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One Sentence Summary: Brubaker et al. implicate dysregulated collagen-binding integrin 
signaling in resistance to anti-TNF therapy in Crohn’s Disease by developing a mouse-proteomic 
to human-transcriptomic translation model and confirm the associated inter-cellular signaling 
network using single-cell RNA sequencing.  
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Abstract 

Anti-TNF therapy resistance is a major clinical challenge in Crohn’s Disease (CD), partly due to 

insufficient understanding of disease-site, protein-level mechanisms of CD and anti-TNF 

treatment resistance. Although some proteomics data from CD mouse models exists, data type 

and phenotype discrepancies contribute to confounding attempts to translate between preclinical 

animal models of disease and human clinical cohorts. To meet this important challenge, we 

develop and demonstrate here an approach called Translatable Components Regression 

(TransComp-R) to overcome inter-species and trans-omic discrepancies between CD mouse 

models and human subjects. TransComp-R combines CD mouse model proteomic data with 

patient pre-treatment transcriptomic data to identify molecular features discernable in the mouse 

data predictive of patient response to anti-TNF therapy. Interrogating the TransComp-R models 

predominantly revealed upregulated integrin pathway signaling via collagen-binding integrin 

ITGA1 in anti-TNF resistant colonic CD (cCD) patients. Toward validation, we performed 

single-cell RNA sequencing on biopsies from a cCD patient and analyzed publicly available 

immune cell proteomics data to characterize the immune and intestinal cell types contributing to 

anti-TNF resistance. We found that ITGA1 is indeed expressed in colonic T-cell populations and 

that interactions between collagen-binding integrins on T-cells and colonic cell types expressing 

secreted collagens are associated with anti-TNF therapy resistance. Biologically, TransComp-R 

linked previously disparate observations about collagen and ITGA1 signaling to a potential 

therapeutic avenue for overcoming anti-TNF therapy resistance in cCD. Methodologically, 

TransComp-R provides a flexible, generalizable framework for addressing inter-species, inter-

omic, and inter-phenotypic discrepancies between animal models and patients to deliver 

translationally relevant biological insights. 
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Introduction 
 

Crohn’s disease (CD) is a chronic inflammatory bowel disease that may manifest in any 

region of the digestive tract. Anti-TNF therapeutics, including Infliximab (IFX) and 

Adalimumab (ADA), have emerged as remission-inducing therapies effective in 30-50% of 

patients, with up to 30% of these patients eventually developing secondary non-response (1). 

Because of this high rate of primary and secondary non-response to anti-TNF therapy, several 

studies have examined the signaling determinants of resistance through transcriptomic studies (1-

7). However, transcriptomic characterization of anti-TNF resistance has yet to translate into 

effective strategies for overcoming therapeutic resistance, potentially due to the lack of 

functional proteomic characterization of Infliximab resistant CD prior to treatment. While some 

mouse studies have measured thousands of proteins by mass spectrometry and provided a 

detailed view of proteomic signaling in inflamed and uninflamed conditions (8, 9), these 

included no therapeutic stimuli making it challenging to generalize these therapy-independent 

murine signaling characterizations to clinical therapeutic resistance.  

Translational Systems Biology aims to apply computational modeling to better translate 

biological insights from in-vitro and non-human in-vivo experimental models to the human 

disease context. Several recent studies have applied statistical and machine learning models to 

infer human disease-associated biology from model systems (10-13). Though these studies aimed 

at generalizable methods of interspecies translation, a limitation of these methods was the need 

for comparable molecular data types and similar phenotypes between model systems and 

humans. Therefore, these methods are not appropriate for translating the CD mouse model 

proteomic characterizations to understand Infliximab resistance in CD patients. If the challenges 

of interspecies, inter-omic translation between mismatched mouse and human phenotypes could 
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be overcome, then the available mouse proteomics data could provide valuable insights into the 

signaling networks associated with Infliximab non-response in CD. 

Here, we developed an approach for translating inflammation-associated proteomics from 

CD mouse models to human CD Infliximab response called Translatable Components 

Regression (TransComp-R). TransComp-R translated proteomic insights between mouse models 

and humans while addressing discrepancies in molecular data types (human:transcriptomic, 

mouse:proteomic) and phenotypes (human:Infliximab response, mouse:inflammation). We 

projected a clinical cohort of human CD transcriptomic data into a mouse proteomics principal 

components model and performed principal components regression against the human Infliximab 

response phenotypes to identify the most translatable, humanized latent variables. Analysis of the 

proteins that defined separation along these latent variables identified activated collagen-binding 

integrin ITGA1 and MAP3K1 signaling that separated Infliximab responders and non-responders 

pre-treatment. Since CD is a complex disorder that impacts both host tissue and immune cell 

signaling, we obtained colonic biopsies from a CD patient and performed single-cell RNA 

sequencing (scRNA-seq) and analyzed publicly available datasets of FAC sorted immune cell 

populations to identify the cell types and inter-cellular signaling associated with the identified 

Infliximab resistance. From this we found that the TransComp-R identified signaling network 

described interactions between ITGA1+ T-cells and collagen secretion by colonic cell types and 

T-cell populations. Further characterization of the intercellular signaling network between 

immune and colonic cell types revealed a collagen binding integrin and collagen signaling 

network associated with Infliximab resistance in multiple disease-relevant cell types. The results 

of TransComp-R and our confirmatory experiments and analyses suggest that extracellular 

collagen and integrin signaling plays an important role in anti-TNF therapy resistance.   

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/776666doi: bioRxiv preprint 

https://doi.org/10.1101/776666


Results  
 
The Molecular Characteristics of Infliximab Resistance Are Tissue Specific 

We analyzed publicly available gene expression data of colon and ileum biopsies from 

Crohn’s Disease (CD) patients, prior to start of Infliximab therapy as well as 4-6 weeks after 

initiation of Infliximab, in comparison with healthy controls to identify signatures of Infliximab 

(anti-TNF) therapy resistance in each tissue (Resistant (R) versus Sensitive (S)) (2, 14). 

Differential expression analysis (Wilcoxon Mann-Whitney (WMW), false discovery rate 

correction (FDR q < 0.20)) identified several disease and Infliximab response associated-DEGs, 

with many more pre-treatment differences observed in colonic CD (cCD) relative to ileal CD 

(iCD) (Figure 1A-B). Direct comparison of ileal CD biopsies between Infliximab responders and 

non-responders revealed no statistically significant differences.  

We next assessed pathway level dysregulation between CD biopsies and controls and 

between Infliximab resistant and sensitive patients using PROGENy (Pathway RespOnsive 

Genes) (Figure 1C) (15). PROGENy infers differences in pathway activity based on high 

confidence signatures of downstream differentially regulated genes indicative of pathway 

activity rather than other approaches that use expression of pathway members to infer activity 

(16). Significant baseline pathway differences did exist between Infliximab sensitive and 

resistant patients in both cCD and iCD (WMW p < 0.05) (Figure 1C). In ileal CD, TGFB and 

EGFR signaling are both upregulated in Infliximab resistant patients, but these pathways were 

unchanged between sensitive and resistant patients with cCD. In cCD, both NFKB and TNFA 

are upregulated in resistant patients relative to sensitive patient, but these pathways were 

unchanged between sensitive and resistant patients with ileal CD. Our analysis of the colonic and 
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ileal CD biopsies further shows that response to Infliximab is associated with tissue-specific, pre-

treatment disease characteristics.  

 

Translatable Components Regression Predicts Proteomic Dysregulation in Patients from Mice 

Though gene expression data can yield associations relevant to Infliximab responsiveness 

vs resistance outcomes, gene signatures alone provide an incomplete characterization of 

Infliximab resistance signaling in IBD (3, 4, 17). The available proteomic studies in CD have 

principally been serum-based and do not provide direct measurements of Infliximab resistance 

signaling from the site of disease (18-20). We have previously conducted high throughput 

proteomic measurements from two mouse models of IBD, the Adoptive T-cell Transfer (TCT) 

and Tumor Necrosis Factor Delta-ARE (TNF-ARE) models in inflamed and un-inflamed 

conditions (8, 9). However, no therapeutic stimuli were studied in these mice, which potentially 

limits the applicability of these datasets for understanding Infliximab resistance in patients. The 

evolutionary and molecular differences between mouse models and humans coupled with 

discrepancies in measurement types between mass-spectrometry based proteomics and 

microarrays further complicates translation of mouse proteomic insights to patient CD.  

We developed a translational systems modeling framework called translatable 

components regression (TransComp-R) to address the challenges of translating mouse proteomic 

insights to CD patient phenotypes (Figure 2). We first trained a Principal Components Analysis 

(PCA) model on mouse proteomics data using proteins whose coding genes were homologs with 

Infliximab-response associated human DEGs. In order to link the mouse proteomic latent 

variables with human Infliximab response phenotypes, we needed to project our CD patient 

samples into mouse proteomics space. However, projecting a human transcriptomics dataset into 

a mouse proteomics PCA model has many analytical complications. Classically, new samples are 
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projected into a PCA model by normalizing the new data according to the training data scaling 

factors and multiplying by the principal components (PC) of the PCA model. This is not 

appropriate for inter-species, inter-omic projections because the scaling factors cannot be 

assumed to be comparable between different species, sequencing platforms, or proteomic and 

transcriptomic data types. TransComp-R modifies the PCA projection procedure by projecting 

new datasets into an existing PCA model in terms of relative differences along mouse PCs rather 

than absolute differences as in the classical PCA projection procedure. To accomplish this, we 

projected patient samples into the mouse proteomics PCA model by multiplying the human RNA 

matrix by the mouse PCA eigenvectors. Once projected, we built a regression model relating 

human scores on mouse PCs to Infliximab response and identified the dimensions of biological 

variation in the mouse that best predicted Infliximab response. In a sense, the projection of 

human samples into mouse PC space is a form of computational reverse-translation and we can 

regard the mouse proteomic PCs that predict the human clinical associations as the most 

humanized components, or the “Translatable Components” (TCs) of the mouse (Figure 2). 

 

TransComp-R Identifies Activated Integrin Signaling in Infliximab Resistant Colonic CD 

We applied TransComp-R to identify proteomic Infliximab response signatures by 

incorporating CD patient pre-treatment transcriptomics data into our TCT and TNF-ARE mouse 

proteomics models. TCT mouse and human cCD PCA models were built using 288 of the 1,935 

genes differentially expressed between cCD Infliximab responders and non-responders that had 

homologous protein coding mouse genes (Figure 3A). Though the Infliximab response 

associated genes separated the mouse samples by inflammation status, the cCD patients did not 

separate by Infliximab response along human PC1 and PC2. A principal components regression 
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model (PCR) predicting Infliximab response from the cCD patient scores on mouse protein 

principal components (PCs) identified TCT mouse PC6 and PC7 as significantly predictive of 

Infliximab response (Table S1). The cCD sample scores on these PCs better separate Infliximab 

response than the scores on human RNA PCs, despite PC6 and PC7 accounting for only 3.3% of 

the variation in the TCT mouse proteomics data (Figure 3B). This contrasts with the poor cCD 

patient separation along mouse PC1 and PC2, which together account for 80% of the total 

variation in the mouse proteomics data (Figure S1). This underscores a key strength of the 

TransComp-R framework, the model identifies proteomic variation predictive of Infliximab 

response (PC6 and PC7) and ignores sources of proteomic variation that predominately associate 

with non-specific inflammation and inter-mouse variability (PC1 and PC2).  

We plotted the empirical cumulative distribution function (eCDF) of the absolute value of the 

protein loadings on TCT mouse PC6 and PC7 to identify significantly loaded proteins greater 

than the 75th percentile of the eCDF (Figure 3C). PANTHER pathway enrichment of these 

proteins identified a single enriched pathway, upregulated Integrin Signaling, Infliximab resistant 

cCD (p = 2.68*10-5) (21-23). The loadings of proteins that contributed to integrin signaling 

enrichment were generally positive on TCT mouse PC6 and PC7, similar to the scores of colonic 

CD Infliximab non-responders (Figure 3D). Several laminin proteins were positively loaded 

toward Infliximab non-responders suggesting that interactions with the extracellular matrix 

(ECM) and migration-based signaling play a role in Infliximab resistance.  

Since different mouse models may describe diverse aspects of disease, we performed a 

second TransComp-R on the cCD patients and TNF-ARE mouse proteomics data using 708 

Infliximab response associated DEGs with homologous protein coding mouse genes (Figure 4A). 

As with the TCT mouse, the TNF-ARE mouse separated by inflammation status and the human 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/776666doi: bioRxiv preprint 

https://doi.org/10.1101/776666


samples did not separate well by Infliximab response on human PC1 and PC2. A PCR model 

predicting Infliximab response from cCD patient scores on the TNF-ARE mouse PCs identified 

three significantly predictive mouse PCs (Table S2). TNF-ARE mouse PC4, PC6, and PC7 were 

all significantly predictive of Infliximab response, with the two most predictive PC’s, PC4 and 

PC6, accounting for 8.9% of the total variation in the TNF-ARE proteomics. As with the TCT-

mouse PCA, projecting the cCD patients into the predictive TNF-ARE PCs revealed stronger 

separation by Infliximab response than in the human RNA PCA or along TNF-ARE mouse PC1 

and PC2 (Figure 4B, Figure S1).  

Analysis of the protein loadings on the significant TNF-ARE PCs identified 278 significantly 

loaded proteins (Figure 4C). PANTHER enrichment analysis identified 20 pathways, the most 

significant being integrin signaling upregulation in Infliximab resistant cCD (p = 2.00*10-5) 

(Table S3). Plotting the loadings of the integrin pathway proteins once again revealed stronger 

weighting of integrin proteins toward Infliximab resistant cCD (Figure 4D). Laminin proteins 

LAMB2, LAMB1, and LAMA4 were similarly weighted toward resistant patients in both mouse 

models, suggesting that higher levels of laminin proteins are consistent biomarkers of Infliximab 

non-response translatable from either the TCT or TNF-ARE mouse models. Mitogen activated 

protein kinase kinase kinase 1 (MAP3K1) and integrin alpha 1 (ITGA1) were also loaded toward 

Infliximab resistant patients, suggesting they play a role in resistance (Figure 4D).  

We found no DEGs associated with Infliximab resistance in iCD, leaving no significant 

features to construct a TransComp-R model. In order to see if a lower DEG significance 

threshold for TransComp-R could add translational value to the iCD data, we performed 

TransComp-R using candidate genes that had a fold change of 2 or more between Infliximab 

resistant and sensitive patients. We did not find any predictive TCs when applying TransComp-R 
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to the TNF-ARE mouse proteomics data despite higher proteome coverage of human 

homologous genes. TransComp-R on the TCT mouse proteomics data did identify 2 significant 

TCs using fold change threshold of 2, but the proteins significantly loaded on these TC’s did not 

implicate any pathway level enrichment (Figure S2). It appears that a condition for the success of 

TransComp-R is the presence of a human signature of significant DEGs, but that differences in 

coverage of homologs were not a significant factor in performance, with the lower coverage TCT 

mouse data finding significant TCs with the candidate gene approach.  

 

Proteomic Profiling of cCD Infliximab Resistance Signaling Proteins in Immune Populations  
 

A combination of immune and host tissue cell signaling drives Crohn’s disease pathology 

and determines therapeutic responsiveness. TransComp-R was performed on samples containing 

a mixture of colonic and immune cells making it challenging to associate Infliximab resistance 

signaling with particular cell types. In order to develop therapeutic strategies to overcome 

therapeutic resistance, it is necessary to verify the activity of the integrin signaling network in 

cCD patients and to characterize the cell types responsible for each component of the Infliximab 

resistance network. To address these questions, we performed single-cell RNA sequencing 

(scRNA-seq) on two biopsies from a cCD patient and analyzed a publicly available proteomics 

dataset of 28 FAC sorted immune cell types (ImmProt) (24). 

We mined ImmProt for cell types expressing ITGA1 signaling network proteins contributing 

to Infliximab resistance (Figure 5) (24). Clustering of protein copy numbers revealed cell-

specific high expression of certain key proteins, including specialization of MAP3K1 to 

neutrophils, COL4A2 to T-cell populations, ITGA1 to activated NK cells, and LAMA4 to 

macrophage populations (Figure 5). Other collagen and laminin proteins were moderately 
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expressed in various populations. While broad involvement of macrophages is a hallmark of 

Crohn’s disease, the specificity of MAP3K1 to neutrophils suggests that this cell type is a key 

player in Infliximab resistance. Further, the capability of immune cell populations to secrete of 

collagen and laminin ligands of ITGA1 and its associated duplex integrin ITGB1 suggest a wide 

range of possible interactions between immune and colonic cell types may facilitate Infliximab 

resistance in cCD.  

 

Single-Cell Profiling of Infliximab Resistance-Integrin Signaling in cCD 

Having shown that the Infliximab resistance associated integrin signaling network 

proteins were expressed in immune cell types, we next assessed ITGA1-associated signaling in 

the cCD context of mixed immune and colonic cell types. We first analyzed the post-Infliximab 

treated cCD samples from the bulk gene expression dataset to see if dysregulation in ITGA1-

associated signaling persisted after treatment. Both before and after treatment, the Infliximab 

resistance-associated integrin pathway proteins were more highly expressed in resistant patients 

relative to sensitive patients (Figure S3). Activity of this signaling network after treatment 

suggests that the ITGA1 signature is a durable feature of Infliximab resistant cCD biology that is 

suppressed, but not resolved, by Infliximab treatment. We could therefore compare the activity 

of the ITGA1 signaling network from TransComp-R analysis to scRNA-seq data from left and 

right colonic biopsies obtained from a CD patient post-anti-TNF treatment and characterize the 

cell types and inter-cellular signaling network of ITGA1-associated Infliximab resistance.  

 Cells were filtered for those expressing at least one of the 18 genes in the Infliximab 

resistance signature. The right colon biopsy was filtered from 3,922 cells to 2,153 cells and the 

left colon filtered from 1,329 cells to 903 cells. We applied a Gaussian Mixture Model (GMM) 
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based approach to classify cell types in each biopsy using a set of marker genes curated from the 

literature (Table S4) (25-27). The GMM identified four distinct cell types including a general 

epithelial cell population, goblet cells, stromal cells, and T-cells in each biopsy which we 

visualized using t-distributed stochastic neighbor embedding (TSNE) (Table S5, Figure 6A-B). 

Though it is possible other sub-populations of cell types were present within the large epithelial 

category, the accuracy of the GMM classification degraded on our datasets when we tried to 

predict additional cell types. 

 We performed differential expression analysis (Kruskal-Wallis test) on the Infliximab 

resistance signature genes to characterize cell type specific signaling of the ITGA1-associated 

signaling network (Table S6, Figure 6C-D). Eight genes were differentially expressed between 

cell types in right colonic CD (ITGA1, MAP3K1, LAMB1, LAMC1, ILK, COL1A2, COL4A1, 

PARVB) and seven genes were differentially expressed in left colonic CD (MAP3K1, LAMB1, 

LAMC1, RND3, GRB2, COL12A1, LAMC3). Three genes (MAP3K1, LAMB1, LAMC1) were 

similarly differentially expressed between cell types in both biopsies, with MAP3K1 more highly 

expressed in stromal cells, LAMB1 overexpressed in T-cells, and LAMC1 underexpressed in T-

cells (Figure 6C-D). ITGA1 was significantly overexpressed in T-cells relative to colonic cell 

types in right colonic CD and highly expressed in T-cells and goblet cells in left colonic CD, 

though the differences in left colonic CD were not significant.  

 

Characterizing Infliximab Resistance Signaling Between ITGA1+ T-cells Colonic Cell Types 

Having identified a population of ITGA1+ T-cells as potential mediators of Infliximab 

resistance, we next characterized communication between T-cells and colonic cell types using a 

single-cell inter-cellular scoring algorithm that identifies active, potentially targetable, ligand-
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receptor (LR) interactions between cells (25). We scored 2,567 receptor-ligand interactions and 

identified 16 significant interactions (top 10% of all interaction scores) in left colonic CD 

containing at least one Infliximab resistance signature gene, all of which were also present in the 

22 significant interactions in right colonic CD.  

We visualized these interactions between cell types in a network using Cytoscape, with 

nodes for each cell type and edges indicating if a significant LR interaction was present colored 

by the cell expressing the receptor or ligand (Figure 7A) (28). T-cells predominately interacted 

with each other through collagen COL1A1 binding to integrin ITGB1, the other half of the 

integrin α1β1 duplex with ITGA1 (Figure 7B).  ImmProt analysis showed that ITGB1 protein 

was highly abundant in all ImmProt T-cell populations, but the relative specificity of ITGA1 and 

COL1A1 in different T-cell populations suggests that these proteins interactions with ITGB1 

determine the specificity of T-cell to T-cell interactions in cCD (Figure 7B) (24).  

Interactions via the integrin α1β1 duplex were highly prevalent between ITGA1 positive 

T-cells and colonic cell types (Figure 7C-E). ITGA1 positive T-cells predominately interact with 

goblet cells via goblet cell secretion of LAMA1 interacting with ITGA1 or COL1A1 interacting 

with ITGB1, the other half of the integrin α1β1 duplex (Figure 7C). Goblet cells in turn appeared 

to express the integrin α2β1 duplex and bind to COL1A1 secreted by T-cells, but the strongest 

interaction was between COL1A1 secreted by T-cells and the discodin domain receptor tyrosine 

kinase, DDR1, on goblet cells (Figure 7C). T-cell interactions with other epithelial cell 

populations were mostly mediated by collagens secreted by T-cells binding to either integrin 

α1β1 or integrin α2β1 or DDR1 (Figure 7D). ITGA1 and ITGB1 expressing T-cells primarily 

interacted with epithelial cells by binding to secreted COL1A1 or laminins LAMA1 or LAMB1 

(Figure 7D).   
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Interactions between T-cells and stromal cells accounted for the highest number of 

significant interactions (Figure 7E). The interaction between COL4A1 secreted by stromal cells 

and ITGA1+ T-cells was stronger here than between other pairs of cell types and was the only 

significant interaction that contained two proteins from our Infliximab resistance signature. We 

also observed secretion of COL1A1 by T-cells and subsequent binding to DDR1, ITGB1, and 

ITGA2 accounted for the most significant cell-cell interactions across all cell types (Figure 7). 

The large number of significant interactions between ITGA1+ T-cells and colonic cell types and 

large number of interactions involving COL1A1 secretion by T-cells suggest that collagen 

binding integrins, expressed on both T-cells and colonic cell types, play a role in Infliximab 

resistance and that the interactions between these cell types may be potential therapeutic targets.  

 

Discussion  

The broadly important, fundamental challenge of inter-species translation can often become 

further complicated by discrepancies in phenotypes and molecular data types between clinical 

cohorts and pre-clinical experimental systems. Here, we demonstrated the effectiveness of the 

TransComp-R framework for translating proteomic dysregulation in CD mouse models a 

phenotypically and molecularly mismatched clinical cohort of CD patients to characterize 

resistance to anti-TNF therapy. We identified a network signature for Infliximab resistance that 

links many disparate observations of laminins, collagen binding integrins, and MAP3K1 

signaling in cCD to the clinically important challenge of overcoming resistance to anti-TNF 

therapies. Our verification of the relevance of this signature in immune cell proteomics data and 

in independent biopsies from a cCD patient indicates a larger role for collagen, laminin, and 
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associated integrin binding signaling in CD pathobiology and to a particular therapeutic 

resistance phenotype.  

Overall, our results indicate an expanded role for collagen binding integrin signaling in the 

clinically important phenotype of Infliximab resistant colonic Crohn’s Disease. In healthy colon, 

ITGA1 expression localizes to colon crypts in (29) and inhibition of ITGA1 is protective against 

colitis in the DSS and TNBS mouse models of IBD (30, 31). Previous studies examining tissue-

independent markers of memory T-cells have also implicated ITGA1 as a consistent surface 

marker of tissue-resident memory T-cells (32).  Our results suggest that collagen binding integrin 

signaling associated with Infliximab resistance is facilitated predominately by a memory T-cell 

population and their interactions with other colonic cell types. The combined evidence of our 

ligand-receptor scoring of our scRNA-seq data and the ImmProt analysis indicates that the T-

cells expressing ITGA1 may not be the same one secreting collagen and laminin proteins into the 

extracellular space, that other populations of T-cells secrete ligands eliciting integrin signaling in 

memory T-cell and colonic cell populations. The downstream consequences of this complex 

intercellular signaling network may in turn activate intracellular pathways on T-cells and colonic 

cell types that facilitate CD disease progression and result in Infliximab resistance. 

Our results also indicate that MAP3K1 signaling may be playing a role in Infliximab 

resistance as an intracellular mediator of the extracellular signaling cues from collagen binding 

integrin signaling. Signaling to ITGA1 on the surface of cells is capable of regulating MAP3K1 

via GIRB, another Infliximab resistance protein identified by TransComp-R (33-36). Further 

studies have shown that MAP3K1 is a regulator of RAF1, itself a mediator of the ERK and JNK 

signaling cascades (37). A small clinical trial of a RAF1 inhibitor showed that targeting the JNK 

signaling cascade in macrophages could induce remission in cCD and that this could be achieved 
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in Infliximab non-responsive patients (38-40). MAP3K1 also carries a colonic CD specific SNP, 

rs832582, may predispose carriers to a more intense inflammatory response (41). A potential 

biomarker of Infliximab resistance in cCD could therefore be MAP3K1 signaling in neutrophils 

and/or stromal cells as well as potentially the IBD risk SNP rs832582 for MAP3K1. Importantly, 

the convergence of multiple signaling disruptions by collagen binding integrins and MAP3K1 

suggests that patients expressing these disease characteristics would not benefit from anti-TNF 

therapy and should be considered for an alternative therapeutic course.   

A powerful computational feature of TransComp-R is that it identifies mouse proteomic PCs 

predictive of human phenotypes despite these PCs explaining little variation in the mouse 

proteomics data. In standard PCA, latent variables are constructed to explain the variance in the 

training dataset (mouse proteomics), rather than the relationship of the PCs to a phenotype or to 

reflect variance of a secondary dataset (human transcriptomics). Since the mouse PCA model is 

built using mice with different phenotypes than the human CD dataset (mouse inflamed vs. 

uninflamed, human Infliximab responder vs. non-responder), it is not surprising that mouse PC1 

and PC2 do not separate projected human phenotypes. This suggests that the most translatable 

pre-clinical biology may not be that which most immediately explicates the experimental groups, 

but instead indicates that a computational modeling approach such as TransComp-R can more 

insightfully recover translationally relevant biology (for instance, as obscured in less obvious 

PCs). We believe that Translatable Components Regression is widely applicable to challenges of 

translation in other disease contexts, model systems, and types of molecular data. 

 
 

 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/776666doi: bioRxiv preprint 

https://doi.org/10.1101/776666


Materials and Methods 
 

Analysis of Human CD Gene Expression Data 

Colonic and ileal CD transcriptomic data was obtained from gene expression omnibus, accession 

number GSE16879, using Bioconductor tools and normalized by robust multichip average 

method (2, 14, 42, 43). Differential expression analysis was performed using the Wilcoxon Rank 

Sum test with Benjamini Hochberg False Discovery Rate (FDR) correction and significance 

defined by q < 0.20. PROGENy pathway enrichment analysis was run on the human data as 

previously described (15). Pathways were tested for differential regulation by Wilcoxon Rank 

Sum test with p < 0.05 considered significant.  

 

Analysis of Mouse Proteomics Datasets 

The T-cell transfer and TNF-ARE mouse proteomics datasets were obtained from two studies 

examining proteomic changes between inflamed and uninflamed mice (8, 9). The mouse protein 

identifiers were mapped to their coding genes and converted to human gene symbols using the 

Mouse Genome Informatics databases (44, 45). Only one-to-one mouse-human homologs were 

retained for the analysis.  

 

Translatable Components Regression 

When constructing a PCA model, it is often desirable to project observations from another 

dataset into that model to examine how the variability explained by the model relates to those 

new observations. This requires normalizing the new observation, usually by mean centering and 

scaling by the standard deviation of the data used to train the PCA model. However, if the new 

observation is measured on a different sequencing platform, comes from a different species, or is 
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of a different molecular data type, then this centering and scaling by training data factors is not 

well defined and may distort the projected observation. Therefore, cross-species, cross-omic, and 

cross-platform projections of biological datasets and observations should not be undertaken by 

the standard PCA projection method. The primary component of a PCA model is identification 

of the eigenvectors of the covariance matrix of the training data, that is, the PCs that explain the 

greatest possible amount of variability in the training dataset. Though these vectors define a basis 

that has a particular interpretation for the training dataset, we can ask how new observations 

project relative to this coordinate system. This is done by first internally normalizing the new 

observations by their own mean and standard deviation to define the relative spread of each 

variable and then multiplying these normalized observations by the eigenvectors of the training 

dataset. Once projected, we performed principal components regression of the projected data 

against any outcome or phenotypic variable of the new observations to identify the PCs of the 

training data that best explain the phenotype from the new observations.  

 

Immune Cell Proteomics Analysis 

FAC sorted quantitative proteomics data was obtained from (24) and analyzed for protein copy 

numbers of significantly loaded integrin pathway proteins identified by TransComp-R (Figure 5). 

Immune populations not expressing any protein from the network were excluded along with 

proteins not measured in the dataset. Data were z-score normalized by protein and clustered to 

identify groups of co-regulated proteins expressed in similar immune cell types. Analysis was 

performed in MATLAB_R2018b.  
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Collection of Patient Samples 

The study protocol was approved by the Institutional Review Board at Vanderbilt University 

Medical Center. Written informed consent was obtained for analyses of analysis of 

demographics, medication history, serum, and tissue biopsies obtained at the time of endoscopic 

procedures as part of routine clinical care to evaluate for disease activity and response to therapy 

in a patient with ileo-colonic CD. The patient underwent an overnight fast and received 

polyethylene glycol electrolyte solution for bowel preparation prior to colonoscopy. At the time 

of colonoscopy, biopsy specimens were obtained from the right and left colon (2 bites in each 

location with large capacity biopsy forceps). The specimens were placed in a 1.5mL Eppendorf 

tube with RPMI media, placed on ice, and transported to the lab for further processing for 

scRNA-seq analysis.  

 

Tissue processing 

Biopsies were delivered from endoscopy in cold RPMI, and transferred to DPBS (without Ca or 

Mg) with 4mM EDTA and .5mM DTT to chelate for one hour before being lightly triturated in 

DPBS. Tissues were then resuspended DPBS containing cold-active protease (Sigma) at 5mg/ml 

with DNase (Sigma) at 2.5mg/ml and incubated for 20 minutes at 4-6˚C with rocking motion. 

Trituration with a P1000 pipette needle was performed on dissociated suspension to yielded 

single cells, which were then filtered through a 35µm mesh and washed into DPBS. Essentially, 

the entire specimen was dissociated and used for subsequent steps. Live cell concentration was 

counted based on Trypan Blue positive cells. Cells were adjusted to a concentration of 150,000 

cells/ml and Optiprep was added to a final concentration of 16% just prior to encapsulation. 
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inDrop single-cell RNA-seq 

Single-cell encapsulation of gut epithelial tissue was performed using the inDrop platform 

(1CellBio) with an in vitro transcription library preparation protocol, as previously described (46, 

47). inDrop utilizes CEL-Seq in preparation for sequencing and is summarized as follows: (1) 

reverse transcription (RT), (2) ExoI nuclease digestion, (3) SPRI purification (SPRIP), (4) 

second strand synthesis, (5) SPRIP, (6) T7 in vitro transcription linear amplification, (7) SPRIP, 

(8) RNA fragmentation, (9) SPRIP, (10) primer ligation, (11) RT, and (12) library enrichment 

PCR. Number of cells encapsulated was calculated by approximating the density of single-cell 

suspension multiplied by bead loading efficiency during the duration of encapsulation. 

Approximately 3,000 cells for each sample entered the microfluidic chip. Following library 

preparation, as described above, the samples were sequenced using Nextseq 500 (Illumina) using 

a 150 bp paired-end sequencing kit in a customized sequencing run. After sequencing, reads 

were filtered, sorted by their designated barcode, and aligned to the reference transcriptome 

using the InDrop pipeline (48, 49).  

 

Single-cell filtering 

scRNA-seq count data was filtered using several steps. First, the cumulative read inflection point 

was plotted.  A cutoff of approximately 25-30% beyond the inflection point was used to exclude 

low quality barcodes, but retain cells with small library sizes.  The filtered data were then 

normalized for library size and transformed, and visualized using t-SNE with 100 PCs.  Density 

peak clustering was performed, and user-defined thresholds were set to obtain 10-20 clusters. 

Library size rank and combined mitochondrial gene expression were overlaid onto t-SNE space 

and low-quality cells were removed using these criteria. Canonical marker genes of cell types 
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were also overlaid onto the t-SNE space to ensure that cell types of interest were not removed 

during filtering. 

 

Cell Type Classification and Ligand-Receptor Interaction Scoring 

Cells were filtered for subsets expressing at least Infliximab resistance marker gene from the 

TransComp-R signature. Cell type markers were selected from previous single-cell analyses of 

colonic and intestinal tissue contexts and used to train a Gaussian mixture model (GMM) on the 

log-normalized expression data as previously described (25-27). Differential expression analysis 

was carried out using the Kruskal-Wallis test (p< 0.05) on Infliximab resistance marker genes. 

We then characterized the intercellular signaling network of ligand-receptor interactions between 

identified cell types by assigning a score based on the product of average receptor expression in a 

cell type with the average ligand expression in the interacting cell type as previously described 

(25). Receptor-ligand interaction scores in the top 10% of all interaction scores across cell types 

that contained at least one Infliximab resistance signature gene were retained for downstream 

analysis and interpretation. 
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Fig. S1. cCD patient scores on non-predictive mouse PCs. Human cCD patient scores on (A) 
TCT mouse proteomic PC1 and PC2 and (B) TNF-ARE mouse proteomic PC1 and PC2.  
 

Fig. S2. TransComp-R of iCD patient and TCT mouse data. TransComp-R of iCD and TCT 
mouse proteomics (A) iCD scores on human RNA PC1 and PC2 and T-cell transfer (TCT) 
mouse scores on mouse proteomic PC1 and PC2. (B) PCR model coefficients. (C) Human scores 
on mouse proteomic PC1 and PC4. (D) Distribution of absolute values of protein loadings on 
mouse proteomic PC1 and PC4. (E) Loadings plot with non-significant protein loading bounds 
shaded in grey. 

 
Fig. S3. Comparison of integrin pathway gene expression between resistant (R) and sensitive (S) 
patients before and after Infliximab treatment.  
 

Table S1. Regression coefficients for the T-cell Transfer mouse and colonic Crohn’s Disease 
TransComp-R model. 

 
Table S2. Regression coefficients for the TNF-ARE mouse and colonic Crohn’s Disease 
TransComp-R model.  
 

Table S3. PANTHER pathway enrichment analysis of significantly loaded proteins on TNF-ARE 
mouse PC4 and PC6. 

 
Table S4. Marker genes for classification of cell types in the colonic scRNA-seq datasets.  

 
Table S5. Gaussian mixture model training and cross validation for left colonic (LC) and right 
colon (RC) CD biopsy cell type classification. 
 

Table S6. Differential expression analysis results and mean gene expression (Epithelial-Epi, 
Goblet-Gob, Stromal-Str, T-cell) of Infliximab resistance signature genes in left and right colonic 
CD biopsies (Kruskal-Wallis Test).  
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Figures 
 

 
Figure 1. Tissue-specific signatures of Infliximab (IFX) resistance. (A) Differential 
expression analysis (WMW p < 0.05, FDR q < 0.20) between colonic CD Infliximab sensitive (S) 
(n = 12), resistant (R) (n = 7), and colon biopsies from control patients (n = 6), and (B) between 
ileal CD Infliximab sensitive (S) (n = 8), resistant (R) (n = 10), and ileum biopsies from control 
patients (n = 6). (C) PROGENy pathway enrichment analysis identified significant (WMW p < 
0.05) disease and Infliximab response associated pathways.
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Figure 2. Translatable Components Regression (TransComp-R) Methodology. 

TransComp-R begins with feature selection of human DEGs associated with Infliximab response 

and mouse proteins with one-to-one human homolog DEGs. A Principal Components Analysis 

(PCA) model of the selected mouse proteins is then constructed. Human RNA data is projected 

into the mouse protein PCA model such that relative differences between human samples are 

represented in terms of the mouse proteomic latent variables. A Principal Components 

Regression (PCR) model is then constructed to relate the human scores on mouse PCs to 

human Infliximab response. The PCs predictive of Infliximab response (the Translatable 

Components (TC)) are interpreted to identify protein dysregulation associated with Infliximab 

response.  
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Figure 3. TransComp-R of cCD Infliximab response against the T-cell transfer (TCT) 

mouse model. (A) PCA scores plots of cCD RNA and TCT mouse proteomics data using 288 

Infliximab-resistance associated differentially expressed orthologous genes. (B) TransComp-R 

identifies TCT mouse proteomic PC6 and PC7 as predictive of Infliximab response in cCD. (C) 

Histograms of absolute values of protein loadings on mouse proteomic PC6 and PC7 with 75th 

percentile threshold for significant loadings shown for each PC. (D) Significant integrin pathway 

protein loadings on PC6 and PC7 with non-significant region shaded. 
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Figure 4. TransComp-R of colonic Crohn’s Disease Infliximab response against the TNF-

ARE mouse model of IBD. (A) PCA scores plots of cCD RNA and TNF-ARE mouse 

proteomics data using 708 Infliximab-resistance associated DEGs with mouse homologs. (B) 

TransComp-R identifies TNF-ARE mouse proteomic PC4 and PC6 as significantly predictive of 

Infliximab response in cCD. Plotting the human scores on these mouse PCs shows stronger 

separation by Infliximab response than in the human RNA PCA. (C) Histograms of absolute 

values of protein loadings on mouse proteomic PC4 and PC6 with 75th percentile threshold for 

significant loadings shown for each PC. (D) Significant integrin pathway protein loadings on PC4 

and PC6 with non-significant region shaded.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/776666doi: bioRxiv preprint 

https://doi.org/10.1101/776666


 

Figure 5. Integrin-Infliximab Resistance Network Signaling in Immune Cell Populations. 

Protein copy numbers from FAC sorted immune cell populations reveals cell-type specific 

expression of components of the Infliximab resistance network. 
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Figure 6. Single-cell analysis of Infliximab resistance network genes in colonic CD. (A) 

TSNE plot of cells expressing resistance markers from right colonic CD biopsy. (B) TSNE plot of 

cells expressing resistance markers from left colonic CD biopsy. (C) Differentially expressed 

(Kruskal-Wallis p< 0.05, WMW p < 0.05) resistance markers in right colonic CD biopsy. (D) 

Differentially expressed resistance markers in left colonic CD biopsy. 
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Figure 7. Cell-cell ligand-receptor interaction scoring of Infliximab resistance associated 

genes in cCD. (A) Network of significant ligand-receptor (LR) scores containing at least one 

Infliximab resistance signature gene. Cell types are connected by edges indicating a LR 

interaction was significant present and edge thickness indicates the strength of interaction. (B) 

Normalized LR scores for T-cell to T-cell interactions. (C) Normalized LR scores for T-cell and 

goblet cell interactions. (D) Normalized LR scores T-cell and epithelial cell interactions. (E) 

Normalized L-R scores for T-cell and stromal cell interactions. 
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Supplementary Information 

 
 
Fig. S1. cCD patient scores on non-predictive mouse PCs. Human cCD patient scores on (A) 

TCT mouse proteomic PC1 and PC2 and (B) TNF-ARE mouse proteomic PC1 and PC2.  
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Fig. S2. TransComp-R of iCD patient and TCT mouse data. TransComp-R of iCD and TCT 

mouse proteomics (A) iCD scores on human RNA PC1 and PC2 and T-cell transfer (TCT) 

mouse scores on mouse proteomic PC1 and PC2. (B) PCR model coefficients. (C) Human scores 

on mouse proteomic PC1 and PC4. (D) Distribution of absolute values of protein loadings on 

mouse proteomic PC1 and PC4. (E) Loadings plot with non-significant protein loading bounds 

shaded in grey. 
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Fig. S3. Comparison of integrin pathway gene expression between resistant (R) and 
sensitive (S) patients before and after Infliximab treatment.  
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Table S1. Regression coefficients for the T-cell Transfer mouse and colonic Crohn’s Disease 
TransComp-R model.  

 
Model Coefficient Estimate SE tStat pValue 
Intercept -0.26 0.11 -2.46 0.032 
Mouse Proteomic PC1 0.37 0.25 1.44 0.18 
Mouse Proteomic PC2 -0.07 0.12 -0.60 0.56 
Mouse Proteomic PC 3 0.023 0.14 0.15 0.88 
Mouse Proteomic PC 4 0.27 0.21 1.29 0.22 
Mouse Proteomic PC 5 0.10 0.13 0.81 0.43 
Mouse Proteomic PC 6 1.04 0.26 3.91 0.0024 
Mouse Proteomic PC 7 0.33 0.13 2.63 0.023 
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Table S2. Regression coefficients for the TNF-ARE mouse and colonic Crohn’s Disease 
TransComp-R model.  

 
Model Coefficient Estimate SE tStat pValue 
Intercept -0.26 0.13 -1.96 0.076 
Mouse Proteomic PC1 -0.10 0.18 -0.58 0.57 
Mouse Proteomic PC2 0.21 0.21 1.03 0.33 
Mouse Proteomic PC3 -0.17 0.14 -1.21 0.25 
Mouse Proteomic PC4 -0.49 0.17 -2.89 0.015 
Mouse Proteomic PC5 -0.082 0.20 -0.41 0.69 
Mouse Proteomic PC6 -0.96 0.23 -4.27 0.0013 
Mouse Proteomic PC7 0.39 0.14 2.85 0.016 
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Table S3. PANTHER pathway enrichment analysis of significantly loaded proteins on TNF-ARE 
mouse PC4 and PC6. 

 
PANTHER Pathways p-value FDR q-value 
Integrin signaling pathway (P00034) 1.22E-07 2.00E-05 
Histamine H1 receptor mediated signaling pathway (P04385) 4.72E-05 1.93E-03 
Muscarinic acetylcholine receptor 1 and 3 signaling pathway 
(P00042) 2.85E-05 2.33E-03 
Corticotrophin releasing factor receptor signaling pathway 
(P04380) 1.12E-04 3.66E-03 
Angiotensin II-stimulated signaling through G proteins and beta-
arrestin (P05911) 2.36E-04 4.83E-03 
Oxytocin receptor mediated signaling pathway (P04391) 1.96E-04 5.36E-03 
Thyrotropin-releasing hormone receptor signaling pathway 
(P04394) 2.33E-04 5.46E-03 
Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha 
mediated pathway (P00027) 4.34E-04 7.11E-03 
5HT2 type receptor mediated signaling pathway (P04374) 4.08E-04 7.43E-03 
Beta3 adrenergic receptor signaling pathway (P04379) 8.43E-04 1.26E-02 
Opioid proenkephalin pathway (P05915) 1.47E-03 1.61E-02 
5HT4 type receptor mediated signaling pathway (P04376) 1.32E-03 1.67E-02 
Gonadotropin-releasing hormone receptor pathway (P06664) 1.64E-03 1.68E-02 
Opioid proopiomelanocortin pathway (P05917) 1.47E-03 1.72E-02 
Opioid prodynorphin pathway (P05916) 1.32E-03 1.81E-02 
Muscarinic acetylcholine receptor 2 and 4 signaling pathway 
(P00043) 2.04E-03 1.97E-02 
5HT1 type receptor mediated signaling pathway (P04373) 4.16E-03 3.41E-02 
Beta1 adrenergic receptor signaling pathway (P04377) 4.16E-03 3.59E-02 
Metabotropic glutamate receptor group II pathway (P00040) 4.80E-03 3.75E-02 
Beta2 adrenergic receptor signaling pathway (P04378) 4.16E-03 3.79E-02 
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Table S4. Marker genes for classification of cell types in the colonic scRNA-seq datasets.  
 

Biopsy	 Cell	Type	 Marker	Gene	
Left	 T-cell	 CD2	
Left	 T-cell	 TRAC	
Left	 T-cell	 TRBC2	
Left	 T-cell	 CD3D	
Left	 Epithelium	 EPCAM	
Left	 Epithelium	 KRT19	
Left	 Epithelium	 KRT20	
Left	 Goblet	 EPCAM	
Left	 Goblet	 MUC2	
Left	 Goblet	 REG4	
Left	 Stromal	 RPS27	
Left	 Stromal	 RPS12	
Left	 Stromal	 RPS24	
Left	 Stromal	 SLC12A2	
Right	 T-cell	 CD2	
Right	 T-cell	 TRAC	
Right	 T-cell	 TRBC2	
Right	 Epithelium	 EPCAM	
Right	 Epithelium	 KRT19	
Right	 Goblet	 CLCA1	
Right	 Goblet	 MUC2	
Right	 Goblet	 REG4	
Right	 Stromal	 RPS27	
Right	 Stromal	 RPS12	
Right	 Stromal	 RPS24	
Right	 Stromal	 SLC12A2	
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Table S5. Gaussian mixture model training and cross validation for left colonic (LC) and right 
colon (RC) CD biopsy cell type classification. 

 
Training	Fold	 LC	Accuracy	 LC	Fold	Predictions	 RC	Accuracy	 RC	Fold	Predictions	

1	 0.905	 88	 0.947	 197	
2	 0.958	 88	 0.897	 197	
3	 0.918	 88	 0.919	 197	
4	 0.881	 88	 0.863	 197	
5	 0.938	 88	 0.904	 197	
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Table S6. Differential expression analysis results and mean gene expression (Epithelial-Epi, 
Goblet-Gob, Stromal-Str, T-cell) of Infliximab resistance signature genes in left and right colonic 
CD biopsies (Kruskal-Wallis Test).  
 
Gene	 Biopsy	 KW	p-value	 Epi.	Mean	 Gob.	Mean	 Str.	Mean	 T-cell	Mean	
MAP3K1	 Right	 0.000	 0.144	 0.433	 0.677	 0.157	
ACTN1	 Right	 0.079	 0.013	 0.017	 0.016	 0.066	
LAMA4	 Right	 0.425	 0.128	 0.140	 0.092	 0.388	
LAMB1	 Right	 0.000	 0.022	 0.017	 0.040	 0.388	
LAMB2	 Right	 0.227	 0.007	 0.006	 0.020	 0.008	
LAMC3	 Right	 0.174	 0.110	 0.067	 0.124	 0.083	
GRB2	 Right	 0.632	 0.006	 0.006	 0.012	 0.017	
PARVB	 Right	 0.001	 0.410	 0.354	 0.363	 0.174	
RND3	 Right	 0.310	 0.211	 0.253	 0.259	 0.248	
COL4A1	 Right	 0.000	 0.123	 0.275	 0.223	 0.851	
ILK	 Right	 0.001	 0.104	 0.079	 0.036	 0.050	
COL4A2	 Right	 0.195	 0.058	 0.045	 0.116	 0.116	
COL5A2	 Right	 0.366	 0.013	 0.011	 0.004	 0.000	
ITGA1	 Right	 0.000	 0.021	 0.028	 0.064	 0.157	
COL1A1	 Right	 0.077	 0.004	 0.017	 0.016	 0.008	
COL12A1	 Right	 0.163	 0.123	 0.096	 0.167	 0.091	
COL1A2	 Right	 0.024	 0.055	 0.090	 0.072	 0.008	
LAMC1	 Right	 0.011	 0.123	 0.112	 0.120	 0.017	
MAP3K1	 Left	 0.000	 0.446	 0.316	 1.015	 0.412	
ACTN1	 Left	 0.370	 0.007	 0.018	 0.000	 0.020	
LAMA4	 Left	 0.382	 0.055	 0.070	 0.067	 0.392	
LAMB1	 Left	 0.000	 0.022	 0.009	 0.000	 0.275	
LAMB2	 Left	 0.581	 0.007	 0.026	 0.015	 0.000	
LAMC3	 Left	 0.012	 0.059	 0.132	 0.052	 0.059	
GRB2	 Left	 0.012	 0.004	 0.018	 0.000	 0.039	
PARVB	 Left	 0.202	 0.531	 0.491	 0.418	 0.431	
RND3	 Left	 0.001	 0.498	 0.596	 0.478	 0.137	
COL4A1	 Left	 0.164	 0.089	 0.158	 0.119	 0.196	
ILK	 Left	 0.392	 0.042	 0.044	 0.022	 0.078	
COL4A2	 Left	 0.103	 0.070	 0.026	 0.097	 0.020	
COL5A2	 Left	 0.807	 0.013	 0.009	 0.007	 0.000	
ITGA1	 Left	 0.228	 0.031	 0.070	 0.045	 0.078	
COL1A1	 Left	 0.809	 0.004	 0.009	 0.007	 0.000	
COL12A1	 Left	 0.005	 0.070	 0.114	 0.157	 0.157	
COL1A2	 Left	 0.263	 0.065	 0.035	 0.037	 0.118	
LAMC1	 Left	 0.000	 0.312	 0.386	 0.075	 0.020	
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