It is generally believed that larger sample sizes (a larger number of 395 

species, or more precisely, a larger number of evolutionary transitions) would produce a more 396 

powerful test in PCMs. While this is true, it remains largely undiscussed how the inclusion of 397 

species that have fundamentally different ecological or behavioral traits would affect the results. 398 

In this sense, in addition to a large-scale comparison, it is important to conduct PCMs that focus 399 

on a taxon that shares fundamental traits, even if the sample size is not very large.  400 

One major challenge in ABC-PCMs is that they are computationally intensive. In our 401 

study, for example, it took several days to accept one parameter set (MacPro, OS 10.6.7, 2 x 2.93 402 

GHz Quad-Core Intel Xeon; also see Kutsukake & Innan 2013). To compare the performance of 403 

our model to an available method, we ran a bivariate model on our dataset and phylogeny using 404 

MCMCglmm (Hadfield & Nakagawa 2009; Hadfield 2015) assuming that group size and 405 

sociality follow Gaussian and probit (“threshold”) families, respectively. For simplicity, we ran 406 

the program without incorporating intraspecific variation, branch-specific selection, or the 407 

bounding of group size. The MCMCglmm results qualitatively agreed with our results (e.g., 95% 408 

CI of the covariance between group size and sociality > 0), yet the process took only a few 409 

minutes to an hour on a standard laptop, depending on the parameters (results not shown). Thus, 410 

the scope of the present ABC-PCM algorithm is currently limited to analyses of relatively small 411 

to moderate numbers of species (29 species in Harano & Kutsukake 2018), but it is not suitable 412 

for a large number of species. Improvements in both efficient simulation algorithms and 413 

computational power will enable analyses based on a larger number of species.  414 

In summary, we have developed a flexible multivariate ABC-PCM that has great potential 415 

for testing biologically intricate scenarios of trait evolution. Although our analyses considered the 416 

evolutionary transition of sociality in a relatively small number of species, our method can be 417 

applied to other topics and to larger datasets. Despite the fact that our analyses focused on a simple 418 

case in which a continuous trait affects the state of a discrete trait, other causational patterns can 419 

be dealt with by a flexible setting of an evolutionary simulation. Furthermore, our ABC-PCM 420 

framework can also be extended to model more complex evolutionary trajectories, such as 421 

asymmetric transitions between states and/or more than two states of discrete traits with different 422 

transition functions. Thus, our method allows evolutionary biologists to explore various 423 

hypotheses of interest concerning the evolution of interrelated traits. 424 

 425 
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Table 1. Summary of previous methods and the originality of this study.  556 
 Approach 

Trait Univariate models Multivariate models (link function) 
 

Discrete 

Mk model1 

Threshold model2* 

PLogReg3 (w/o independent 
variables) 

Mk model1   

Threshold model2* 

 
Continuous 

 PLogReg3 

MCMCglmm4,5 

MCMCglmm4,5 

 
 

 
Both discrete and 

continuous 

 
 
 

- 

Threshold model2  
(determined by a threshold)* 

PLogReg3 (logit link) 

MCMCglmm4,5 (logit and probit link) 

This study  
(researcher-defined function) 

1Pagel 1994; Lewis 2001 557 
2Felsenstein 2012 558 
3Phylogenetic logistic regression, Ives and Garland 2010 559 
4Hadfield and Nakagawa 2009 560 
5Hadfield 2015 561 
*continuous trait (liability) that is unobservable  562 

563 
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Table 2. Data used in this study. 564 
Species Social system Group size, mean (SD) 
Naked mole rat, Heterocephalus glaber1 eusocial 75 (48.65)A 
Damaraland mole rat, Fukomys damarensis1 eusocial 11 (6.26)  
Whyte’s mole rat, Fukomys hottentotus1 social 5.16 (2.62)B  
Mechow’s mole rat, Fukomys mechowii2 social 9.91 (2.49) 
Mashona mole rat, Fukomys darlingi3 social 7 (not availableC) 
Ansell’s mole rat, Fukomys anselli4 social 8.72 (2.15) 
Cape mole rat, Georychus capensis5 solitary 1D 
Cape dune mole rat, Bathyergus suillus5 solitary 1D 
Namaqua dune mole rat, Bathyergus janetta5 solitary 1D 
Silvery mole rat, Heliophobius argenteocinereus5 solitary 1D 
 565 
1Bennett & Faulkes 2000; 2Sichilima et al. 2008; 3Bennett et al. 1994; 4Sichilima et al. 2011; 5Burda & Kawalika 566 
1993; see Van Daele et al. (2013) for a recent classification. 567 
ABecause group sizes were categorized at an interval of 25 individuals, we used the mean value of each range for 568 
calculating the mean and SD (e.g., 37.5 for groups of 25 to 50 individuals). 569 
BWhen calculating the mean group size of this species, we used a group size of 11 when it exceeded 10, because the 570 
original data for group size pooled group sizes larger than 10 into “>10” (p. 92 in Bennett & Faulkes 2000). 571 
CBecause no data on intraspecific variation were available, we used the mean value of the SD, 2.42, of the other three 572 
social species. 573 
DThe mean litter size ranges from 2.46 to 5.94 in solitary species (Jones et al. 2009). To account for this, we set a 574 
value of 2.56 as their SD to cover the range of possible group sizes.575 
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Table 3. Parameters estimated in this study. 576 
Parameter Notatio

n 
Prior 
distribution 

Posterior distribution (95% CI) 

   Model 1 
 (logistic) 

 Model 2 
(exponential) 

Most recent common ancestor (MRCA) q U(1.001, 10) 1.1–5.22 2.45–9.15 
Baseline evolutionary rate (per million years) µ U(0.001, 30) 6.4–29.5 3.62–28.3 
Directional selection (naked mole rats) kn U(0.001, 30) 0.99–3.57 1.01–1.93 
Directional selection (Damaraland mole rats) kd U(0.001, 5) 0.82–4.22 0.82–4.64 
Curvature of transition functions (solitary ⇄ social) a or c U(-15,15) a: 1.52–14.50 c: 1.28–14.60 
Position of transition functions b or d U(0,10) b: 1.52–4.94 d: 1.28–5.07 
     
  577 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/776617doi: bioRxiv preprint 

https://doi.org/10.1101/776617
http://creativecommons.org/licenses/by/4.0/


 

 24 

 578 
Fig. 1. Variation in multivariate PCMs with a latent function between discrete and 579 

continuous traits. Conventional PCMs can explore various latent evolutionary functions 580 

between continuous and discrete traits (Table 1). Here, we consider a simple example of the 581 

evolutionary link between a continuous and a discrete trait. The continuous trait (x) evolves by a 582 

process similar to Brownian motion. The discrete trait, on the other hand, evolves according to 583 

the transition probabilities p(x) and q(x), i.e., the latent evolutionary functions. The state of the 584 

discrete trait at each time step is shown as a white (A) or black (B) square. At one extreme, the 585 

transition of discrete states is determined by a certain “threshold” value of the continuous trait. 586 

At the other extreme, the discrete trait and the continuous trait are independent. In such a case, 587 

the transition probabilities do not vary with the continuous traits (right). In our framework, any 588 

functions between the two extreme cases can be incorporated based on biological hypotheses 589 

(middle). Furthermore, x can be either a measurable trait or a latent value. Here, logistic and 590 

exponential functions are shown as examples. 591 

 592 

  593 
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 594 
Fig. 2. Our ABC-PCM with latent evolutionary functions. Schematic of our ABC-PCM 595 

approach. First, determine parameters of interest and set prior distributions (Step 1). Example 596 

parameters include phenotype of the MRCA (q0), evolutionary rate (µ), directional selection 597 

parameter (k), latent function parameter (a), and so on. Next, generate random values for 598 

parameters from the prior distributions (Step 2). Trait simulations on a phylogeny Y are then 599 

conducted (Step 3), and the simulated data Q are compared to real data D to determine whether 600 

the data are accepted or rejected (Step 4). A number (N) of simulations are conducted until 601 

enough samples are collected to infer the posterior distribution (Step 5).  602 

 603 

  604 
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 605 
Fig. 3. The estimated evolutionary trajectory with the latent function being logistic (model 606 

1). (a) The estimated parameters on the phylogeny. The social state of each tip species is shown 607 

as black (solitary) or white (social) squares. Asterisks indicate eusocial species. The proportion 608 

of solitary/social states and the 95% CI of the posterior distribution of group size (within 609 

brackets) are shown at each internal node. (b–d) The distributions of simulated group size at 610 

nodes A (MRCA), B, and C in the phylogeny. (e) The posterior distribution of the baseline 611 

evolutionary rate. (f, g) The posterior distributions of the selection coefficients kn and kd. The 612 

dashed line at k = 1 indicates the proportion of simulations in which directional selection for 613 

larger group size was detected (black histograms). 614 
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 617 
Fig. 4. Accepted latent functions in model 1. (a) All 500 accepted latent functions p(x), i.e., the 618 

probability of transition from a solitary state to a social state as a function of group size. Most 619 

accepted functions increased steeply at group sizes of 2 to 4. (b, c) The posterior distributions of a 620 

and b, the curvature of the function and the group size at which p(x) equals 0.5. 621 
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 624 
Fig. 5. The estimated evolutionary trajectory with the latent function being exponential 625 

(model 2). (a) The estimated parameters on the phylogeny. The social state of each tip species is 626 

shown as black (solitary) or white (social) squares. Asterisks indicate eusocial species. The 627 

proportion of solitary/social states and the 95% CI of the posterior distribution of group size 628 

(within brackets) are shown at each internal node. (b–d) The distributions of simulated group size 629 

at nodes A (MRCA), B, and C in the phylogeny. (e) The posterior distribution of baseline 630 

evolutionary rate. (f, g) The posterior distributions of the selection coefficients kn and kd. The 631 

dashed line at k = 1 indicates the proportion of simulations in which directional selection for larger 632 

group size was detected (black histograms). 633 
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 636 
Fig. 6. Accepted latent functions in model 2. (a) All 500 accepted latent functions corresponding 637 

to p(x). Similar to the case in model 1, most of the accepted functions increased at a group size of 638 

2 to 4. (b, c) The posterior distributions of c and d, the curvature of the function and the group size 639 

at which p(x) equals 0. 640 
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