- 1 *Running title:* Ago2-seq identifies new microRNA targets for seizure control
- 2 *Authors:* Morten T. Venø^{1*}, Cristina R. Reschke^{2,3*}, Gareth Morris^{2,3,4*}, Niamh M. C.
- 3 Connolly², Junyi Su¹, Yan Yan¹, Tobias Engel^{2,3}, Eva M. Jimenez-Mateos², Lea M. Harder⁵,
- 4 Dennis Pultz⁵, Stefan J. Haunsberger², Ajay Pal², Braxton A. Norwood⁶, Lara S. Costard^{8,9},
- 5 Valentin Neubert⁸, Federico Del Gallo¹⁰, Beatrice Salvetti¹⁰, Vamshidhar R. Vangoor¹¹,
- 6 Amaya Sanz Rodriguez^{2,3}, Juha Muilu¹², Paolo F. Fabene¹⁰, R. Jeroen Pasterkamp¹¹, Jochen
- 7 H.M. Prehn^{2,3}, Stephanie Schorge⁴, Jens S. Andersen⁵, Felix Rosenow^{8,9}, Sebastian Bauer^{8,9*},
- 8 Jørgen Kjems^{1*} and David C. Henshall^{2,3*#}
- 9 *These authors contributed equally
- 10 ¹Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and
- 11 Genetics, Aarhus University, Denmark
- 12 ²Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland,
- 13 Dublin, Ireland
- ³FutureNeuro Research Centre, RCSI, Dublin, Ireland
- ⁴Department of Clinical and Experimental Epilepsy, Institute of Neurology, University
- 16 College London, London, U.K.
- ⁵ Center for Experimental BioInformatics, University of Southern Denmark, Campusvej 55,
- 18 DK-5230 Odense M, Denmark
- 19 ⁶Expesicor Inc, Kalispell, USA
- 20 ⁷FYR Diagnostics, Missoula, USA
- ⁸Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
- 22 ⁹Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and
- 23 Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University
- 24 Frankfurt, Frankfurt a.M., Germany
- ¹⁰Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona,

- 26 Verona, Italy
- 27 ¹¹Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical
- 28 Center Utrecht, Utrecht University, Utrecht, The Netherlands
- 29 ¹²BC Platforms, Finland

- 31 Correspondence: David C. Henshall, PhD, Department of Physiology & Medical Physics,
- 32 Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02 YN77, Ireland.
- 33 Ph: +353 86 059 5039; Email: <u>dhenshall@rcsi.ie</u>
- 34
- 35 Manuscript details: Abstract: 149 words, Figures: 6, Tables: 2, Supplementary Data: 5

36 Abstract

37 MicroRNAs (miRNAs) are short noncoding RNAs that shape the gene expression landscape, 38 including during the pathogenesis of temporal lobe epilepsy (TLE). In order to provide a full 39 catalog of the miRNA changes that happen during experimental TLE, we sequenced 40 Argonaute 2-loaded miRNAs in the hippocampus of three different animal models at regular 41 intervals between the time of the initial precipitating insult to the establishment of 42 spontaneous recurrent seizures. The commonly upregulated miRNAs were selected for a 43 functional in vivo screen using oligonucleotide inhibitors. This revealed anti-seizure 44 phenotypes upon inhibition of miR-10a-5p, miR-21a-5p and miR-142a-5p as well as 45 neuroprotection-only effects for inhibition of miR-27a-3p and miR-431-5p. Proteomic data and pathway analysis on predicted and validated targets of these miRNAs indicated a role for 46 47 TGFβ signaling in a shared seizure-modifying mechanism. Together, these results identify 48 functional miRNAs in the hippocampus and a pipeline of new targets for seizure control in 49 epilepsy. 50

51 *Keywords:* Antisense oligonucleotide; Biomarker; Noncoding RNA; Epigenetic;

52 Epileptogenesis; Hippocampal sclerosis;

54 Introduction

55	Temporal lobe epilepsy (TLE) is characterized by seizures arising from or involving the
56	hippocampus and is the most common focal epilepsy syndrome in adults ¹ . TLE is frequently
57	refractory to pharmacotherapy, often necessitating surgical resection of involved brain
58	structures ² . The most common pathological finding within the removed hippocampus is
59	select neuron loss and gliosis ³ . Resected tissue from TLE patients also features
60	neuroinflammation and remodeling of neuronal networks at both micro- and macroscopic
61	scale ^{4, 5} . Recent sequencing and array-based profiling of protein-coding transcripts and
62	systems biology approaches have generated deep insights into the molecular pathophysiology
63	and helped identify novel classes of molecule for therapeutic targeting ^{6,7,8,9} .
64	MicroRNAs (miRNAs) are critical for shaping the gene expression landscape in the brain
65	¹⁰ . They are short noncoding RNAs that primarily function post-transcriptionally, conferring
66	precision to cellular protein fluctuations ^{11, 12} . Biogenesis of miRNAs involves nuclear
67	processing of a primary transcript followed by terminal loop-processing in the cytoplasm,
68	resulting in a miRNA duplex from which one strand is selected by an Argonaute (Ago)
69	protein ¹³ . Argonaute-2 (Ago2) is critically important for miRNA function, enriched in the
70	hippocampus and, uniquely among Ago proteins, can directly cleave target RNAs ¹⁴ . After
71	miRNA loading and the formation of a RNA-induced silencing complex (RISC), potential
72	mRNA targets are selected through imperfect base pairing between miRNA and mRNA ¹⁵ .
73	Upon identifying regions of sufficient complementarity, typically $7 - 8$ nt matches between
74	the miRNA and the 3' untranslated region of the target mRNA, the RISC recruits further
75	proteins, leading to translational repression or mRNA decay ¹⁶ . Individual miRNAs often
76	have multiple targets, increasing the scope for influencing several pathways or enhanced
77	regulation of single pathways by multiple miRNAs, which may be an advantage for the
78	treatment of TLE ^{11, 12} .

79	Spatio-temporal changes to miRNA expression have been reported in the hippocampus
80	following epileptogenic brain injuries and these persist in established epilepsy ^{17, 18} . In
81	parallel, in vivo deployment of oligonucleotide miRNA inhibitors (antagomirs) has
82	demonstrated functional roles for a few miRNAs in seizure control and epileptogenesis ^{19, 20} .
83	It remains unknown how many more miRNAs may be suitable targets in epilepsy. Recent
84	efforts have identified miRNAs dysregulated in TLE ^{21, 22, 23} but no study to date has focused
85	on quantifying the amounts of functional Ago2-loaded miRNAs that are shared between TLE
86	models. This is important since the specific enrichment for Ago2-loaded miRNAs provides
87	greater coverage of the miRNA landscape and better predicts the regulatory potential of
88	miRNAs ²⁴ .
89	Here, we performed small RNA sequencing of Ago2-loaded miRNAs from three different
90	animal models across all phases of epilepsy development in two rodent species. Based on this
91	resource, we deployed an <i>in vivo</i> antagomir screen and identified several novel anti-seizure
92	and neuroprotective phenotypes among miRNAs that were up-regulated across the three
93	models. Pathway analysis suggests $TGF\beta$ signaling as a potential overlapping mechanism
94	shared between the target miRNAs. Our systems-level approach identifies an extensive class
95	of miRNAs that may prove targetable for the treatment of seizures in human TLE.
96	
97	
98	Results
99	Ago2-seq provides a quantitative catalog of functionally-engaged miRNAs in experimental

100 *TLE*

101 To identify shared functionally-engaged miRNAs at each phase of epilepsy development, we

102 performed Ago2-immunoprecipitation followed by small RNA sequencing on hippocampal

103 samples from three different rodent models of TLE in two species under continuous

104 electroencephalogram (EEG) monitoring, sampling tissue at six time-points (intra-amygdala 105 kainic acid (IAKA): N = 18 treated and 18 vehicle control; pilocarpine (PILO): N = 18 treated 106 and 18 vehicle control; perforant path stimulation (PPS): N = 21 treated and 3 non-stimulated 107 control, total N = 96; Figure 1A, Supplementary Data 1 and see *Methods*). This generated 108 1.44 billion small RNA reads of which up to 82% were miRNAs, with over 400 unique 109 miRNAs detected per model (Figure 1B, Supplementary Data 2). There was exceptionally 110 high concordance for levels among the most abundant miRNAs, with sequencing reads often 111 differing by as little as 1 % across the three models (Figure 1C). 112 Induction of epilepsy led to significant changes in the abundance of approximately half of 113 the detected miRNAs in the hippocampus in each model (Figure 2A and Supplementary Data 114 3). Expression changes showed disease stage-specific differences for individual miRNAs, 115 including up- and down-regulation shortly after epileptogenic insult, on the day of first 116 spontaneous seizure and chronic epilepsy, indicating that all phases of epilepsy development 117 are associated with specific miRNA changes (Figure 2A, B, C). For miRNAs that originate 118 from the same primary transcript, expression levels of miRNAs within the cluster often 119 followed similar patterns (Figure 2C). 120 Next, we identified shared dysregulated (differential expression >25%) miRNAs across the 121 three models, excluding low-abundance (<10 RPM) miRNAs for all time-points analysed 122 (Figure 3A). Within the chronic epilepsy phase, the period most relevant to how a miRNA-123 based therapeutic might be used clinically (i.e. treating patients with pre-existing, refractory 124 epilepsy)¹⁷, we found eight up- and one down-regulated miRNAs common to all three models 125 (Figure 3B,C). This included miR-132-3p and miR-146a-5p, for which there is already significant functional data linking them to epilepsy ^{25, 26, 27, 28}, and six miRNAs (miR-10a-5p, 126 127 miR-21a-3p, miR-27a-3p, miR-142a-5p, miR-212-3p and miR-431-5p) for which there is 128 limited or no functional *in vivo* data linking to epilepsy (Figure 3C).

129 In vivo antagomir screening identifies three anti-seizure phenotypes

130	We hypothesized that the up-regulated miRNAs shared in the chronic epilepsy phase across
131	the three models would be enriched for regulators of brain excitability. To test this, we
132	assessed seizure responses after in vivo knock-down of miRNAs using locked nucleic acid
133	(LNA)-modified oligonucleotide miRNA inhibitors (antagomirs). We excluded miR-132-3p
134	and miR-146a-5p to prioritize miRNAs not previously linked to epilepsy, and excluded miR-
135	21a-3p because it is not fully conserved in humans therefore limiting translational potential.
136	Instead we selected the fully conserved miR-21a-5p, which also satisfied basal expression
137	criteria and upregulation (at least 15%) in all three models. Mice received an
138	intracerebroventricular injection of one of six targeting antagomirs, a scrambled antagomir or
139	vehicle (PBS) 24 h before induction of status epilepticus by an intraamygdala microinjection
140	of kainic acid (Figure 4A). This procedure ensures an optimal miRNA knockdown at the time
141	of testing seizure responses ²⁹ . EEG recordings were used to assess seizure severity and brains
142	were later processed to quantify irreversible hippocampal damage ²⁹ .
142 143	were later processed to quantify irreversible hippocampal damage ²⁹ . Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced
143	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced
143 144	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a-
143 144 145	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a- 5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal
143 144 145 146	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a-5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal epileptiform activity ²⁹ , was significantly reduced by the same antagomirs and was also
143 144 145 146 147	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a- 5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal epileptiform activity ²⁹ , was significantly reduced by the same antagomirs and was also significant for anti-miR-431-5p (Figure 4D). Analysis of the brains from mice killed 24 h
143 144 145 146 147 148	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a- 5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal epileptiform activity ²⁹ , was significantly reduced by the same antagomirs and was also significant for anti-miR-431-5p (Figure 4D). Analysis of the brains from mice killed 24 h after status epilepticus revealed significant neuroprotection for 5/6 of the antagomirs (those
 143 144 145 146 147 148 149 	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a-5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal epileptiform activity ²⁹ , was significantly reduced by the same antagomirs and was also significant for anti-miR-431-5p (Figure 4D). Analysis of the brains from mice killed 24 h after status epilepticus revealed significant neuroprotection for 5/6 of the antagomirs (those targeting miRNAs -10a-5p, -21a-5p, -27a-5p, -142a-5p and -431-5p), relative to controls
 143 144 145 146 147 148 149 150 	Seizure severity, as determined by analysis of EEG total power ²⁹ , was significantly reduced during status epilepticus in mice pre-injected with antagomirs against miR-10a-5p, miR-21a-5p and miR-142a-5p (Figure 4B,C). Seizure burden, determined by measuring only ictal epileptiform activity ²⁹ , was significantly reduced by the same antagomirs and was also significant for anti-miR-431-5p (Figure 4D). Analysis of the brains from mice killed 24 h after status epilepticus revealed significant neuroprotection for 5/6 of the antagomirs (those targeting miRNAs -10a-5p, -21a-5p, -27a-5p, -142a-5p and -431-5p), relative to controls (Figure 4E, F). These results suggest that a high proportion of the shared miRNAs

154

155 Knockdown of miR-10a-5p, -21a-5p and -142a-5p has limited biophysical and functional
156 effects in naïve brains

157 Current anti-seizure drugs are associated with side effects including drowsiness that arise 158 because of non-specific dampening of brain excitability ^{1,2}. To assess whether this was a risk 159 for any of the antagomirs, we focused on the miRNAs which showed the most robust anti-160 seizure phenotypes when targeted (miR-10a-5p, miR-21a-5p and miR-142a-5p). We 161 conducted a range of behavioral and electrophysiological assessments, originally developed for antagomir-injected rats,³⁰ to report on possible adverse effects of miRNA inhibition in 162 163 vivo. Performance of rats injected with each of the three antagomirs was normal in the novel 164 object location test, although anti-miR-21a-5p caused a non-significant reduction in object discrimination (Figure 5A). We next prepared ex vivo brain slices from the same rats 2-4 days 165 166 after antagomir injection, to coincide with maximal miRNA knockdown²⁹. Multiple 167 electrophysiological measurements were normal in antagomir-injected animals including field 168 response to Schaffer collateral stimulation (Figure 5B), paired pulse facilitation (Figure 5C) 169 and pyramidal neuron biophysical properties (Figure 5D). We also stained hippocampal tissue 170 sections for pre- and post-synaptic marker proteins. Immunofluorescent staining revealed that 171 depletion of miR-142a-5p selectively reduced the size of the glutamatergic pre-synaptic 172 marker VGLUT1, with no effect of the post-synaptic marker PSD-95. Anti-miR-10a-5p and 173 anti-miR-21a-5p had no effect on either marker (Figure 5E). Taken together, these studies 174 indicate that the anti-seizure antagomirs have no deleterious effects on hippocampal 175 properties in naïve animals.

176

177

179 Convergence of targets and pathways regulated by the miRNAs

180 To investigate potential mechanisms of the seizure-modifying antagomirs, we developed a 181 new miRNA-target interaction (MTI) database and focused on identifying convergent 182 pathways for miR-10a-5p, miR-21a-5p and miR-142a-5p. The putative mRNA targets of the 183 three miRNAs were identified using both predicted (miRDiP)³¹ and experimentally validated (miRTarBase ³² TarBase ³³) datasets. To reduce the risk of false-positives, we applied strict 184 185 MTI filtering conditions based on miRDIP-assigned confidence levels and type of 186 experimental validation (see Methods). The estimated MTIs for each miRNA, along with 187 brain expression information for each putative target, are listed in Supplementary Data 4. 188 While each miRNA had many unique targets, the three seizure-related miRNAs (miR-10a-5p, 189 miR-21a-5p and miR-142a-5p) shared 59 mRNA targets (Figure 6A, Table 1). Interestingly, 190 SLC17a7 (VGLUT1) was predicted as a high confidence target of miR-142a-5p, in line with 191 our experimental data (Figure 5F). 19 of the shared mRNA targets, including PTEN, were not 192 targeted by miR-27a-3p or miR-431, indicating that these targets could be specific to the 193 observed seizure-modifying effects (Figure 6A, Table 1). Moreover, 48 mRNAs targeted 194 by >1 of the seizure-modifying miRNAs (of a total 525) have previously been associated with 195 epilepsy, including GABA receptor, sodium, and potassium channel subunits (Table 2). In 196 situ hybridization for miR-10a-5p, miR-21a-5p and miR-142a-5p suggested neuronal as well 197 as glial expression, consistent with these targets (Supplementary Data 5). 198 We next performed Reactome pathway enrichment analysis on the predicted targets for 199 each of the miRNAs, using targets expressed in the hippocampus, and found that 15 pathways 200 were enriched for targets of >1 seizure-modifying miRNA (Figure 6B). Notably, six of these 201 pathways are associated with TGF β signaling, including the two pathways enriched in targets 202 of all three miRNAs ('R-HSA-170834: Signaling by TGF-beta Receptor Complex' and its 203 daughter pathway 'R-HSA-2173793: Transcriptional activity of SMAD2/SMAD3:SMAD4

204	heterotrimer'). On further investigation, we noted that 35/73 genes involved in these two
205	pathways are targeted by at least one of the seizure-modifying miRNAs (Figure 6C). Four of
206	these mRNAs have been previously implicated in epilepsy, including Ubiquitin specific
207	peptidase 9, X-linked (USP9X) ³⁴ , a gene targeted by all three miRNAs. To corroborate these
208	systems-level predictions, we performed mass spectrometry proteomic analyses on rat
209	hippocampi isolated at the chronic time-point of the PPS model. This identified significant
210	changes in the expression of multiple proteins involved in TGF β signaling. The main changes
211	observed were down-regulation in the range of 0.7-0.9 FC (Figure 6D). This is consistent with
212	the actions of miRNAs to fine tune protein levels of targets in the same pathway. Five of the
213	seven significantly (p<0.01) downregulated proteins in the TGF β signaling pathway,
214	including Usp9x, are targeted by one or more of the three identified miRNAs as depicted in
215	Figure 6C. Taken together, these results identify potential convergent miRNA target pathways
216	underlying the anti-seizure effects of the miRNAs identified using functional screening across
217	three <i>in vivo</i> animal models.
218	

218

219

220 **Discussion**

In the present study, we provide a comprehensive catalog of functional miRNA expression in the mouse and rat hippocampus and the changes that occur upon induction of epilepsy across three different models. Using this resource and an *in vivo* antagomir screening assay, we demonstrate that miRNAs that show consistent changes after spontaneous recurrent seizures in all three models are a rich source of targets for seizure modification. Intracerebral injection of anti-seizure antagomirs did not disrupt normal hippocampal functions. Finally, we provide evidence for pathways by which dysregulation of these miRNA may generate brain hyperexcitability. Together, these studies demonstrate how a systems-level approach can
identify novel miRNA targets for the treatment of acute seizures or epilepsy.

230 By regulating the gene expression landscape and through their multi-targeting actions, 231 miRNAs exert important effects on the excitable properties of neuronal networks underlying 232 brain function ¹⁰. By extension, miRNAs represent potential targets for seizure control or 233 disease-modification in epilepsy ¹⁷. The existence of conserved miRNA signatures in the 234 development and maintenance of a seizure-prone state would provide important mechanistic 235 insights and guide prioritization of miRNAs for therapeutic targeting. Here we undertook a 236 coordinated effort, sequencing Ago2-bound miRNA to more accurately predict the regulatory potential of a given miRNA than by measuring overall miRNA levels in a sample²⁴, covering 237 238 three different models, two species and all stages from the initial precipitating insult to 239 establishment of spontaneous recurrent seizures. The dataset contains robust statistics and fold 240 change for individual miRNAs at each time point to illustrate expression variance and cross-241 model and cross-species comparisons. We found high concordance between the models and species in expression of known brain-enriched miRNAs, including miR-128-5p ³⁵ and 242 243 members of the let-7-family³⁶ whereas no reads were detected for non-brain miRNAs such as 244 miR-122-3p (liver-specific) and miR-208b-3p (heart-specific) ^{37, 38}. The dataset features expected changes to neuronal activity-regulated miRNAs including miR-132-3p²⁵ and 245 246 miRNAs that regulate cellular responses to tissue injury, such as apoptosis-associated miR-34a-5p^{39,40}. Together, the results offer important advances over previous work which focused 247 248 on predetermined miRNAs (e.g. microarray-based), lacked quantitative information on relative abundance and lacked functional relevance (non-Ago2-loaded miRNAs) ^{21, 25, 41, 42, 43,} 249 250 ^{44,45}. The Ago2-seq data provided in the current study are also an important companion to 251 other databases on miRNA-epilepsy associations ⁴⁶. The data complement, as well as reveal 252 distinct profiles from. Ago2-seq analysis of neural precursors ⁴⁷ and should interest

researchers working on disease mechanisms for which there is shared pathophysiology, such
 as traumatic brain injury ⁴⁸.

255 By employing a multi-model sequencing approach, we were able to demonstrate that there 256 are shared miRNAs dysregulated at all phases in the development of epilepsy, up to and 257 including the period of active chronic epilepsy. Most of the miRNA changes fell within a 1.5 258 -3 fold range although some, including miR-142a-5p, displayed much larger fold changes. 259 There was no apparent species or model-specific bias and numbers of shared miRNAs at the 260 different stages of epilepsy development were quite similar, ranging from 6 - 18 among up-261 regulated miRNAs. We detected previously reported changes to miRNAs functionally linked to experimental epilepsy, including miR-22-3p ⁴⁹, miR-129-5p ⁵⁰, miR-134-5p ²⁵, miR-146a-262 263 5p²⁷ and miR-324-5p⁵¹. This indicates that Ago2-seq identifies robust miRNAs for targeting, 264 a means to cross-compare between species and model, and a way to better prioritize miRNAs 265 for functional assessment. A number of the miRNAs reported to be dysregulated in human TLE ^{52, 53, 54} were also differentially expressed in the chronic epilepsy state. This underscores 266 267 the clinical relevance and translatability of our findings. It also invites additional predictions 268 about human-dysregulated miRNAs which might be tested for function in animal models. The 269 results extend evidence of a common miRNA signature in experimental epileptogenesis ²³, 270 contrasting conclusions from certain meta-analyses ²². Moreover, we report higher numbers of 271 miRNAs and more differentially expressed miRNAs across these animal models than any previous epilepsy profiling study ^{21, 25, 41, 42, 43, 44, 45}, indicating that miRNA dysregulation may 272 273 impact on gene expression even more extensively than previously thought ¹⁷. 274 The potential for a miRNA-based therapeutic is gaining traction for disease modification in 275 epilepsy ^{5, 17}. LNA-based oligonucleotides as used here are particularly relevant for clinical

translation as this backbone chemistry has been used in human trials of a miRNA-based

277 therapy for hepatitis C ⁵⁵. Here we show that robust anti-seizure and neuroprotective effects

278 can be achieved by targeting multiple miRNAs commonly upregulated at the stage of chronic 279 epilepsy. Notably, this included miRNAs for which there was no prior knowledge of a 280 functional link to epilepsy. Our unbiased screen for anti-seizure phenotypes identified five 281 antagomirs that protect the brain against prolonged seizures, of which those targeting miR-282 10a-5p, miR-21a-5p and miR-142a-5p had the most robust effects. This is a substantial 283 addition to the number of miRNAs reported as potential targets for seizure control ²⁰. It also 284 suggests that many of the upregulated miRNAs in the chronic epilepsy phase may be 285 suppressing targets that would otherwise oppose hyperexcitability. While the anti-seizure 286 effects of targeting miR-10a-5p, miR-142a-5p and the neuro-protection associated with 287 inhibition of miR-431-5p are novel, a recent study also found that targeting miR-21-5p could 288 suppress seizures ⁵⁶ Notably, our behavioral tests and biophysical analyses of the 289 electrophysiological properties of hippocampus from antagomir-treated rodents showed no 290 obvious impairments, indicating broad safety and suitability to enter preclinical development. 291 The regulatory potential of miRNAs is enhanced where there is convergence upon a small 292 number of targets or pathways ^{11, 12}. An important effort in the present study was to combine 293 mRNA targets of all miRNAs (experimentally validated and predicted interactions) to build 294 superior pathways, building in a high confidence threshold for target predictions. We found 295 that mRNA targets of the three seizure-regulating miRNAs shared TGFβ and related SMAD 296 signaling pathways as a potential overlapping seizure-modifying mechanism, while analyses 297 at the protein level corroborated this pathway-level effect. This highlights that miRNA 298 effects, while diverse at the level of individual miRNAs, can converge on common signaling 299 pathways to exert complementary effects. TGFβ-signaling is known to be involved in 300 epileptogenesis ⁵⁷, and the seizure-suppressive effects of losartan, an AT1 receptor antagonist, 301 are potentially mediated through TGF β -signaling ⁵⁸. Other overlapping targets included ion 302 channels and PPAR α -signaling pathways. Furthermore, several of the genes targeted by two

303 or all three of the seizure-regulating miRNAs have previously been implicated in epilepsy. This includes USP9X ³⁴ which is targeted by all three seizure-regulating miRNAs, was down-304 305 regulated in our proteomics analysis, and is also a component of the TGFβ-signaling pathway. 306 However, the unique advantage of targeting miRNAs is the fact that by their nature of action, 307 multiple genes within these signaling pathways are targeted. 308 There are some limitations and assumptions to consider in the present study. Some of the 309 Ago2-bound miRNA pool may not be actively engaged with mRNA targets ⁵⁹, Ago isoforms 310 besides Ago2 may be important ¹⁴ and small RNA sequencing may over- or under-estimate the abundance of certain miRNA species ⁶⁰. The use of already-epileptic animals, in which the 311 312 target miRNA level would be increased, could have yielded larger effect sizes in our 313 functional screen. While we restricted our functional studies to upregulated miRNAs, it is 314 likely that seizure-regulating miRNAs are present among the downregulated miRNAs²³. 315 Finally, adjustment of criteria for selecting miRNAs could yield additional miRNAs for 316 functional studies. Indeed, several potentially new epilepsy-associated miRNAs not identified 317 in multi-model or meta-analyses of miRNAs^{21, 22, 23} showed significant up- or down-318 regulation in two of the models here including highly-expressed miRNAs (thus likely to be 319 functionally significant) such as miR-410-3p and miR-434-3p (down-regulated) and miR-24-320 3p and miR-127-3p (up-regulated). 321 In summary, the present study generated a unique resource to explore the expression and 322 dysregulation of miRNAs across multiple animal models of epilepsy and throughout the 323 course of the disease. This systematic approach to discovery revealed a greater than 324 previously anticipated, temporally-specific dysregulation of miRNAs in epilepsy and showed 325 this to be a rich source of seizure-regulatory miRNA targets. We identified multiple additional 326 miRNA targets for seizure control as well as identified potential mechanistic pathways. 327 Together, these results reinforce and extend the evidence that miRNAs are a major class of

328 regulatory element in epilepsy with therapeutic potential for seizure control.

330 Methods

331 Animal models of epilepsy

All animal experiments were performed in accordance with the European Communities Council

333 Directive (2010/63/EU). All animals were housed in on-site barrier-controlled facilities having

a 12 h light-dark cycle with ad libitum access to food and water.

335 Procedures in rats were approved by the local regulation authority (for Philipps University 336 Marburg, Germany: Regierungspraesidium Giessen, 73/2013), or according to the Animals 337 (Scientific Procedures) 1986 Act (UK). Male Sprague-Dawley rats (325–350 g; Charles River, 338 Germany or 200-300 g; Harlan, UK) were used in all studies. Epilepsy was induced using the perforant pathway stimulation (PPS) model in rats, as described⁶¹. Animals received 339 340 buprenorphine (0.2 mg/kg s.c.) and were anesthetized (isoflurane; 5% induction, 2-3% 341 maintenance). Drill holes were prepared for electrode implantation and 3 fixing screws. An EEG transmitter (A3028E, Open Source Instruments, Inc., Watertown, MA, USA) was 342 343 implanted into a skin pouch prepared at the left abdominal site of the rat. Stimulation electrodes 344 (diameter 0.125 mm, Plastics One, Roanoke, VA, USA) were implanted bilaterally into the angular bundle of the PP (AP: immediately rostral of the lambdoid suture, ML: +/- 4.5 mm 345 346 lateral of the sagittal suture). Recording electrodes (diameter 0.25 mm, Plastics One, Roanoke, VA, USA) were implanted bilaterally into the DG (coordinates: 3.0 mm caudal from Bregma, 347 348 \pm +/-2.0 mm lateral from the sagittal suture). In order to determine the optimal dorso-ventral (DV) 349 positioning of recording and stimulation electrodes, stimuli of 20 V at 0.5 Hz were applied with 350 0.5 Hz via the stimulation electrodes during implantation, and evoked potentials were recorded 351 from the DG. Plastic connectors joined the electrodes with stimulation/recording equipment. 352 After surgery, rats were allowed 1 week of recovery before PPS was initiated. The PPS protocol 353 utilized a paradigm designed to evoke and maintain hippocampal seizure activity throughout 354 the stimulation, but not convulsive status epilepticus⁶¹, which consisted of continuous, bilateral

355 2 Hz paired-pulse stimuli, with a 40 ms interpulse interval, plus a 10 second train of 20 Hz 356 single-pulse stimuli delivered once per minute, generated by a S88 stimulator (Grass 357 Instruments, West Warwick, USA). All pulses (0.1 ms duration) were delivered at 15-20 V. 358 PPS was applied for 30 min on two consecutive days and for 8 h on the third day. As described 359 previously, animals required only isoflurane (but no benzodiazepines or other injectable drugs) 360 to terminate seizure activity which occurred occasionally immediately after the end of PPS⁶¹. 361 Video and EEG were recorded continuously for up to 3 months. EEG recordings were 362 performed with an Octal Data Receiver (A3027, Open Source Instruments, Inc., Watertown, 363 MA, USA) with a sampling rate of 512 Hz. Data were recorded in NDF (Neuroscience Data 364 Format) and converted to EDF (European Data Format) for visual analysis with EDFbrowser 365 (version 1.57). Video recording was performed with infrared cameras (IC-7110W, Edimax 366 Technology, Willich, Germany) and sampled with the SecuritySpy software (Ben Software 367 Ltd., London, UK). The total EEG of all rats was screened visually for appearance of seizure 368 patterns by experienced reviewers (LC, VN, BN, SB). In accordance with clinical practice in 369 epileptology, seizure patterns were defined as rhythmic activity of at least 10 s which clearly 370 broke background activity, contained epochs of high frequency spikes or spike-wave-371 complexes, and showed an evolution in frequency and amplitude. Video was used to clarify 372 appearance of artefacts (e.g. chewing, scratching). Rats were killed under deep anesthesia 373 (xylazine+ketamine) by transcardial perfusion with ice-cold 0.9 % NaCl solution at the 374 following time points: 1 h, 24 h, 72 h, 10 d and 16 d after induction of epilepsy via PPS 375 (epileptogenesis); within 1 d after the first spontaneous seizure (early epilepsy); 1 month after 376 the first spontaneous seizure (chronic epilepsy). Control rats were killed on day 17 after surgery (corresponding to day 10 after PPS in the epilepsy group). Hippocampi were rapidly removed 377 378 and snap frozen at -80 °C.

379 Procedures for inducing epilepsy using the intraamygdala kainic acid (IAKA) technique in 380 mice were approved by the Research Ethics Committee of the Royal College of Surgeons in 381 Ireland (REC-842), under license from the Health Products Regulatory Authority 382 (AE19127/001), Dublin, Ireland. Adult male C57BL/6 mice (20 – 25 g, Harlan) were used, as 383 described ⁶². Mice were anesthetized (isoflurane; 5% induction, 1-2% maintenance) and 384 equipped for continuous EEG and video recordings using implantable EEG telemetry devices 385 (Data Systems International). Transmitters (model F20-EET) which record bilateral EEG from 386 the skull were implanted in a subcutaneous pocket at the time of cannula placement (on the dura 387 mater following coordinates from bregma; IA: AP = -0.95 mm, L = +2.85 mm, V = 3.1 mm). 388 The behavior of the animals was recorded using a video camera placed next to the cage. 389 Continuous video-EEG data were acquired for each animal. After transmitter-cannula fitting, 390 mice underwent intra-amygdala microinjection of kainic acid (IAKA; 0.3 µg in 0.2µl; Sigma-391 Aldrich, Ireland) to induce status epilepticus followed by intraperitoneal lorazepam (8 mg/kg) 392 after 40 min to reduce morbidity and mortality. Mice were killed at 1 h, 24 h, 48 h, 72 h, the 393 day of first spontaneous seizure (typically 3 – 5 d after status epilepticus) or at 2 weeks (chronic 394 epilepsy). At the time of euthanasia, mice were deeply anesthetised with phenobarbital and 395 transcardially perfused with ice-cold PBS to remove blood contaminants. Brains were rapidly 396 removed and the entire hippocampus frozen and stored at -80°C.

Procedures for inducing epilepsy using the pilocarpine (PILO) model in mice were approved by the University of Verona research ethics committee under license from the Italian Ministry of Health (27/2014-PR). Adult male NMRI mice (Harlan) were fitted for DSI telemetry as above. After recovery, animals were given methylscopolamine (1 mg/kg) to block peripheral cholinergic actions and then after 30 min, given pilocarpine (300 mg/kg). Mice were and killed at 1 h, 24 h, 48 h, 72 h, the day of first spontaneous seizure (typically 1 -2 w after

status epilepticus) or at 4 weeks (chronic epilepsy). Euthanasia and tissue preparation was asdescribed above.

405

406 Immunoprecipitation of Ago2, RNA extraction and sequencing (Ago2-seq)

407 Frozen hippocampi were allowed to thaw on ice. Thawed tissue was homogenised in 200 µl of 408 IP buffer (300 mM NaCl, 5mM MgCl₂, 0.1% NP-40, 50mM Tris-HCl pH 7.5, protease and 409 RNase inhibitors) using plastic homogenising sticks until the tissue was completely 410 homogenised. The homogenate was centrifuged at 16,000 g for 15 min at 4 °C to pellet nuclei 411 and membranes. Supernatant (considered total cell lysate) was transferred to a clean Eppendorf 412 tube. Bradford assay was performed to quantify protein content of total cell lysate. The lysate 413 was pre-cleared by adding 10 µl of 50% Protein A/G beads (Santa Cruz Biotechnology, 414 Germany) to 400 µg of protein lysate, final volume was adjusted to 1 ml using IP buffer and lysate was incubated rotating for 1 hour at 4 °C then centrifuged at 13,000 g for 5 min at 4°C 415 416 to pellet the beads and supernatant was transferred to a new Eppendorf tube. 5 µg (5 µl of AGO-417 2 Cell Signalling Cat. #2897) antibody was added to pre-cleared cell lysate, vortexed and 418 incubated rotating overnight at 4 °C. 20 µl of 50% A/G agarose beads were added to lysate-419 antibody solution and incubated rotating for 2 hours at 4 °C then centrifuged at 16,000 g for 15 420 min at 4°C and supernatant removed. The pellet was washed twice with 500 µl IP buffer by 421 gently resuspending pellet, centrifuging at 16,000 g for 1 min at 4 °C and removing supernatant. 422 Trizol RNA purification was performed after which pelleted RNA was dissolved in 12 µl dH20 423 and heated to 60 °C for 10 min. Purified RNA was stored at -80 °C until small RNA library 424 preparation. 5 µl of purified RNA was prepared using TruSeq small RNA library preparation 425 kit (Illumina), for rat samples using standard procedure and 12 PCR cycles, for mouse using 426 half the amount of primers and reagents and 15 PCR cycles. Pippin prep (Sage Science) was 427 used to size fractionate libraries to 140bp - 160bp size range. Library size and purity was

validated on a Bioanalyzer 2100 (Agilent) using High Sensitivity DNA chip and the
concentration was quantified using KAPA Library Quantification Kit. Prepared libraries were
pooled as required and sequenced on a NextSeq500 (Illumina) at Exiqon.

431

432 Analysis of small RNA sequencing data

433 FASTX-Toolkit was used to quality filter reads and cutadapt was used to remove adaptor 434 sequences. Filtered reads were mapped using Bowtie to a list of datasets. First, reads were 435 mapped to miRNAs from miRBase v21 allowing zero mismatches, but allowing for non-436 templated 3' A and T bases. Reads not mapping to miRNAs were mapped against other relevant 437 small RNA datasets: piRNA, tRNA, snRNA, snoRNA and Y RNA allowing one mismatch. The 438 remaining unmapped reads were mapped to mRNA and rRNA datasets. MiRNAs were normalized as reads per million miRNA mapping reads (RPM). Statistical significance was 439 440 calculated by One-Way ANOVA with FDR (Benjamini-Hochberg).

441 Common-to-all miRNAs were defined as having mean basal expression above 10 RPM, while 442 exhibiting same-directional expression change of 25% or higher in all three models at key time 443 points in each model. The time-points were: 1 h after induction of status epilepticus, 24 h (early 444 epileptogenesis, in all models), latent period (72 h in IAKA and PILO models, 16 days in PPS 445 model), day of first spontaneous seizure (DOFS; within the first 24 h of a first spontaneous 446 seizure occurring), chronic epilepsy (2 weeks in the IAKA model, 4 weeks in the PILO model 447 and 1 month in the PPS model). This approach allows for selection of miRNAs with similar 448 expression trends in all three models at key functional periods. These common-to-all miRNAs 449 are a strong vantage point for further validation.

450

452

453 Systematic antagomir screening

454 Antagomir screening was performed in the IAKA mouse model according to previously described techniques ⁶³. Mice were anesthetized and prepared with an additional guide cannula 455 456 for intracerebroventricular antagomir injection (ICV: AP = +0.3 mm, L = +0.9 mm, V = 1.35457 mm; from Bregma). Skull-mounted recording electrodes were placed and fixed with dental 458 cement for EEG recordings. After recovery, mice were ICV injected with 0.5 nmol/2 µl of 459 locked nucleic acid (LNA) oligonucleotide targeting: miR-10a-5p, miR-21a-5p, miR-27a-3p, 460 miR-142a-5p, miR-212-3p or miR-431-5p. Control animals received a non-targeting scrambled 461 version of the antagomir or PBS. Twenty-four hours later mice were connected to the lead 462 socket of a swivel commutator, which was connected to an EEG (Grass TwiN digital EEG). A 463 baseline recording was obtained followed by IAKA injection and continued for one hour. 464 Mouse EEG data were analyzed and quantified using LabChart 8 software (ADInstruments, Oxford, U.K.) as described 63 . Seizures were defined as high-amplitude (> 2 x baseline) high-465 466 frequency (> 5 Hz) polyspike discharges lasting > 5 seconds. EEG total power was plotted as 467 percentage of baseline recording (each animal's EEG power post seizure compared to its own 468 baseline EEG) ⁶³. Twenty-four hours after status epilepticus mice were transcardially perfused 469 and brains sectioned for histopathological analysis of hippocampal damage. Seizure-induced 470 neuronal damage was analyzed on 12 µm coronal sections at the level of medial hippocampus 471 (AP = -1.70 mm) using Fluoro-Jade B (FJB) (Millipore Ireland B.V.) as described ⁶².

472

473

474

475 In situ hybridization

Non-radioactive in situ hybridization (ISH) was performed as described previously ⁶⁴. Except,
hybridization was performed with 10 nM of double-DIG (3' and 5') - labelled locked nucleic
acid (LNA) probes for miR-10a-5p, miR-142a-5p, miR-21a-5p and LNA-DIG Scramble probe
(Exiqon) overnight at 50 °C followed by stringency washes at 55 °C. Four IAKA mice and two
PBS mice with three sections per mouse were used.

481

Behavioral testing and in vitro assay of effects of anti-miR-10a-5p, anti-miR-21a-5p and antimiR-142a-5p

484 Stereotaxic injection for each miRNA knockdown was performed on adult male Sprague

485 Dawley rats (weight range 270-380 g) as described previously ³⁰. Briefly, rats were

486 anaesthetized with isoflurane (5% induction, ~2.5% maintenance) and given metacam (0.2 ml

487 subcutaneous) prior to beginning surgery, followed by 0.15 ml buprenorphine and 2.5 ml

488 saline (both subcutaneous) during recovery. We injected 2.5 nmol in 2 ml TE buffer of either

489 anti-miR-10a-5p, anti-miR-21a-5p and anti-miR-142a-5p or Scr at the following co-ordinates

490 (relative to bregma): AP -0.92 mm, L +1.3 mm, V 3.3 mm, to target the lateral ventricle.

491 Treatments were blinded throughout all experimental procedures and analysis. Injection rate

492 was controlled at 200 nL.min⁻¹ and the needle was left in place for five minutes post-injection,

493 to minimize backflow through the injection tract. Rats were allowed to recover from surgery

494 with food and water freely available.

495 For the novel object location (NOL) test, rats were habituated to the behavioral arena (1m x
496 1m; Tracksys, Nottingham, UK) for five minutes each day over five days. On day six rats

497 underwent stereotaxic surgery as described above. On day seven, rats completed the NOL

498 test. Rats were allowed to explore two identical objects for five minutes. After one hour, rats

499 were returned to the arena with one object moved to a novel location within the arena.

500 Exploration was measured manually and defined as when the nose was within roughly 2 cm

501 of the object, excluding time spent climbing on top of the object. Task performance was 502 assessed using two measures: D1 (T_{novel} - $T_{familiar}$) and discrimination index ([T_{novel} - $T_{familiar}$]/ 503 [T_{novel} + $T_{familiar}$]).

504 Ex vivo brain slices were prepared between two and four days after surgery, to coincide 505 with the maximal miRNA silencing effect ³⁰. Rats were anaesthetized briefly with isoflurane 506 and heavily with an i.p. injection of sodium pentobarbital, prior to transcardial perfusion with 507 ice cold oxygenated sucrose ACSF slicing solution (in mM: 205 sucrose, 10 glucose, 26 508 NaHCO₃, 1.2 NaH₂PO₄.H₂O, 2.5 KCl, 5 MgCl₂, 0.1 CaCl₂). The brain was quickly extracted 509 and sliced in 350 µm horizontal sections using a Campden 7000 smz slicer (Campden 510 Instruments, Loughborough, UK). Slices for electrophysiology were held in a submerged 511 style holding chamber filled with oxygenated recording ACSF (in mM: 125 NaCl, 10 glucose, 512 26 NaHCO₃, 1.25 NaH₂PO₄.H₂O, 3 KCl, 2 CaCl₂, 1 MgCl₂) and allowed to recover at room 513 temperature for one hour before recording. Slices for immunohistochemistry were stored in 514 4% paraformaldehyde (PFA) at this point and processed as outlined below. 515 All slice electrophysiology was performed using a membrane chamber ³⁰ perfused with 516 oxygenated recording ACSF, heated to 34°C, at a rate of 16 mL.min⁻¹. Electrophysiological 517 data were recorded using an AxoClamp 700B amplifier (Molecular Devices, CA, USA), 518 digitized at 10 kHz with a Power1401 (Cambridge Electronic Design, Cambridge, UK) and 519 recorded using Signal software (Cambridge Electronic Design). For extracellular recordings, 520 we stimulated the Schaffer Collateral pathway with a bipolar stimulating electrode and 521 recorded the response in CA1 stratum radiatum using a glass microelectrode ($\sim 5 \text{ M}\Omega$) filled 522 with recording ACSF. Patch clamp recordings used $\sim 5 M\Omega$ glass microelectrodes filled with 523 intracellular solution (in mM: 135 K-gluconate, 4 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, 524 10 Na₂-phosphocreatine; pH 7.3; 290 mOsm). All recordings were made with access 525 resistance $<20 \text{ M}\Omega$ and were rejected if action potentials did not overshoot 0 mV.

526	Slices for immunohistochemistry were fixed for 24 hrs in PFA before washing 3x5 mins in
527	PBS. Slices were permeabilized for 2 hours at room temperature (RT) in PBS+0.5% triton and
528	blocked for 1 hour at RT in PBS+3% BSA. Slices were incubated in primary antibodies
529	overnight at 4 °C and washed again for 3x5 mins in PBS. Secondary antibodies were applied
530	for 2 hours at RT before a final 3x5mins wash in PBS. Hoechst stain was added for 2 mins
531	during the final wash. Slices were mounted using Fluoroshield (Sigma) and imaged using a
532	Zeiss 710 confocal microscope (Carl Zeiss, Cambridge, UK).
533	
534	Bioinformatics – mRNA target identification, miRNA-target interaction (MTI) prioritization,
535	and pathway enrichment analysis
536	We developed a novel Neo4j graph database that incorporates publicly available datasets of
537	both predicted and experimentally validated miRNA-target interactions (MTIs). Predicted
538	MTIs were downloaded from miRDiP V4.1, a database that integrates 30 prediction
539	algorithms and calculates an MTI confidence score based on statistical inference
540	[http://ophid.utoronto.ca/mirDIP/index.jsp#r] ³¹ . Experimentally validated MTIs were
541	downloaded from miRTarBase V7
542	[http://mirtarbase.mbc.nctu.edu.tw/php/search.php#target]32 and TarBase V7.0
543	[http://carolina.imis.athena-
544	innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex] ³³ . To ensure
545	interoperability, all miRNA names were translated to miRBase V22 using
546	miRNAmeConverter [http://www.systemsmedicineireland.ie/tools/mirna-name-converter/]65
547	and mRNA names were converted to official gene symbols using Ensembl V91. Non-human
548	MTIs were excluded to constrain analyses to putative translatable mechanisms. Strict filtering
549	criteria were devised to prioritize MTIs and reduce the risk of false-positive MTI
550	identification - predicted MTIs were retained only if their miRDIP-assigned confidence levels

551	were 'Very High', while experimentally validated MTIs were excluded if the only form of
552	validation was high-throughput CLiP experiments performed prior to 2013, as these are
553	considered less reliable due to poor antibody specificity and RNA contamination ⁶⁶ . Our
554	database also incorporates baseline mRNA tissue expression information from the GTEx-EBI
555	Expression Atlas [https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5214/Results] and
556	transcription factor information from TRRUST V2.0 [https://www.grnpedia.org/trrust/],
557	ENCODE
558	[http://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
559], and ChEA
560	[http://amp.pharm.mssm.edu/Harmonizome/dataset/CHEA+Transcription+Factor+Targets].
561	mRNAs implicated in epilepsy were identified using an in-house database collating
562	information from CARPEDB [http://carpedb.ua.edu/], epiGAD 67, Wang et al 68 and curated
563	epilepsy-genes from the Comparative Toxicogenomics Database (CTD) [http://ctdbase.org/
564	(Jan, 2019)]. ⁶⁹
565	Pathway analysis was performed on Reactome pathways containing 10-500 genes by applying
566	the cumulative hypergeometric distribution for p-value comparison ⁷⁰ . Pathways with
567	corrected p-values < 0.05 (Benjamini-Hochberg) were considered significantly enriched.
568	
569	Proteomic analysis
570	Frozen rat hippocampi were resuspended in 200 μl lysis buffer (6M GdmCl, 10mM TCEP, 1×
571	Complete protease inhibitor cocktail, 1× PhosSTOP inhibitor, 100 mM TEAB, benzonase) and
572	dounced 30 times with a plastic douncer while kept on ice. Hereafter samples were boiled for
573	5 min and sonicated on ice using a probe sonicator with 10 sec on/ 10sec off for 2min total.

574 Samples were then centrifuged at 13000 rpm for 3 min and the supernatant was added 575 chloroacetamide to a final concentration of 20 mM followed by incubation in the dark for 30 576 min at room temperature (RT). Proteins where then digested adding first LysC and incubating 577 for 30 min at RT and then diluting 10× using 100 mM TEAB followed by adding trypsin and 578 incubating over night at 37°C with shaking. Both LysC and trypsin was added in a 579 LysC/trypsin:protein ratio of 1:100.

580 Samples were centrifuged at 13000 rpm for 5 min and from the supernatant a volume 581 corresponding to 50 µg peptide was transferred to a new eppendorff tube. Sets of 6 samples 582 were labelled using the TMTsixplex[™] isobaric label reagent. (ThermoFisher Scientific). The 583 labeling reagent was prepared using the manufactures instructions to first equilibrate to RT, 584 then dissolving the labeling reagent in 41 µl anhydrous acetonitrile for 5 min with occasional 585 vortexing and finally centrifuging to gather the solution. The 41 µl labeling reagent was then 586 added to each sample and incubated for 1 hour at RT. The reaction was quenched by incubating 587 with 0.76 M lysine for 15 min. After quenching, a small amount was taken out from each 588 sample, mixed and then tested by mass spectrometry analysis for labeling efficiency and mixing 589 ratio. Hereafter the remaining samples were mixed in a 1:1 ratio.

590 The Stage-tips for the high-pH reverse phase fractionation was prepard by placing first two C18 591 disks in a p200 pipette tip, then adding a slurry of C18 beads (ReproSil-Pur, 3 µm, 120 Å) in 592 methanol to create a layer of ~1 cm of beads and adding one additional C18 disk in the top. The 593 column was activated and equilibrated by washing one time in 150 µl buffer B (50% buffer A, 594 50% ACN) and then two times in 150 µl buffer A (20mM Ammonium hydroxide, pH 10). The 595 labeled peptide sample was adjusted to pH 10 using buffer A and then loaded onto the activated 596 and equilibrated stage-tip by spinning the sample through the column and collecting the flow-597 through. The column was washed 2 times with 150 µl buffer A and the washes were collected 598 and combined with the flow-through. Next, peptides were eluted stepwise in 17 fractions by 599 spinning 150 µl of buffer A containing increasing amounts of ACN for each step (3.5%, 4.5%, 600 6%, 8%, 10%, 10.5%, 11.5%, 13.5%, 15%, 16%, 17.5%, 18.5%, 19.5%, 21%, 27%, 50%, 80%)

through the column. After collection, the liquid was evaporated completely in a Concentrator
Plus (Eppendorf) and prepared for MS by resuspending in buffer A* (2% ACN, 0.1% TFA).

603 Samples were analyzed using an Easy-nLC system coupled online to a Q Exactive HF mass 604 spectrometer (Thermo Scientific) equipped with a nanoelectrospray ion source 605 (Proxeon/Thermo Scientific). The peptides were eluted into the mass spectrometer during a 606 chromatographic separation from a fused silica column packed in-house with 3 µm C18 beads 607 (Reprosil, Dr. Maisch) using a 120 min gradient of buffer B (80% ACN, 0.5% acetic acid) with 608 a flow rate of 250 nL/min. The Q Exactive HF was operated in positive ion mode with a top 12 609 data-dependent acquisition method where ions were fragmented by higher-energy collisional 610 dissociation (HCD) using a normalized collisional energy (NCE)/ stepped NCE of 28 and 32. 611 The resolution was set to 60,000 (at 400m/z), with a scan range of 300-1700 m/z and an AGC 612 target of 3e6 for the MS survey. MS/MS was performed at a scan range of 100 – 2000 m/z using 613 a resolution of 30,000 (at 400 m/z), an AGC target of 1e5, an intensity threshold of 1e5 and an 614 isolation window of 1.2 m/z. Further parameters included an exclusion time of 45 sec and a 615 maximum injection time for survey and MS/MS of 15 ms and 45 ms respectively.

Raw data from the LC-MS/MS analysis was processed using the MaxQuant software version 1.5.3.30 with default settings except from the following: In group specific parameters type was set to Reporter ion MS2 with 6plex TMT as isobaric labels. As variable modifications Oxidation (M), Acetyl (Protein N-term), and Deamidation (NQ) was added and in global parameters match between runs was selected. In MaxQuant, peak lists were searched against the rat UniProt database (including both swiss-prot and TrEMBL) released August 2016 using the build in search engine Andromeda.

Time profiles for each replicate were created by first normalizing to a common time point (day 16) present in each TMT experiment and then re-normalizing to the control. In this way each replicate time profile included protein ratios at each time point relative to the control.

- 626 Differential expression was evaluated using a combined limma and rank product test to obtain
- 627 q-values for each protein. Volcano plots were created by plotting log2 average ratios against –
- 628 log10 q-values obtained in the above mentioned limma and rank product test.
- 629
- 630 *Statistics*
- 631 For Ago2-seq statistical significance was calculated by one-way ANOVA with FDR
- 632 (Benjamini-Hochberg). In vivo seizure screening used one-way ANOVA with Bonferroni
- 633 post-hoc correction. Ex vivo slice experiments used unpaired t-test, one-way ANOVA, or
- 634 mixed ANOVA, as appropriate. The statistical approach for pathway analysis and proteomics
- 635 is detailed above.
- 636
- 637 Data availability
- 638 Expression data have been submitted to the gene expression omnibus (GEO) under accession
- 639 number GSE137473.
- 640

642 Acknowledgements

643 We thank Lisa Anne Byrne for support with ethics and Anne Færch Nielsen, PhD for careful

644 editing and suggestions on the manuscript. We would like to thank Nora Kalabrezi and

645 Christian Siebert for help with EEG evaluation in the PPS model.

646

647 Declaration of Competing Interests

- 648 DCH reports US patent No. US 9,803,200 B2 "Inhibition of microRNA-134 for the treatment
- 649 of seizure-related disorders and neurologic injuries".

650

651 Funding

- 652 This publication has emanated from research conducted with the financial support of the
- 653 European Union's 'Seventh Framework' Programme (FP7) under Grant Agreement no.
- 654 602130. Additional support was from Science Foundation Ireland (SFI) under grants
- 655 SFI/13/IA/1891 and 12/COEN/18. Additionally, this publication has emanated from research
- 656 supported in part by a research grant from Science Foundation Ireland (SFI) under Grant
- Number 16/RC/3948 and co-funded under the European Regional Development Fund and by
- 658 FutureNeuro industry partners. The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

660

661 Author contributions

662 MV, JS and YY performed Ago2 sequencing and statistical analyses. CRR performed *in vivo*

- antagomir studies and histological assessments in mice. GM and SS performed antagomir
- 664 electrophysiology, behavior studies and immunofluorescent staining in rats. LMH, DP and
- JSA performed proteomics. SB, TE, E J-M, BS, FDG, BN, LC, VN generated brain samples.
- ASR performed EEG analyses. PFF, FR and DCH conceived and designed the animal studies,

- 667 SJH, AP, NMCC, JHMP performed bioinformatics analysis, JK designed RNA sequencing
- studies. DCH wrote the initial manuscript and all authors contributed and approved the final
- 669 manuscript.

671 **References**

672

678

681

684

686

689

696

699

701

706

- Schuele SU, Luders HO. Intractable epilepsy: management and therapeutic alternatives.
 Lancet Neurol 7, 514-524 (2008).
- 676 2. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. *N Engl J Med* 365, 919-926
 (2011).
- Blumcke I, *et al.* Histopathological findings in brain tissue obtained during epilepsy
 surgery. *N Engl J Med* 377, 1648-1656 (2017).
- 682 4. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets.
 683 *Lancet Neurol* 10, 173-186 (2011).
- 685 5. Devinsky O, et al. Epilepsy. Nat Rev Dis Primers 4, 18024 (2018).
- 687 6. Gorter JA, *et al.* Potential new antiepileptogenic targets indicated by microarray 688 analysis in a rat model for temporal lobe epilepsy. *J Neurosci* **26**, 11083-11110 (2006).
- 690 7. McClelland S, *et al.* The transcription factor NRSF contributes to epileptogenesis by
 691 selective repression of a subset of target genes. *Elife* 3, e01267 (2014).
- 693 8. Johnson MR, *et al.* Systems genetics identifies Sestrin 3 as a regulator of a
 694 proconvulsant gene network in human epileptic hippocampus. *Nat Commun* 6, 6031
 695 (2015).
- 697 9. Srivastava PK, *et al.* A systems-level framework for drug discovery identifies Csf1R as
 698 an anti-epileptic drug target. *Nat Commun* 9, 3561 (2018).
- 10. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci 7, 911-920 (2006).
- Schmiedel JM, *et al.* Gene expression. MicroRNA control of protein expression noise. *Science* 348, 128-132 (2015).
- 705 12. Bartel DP. Metazoan MicroRNAs. Cell 173, 20-51 (2018).
- 13. Ha M, Kim VN. Regulation of microRNA biogenesis. *Nat Rev Mol Cell Biol* 15, 509524 (2014).
- 710 14. Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. *Nat Rev Genet*711 12, 19-31 (2011).
- 713 15. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo C. A dynamic search process underlies microRNA targeting. *Cell* 162, 96-107 (2015).
 715
- 716 16. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. *Nat Rev Mol*717 *Cell Biol*, (2018).
 718
- 719 17. Henshall DC, *et al.* MicroRNAs in epilepsy: pathophysiology and clinical utility. *Lancet* 720 *Neurol* 15, 1368-1376 (2016).

721		
722	18.	Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci
723		Lett 667, 47-52 (2018).
724		
725	19.	van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age.
726		<i>EMBO Mol Med</i> 6 , 851-864 (2014).
727		
728	20.	Henshall DC. Manipulating microRNAs in murine models: Targeting the multi-
729		targeting in epilepsy. <i>Epilepsy Curr</i> 17, 43-47 (2017).
730		
731	21.	Kretschmann A, et al. Different microRNA profiles in chronic epilepsy versus acute
732	21.	seizure mouse models. <i>J Mol Neurosci</i> 55 , 466-479 (2015).
733		seizure mouse mouels. 5 moi real oset 55, 400-475 (2015).
734	22.	Srivastava PK, et al. Meta-analysis of microRNAs dysregulated in the hippocampal
735	22.	dentate gyrus of animal models of epilepsy. <i>eNeuro</i> 4 , (2017).
736		dentate gyrus of animal models of epitepsy. erveuro 4, (2017).
737	23.	Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs
738	23.	as Theranostic Biomarkers of Epilepsy. <i>Mol Ther Nucleic Acids</i> 13 , 275-290 (2018).
739		as Theranostic Diomarkers of Ephepsy. <i>Mol Ther Nucleic Actas</i> 13, 275-290 (2018).
740	24.	Flores O, Kennedy EM, Skalsky RL, Cullen BR. Differential RISC association of
740	24.	
		endogenous human microRNAs predicts their inhibitory potential. <i>Nucleic Acids Res</i>
742		42 , 4629-4639 (2014).
743 744	25.	limanaz Mataga EM at al miDNA Expression profile ofter status enileptions and
	23.	Jimenez-Mateos EM, et al. miRNA Expression profile after status epilepticus and himpocompal neuroprotection by targeting miR 122. Am L Bathol 170, 2510, 2522
745 746		hippocampal neuroprotection by targeting miR-132. Am J Pathol 179, 2519-2532
746 747		(2011).
747	26.	Ilyang V. Cuo I. Wang O. Chan V. Miara DNA 122 silanging degraphing the granteneous
748 749	20.	Huang Y, Guo J, Wang Q, Chen Y. MicroRNA-132 silencing decreases the spontaneous requirement solution. <i>Int. J. Clin. Exp. Mod</i> 7 , 1630, 1640 (2014)
		recurrent seizures. Int J Clin Exp Med 7, 1639-1649 (2014).
750 751	27.	Iori V, et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification
	27.	1 5
752 753		therapeutic effects in a model of acquired epilepsy. <i>Neurobiol Dis</i> 99 , 12-23 (2017).
755 754	28.	Tao H, et al. Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the
	20.	
755 756		Lithium-Pilocarpine Mouse Model. Mediators Inflamm 2017, 6512620 (2017).
756	20	Linear Meters FM of al Cilearing mices DNA 124 and have a surgest of a
757	29.	Jimenez-Mateos EM, et al. Silencing microRNA-134 produces neuroprotective and
758		prolonged seizure-suppressive effects. Nat Med 18, 1087-1094 (2012).
759	20	
760	30.	Morris G, Brennan GP, Reschke CR, Henshall DC, Schorge S. Spared CA1 pyramidal
761		neuron function and hippocampal performance following antisense knockdown of
762		microRNA-134. Epilepsia in press, (2018).
763		
764	31.	Tokar T, et al. mirDIP 4.1-integrative database of human microRNA target predictions.
765		<i>Nucleic Acids Res</i> 46 , D360-D370 (2018).
766		
767	32.	Chou CH, et al. miRTarBase update 2018: a resource for experimentally validated
768		microRNA-target interactions. Nucleic Acids Res 46, D296-D302 (2018).
769		
770	33.	Karagkouni D, et al. DIANA-TarBase v8: a decade-long collection of experimentally

771 772		supported miRNA-gene interactions. Nucleic Acids Res 46, D239-D245 (2018).
773 774	34.	Paemka L, <i>et al.</i> Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. <i>PLoS Genet</i> 11 , e1005022 (2015).
775 776 777	35.	Tan CL, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science 342 , 1254-1258 (2013).
778 779	36.	Shinohara Y, et al. miRNA profiling of bilateral rat hippocampal CA3 by deep
780 781	. –	sequencing. Biochem Biophys Res Commun 409 , 293-298 (2011).
782 783 784 785 786	37.	Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. <i>Genome Biol</i> 5 , R13 (2004).
787 788 789	38.	Ludwig N, <i>et al.</i> Distribution of miRNA expression across human tissues. <i>Nucleic Acids Res</i> 44 , 3865-3877 (2016).
790 791 792	39.	Chang TC, <i>et al.</i> Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. <i>Mol Cell</i> 26 , 745-752 (2007).
793 794 795 796	40.	Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC. MicroRNA-34a upregulation during seizure-induced neuronal death. <i>Cell Death Dis</i> 3 , e287 (2012).
797 798 799	41.	Hu K, <i>et al.</i> Expression profile of microRNAs in rat hippocampus following lithium- pilocarpine-induced status epilepticus. <i>Neurosci Lett</i> 488 , 252-257 (2011).
800 801 802	42.	Bot AM, Debski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. <i>PLoS One</i> 8 , e76051 (2013).
802 803 804 805 806	43.	Gorter JA, <i>et al.</i> Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. <i>Neurobiol Dis</i> 62 , 508-520 (2014).
807 808 809	44.	Li MM, <i>et al.</i> Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. <i>Sci Rep</i> 4 , 4734 (2014).
810 811 812 813	45.	Roncon P, <i>et al.</i> MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy - comparison with human epileptic samples. <i>Sci Rep</i> 5 , 14143 (2015).
814 815 816	46.	Mooney C, Becker BA, Raoof R, Henshall DC. EpimiRBase: a comprehensive database of microRNA-epilepsy associations. <i>Bioinformatics</i> 32 , 1436-1438 (2016).
817 818	47.	Liu XS, et al. Identification of miRNomes associated with adult neurogenesis after stroke using Argonaute 2-based RNA sequencing. RNA Biol 14, 488-499 (2017).
819 820	48.	Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in

821 822 823		ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. <i>Prog Neurobiol</i> 69 , 103-142 (2003).
824 825 826 827	49.	Jimenez-Mateos EM, <i>et al.</i> MicroRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. <i>Scientific Reports</i> 5 , e17486 (2015).
828 829 830	50.	Rajman M, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. <i>EMBO J</i> , (2017).
831 832 833	51.	Gross C, <i>et al.</i> MicroRNA-mediated downregulation of the potassium channel Kv4.2 contributes to seizure onset. <i>Cell Rep</i> 17 , 37-45 (2016).
834 835 836 837	52.	Bencurova P, <i>et al.</i> MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. <i>Epilepsia</i> 58 , 1782-1793 (2017).
838 839 840 841	53.	Miller-Delaney SF, <i>et al.</i> Differential DNA methylation profiles of coding and non- coding genes define hippocampal sclerosis in human temporal lobe epilepsy. <i>Brain</i> 138 , 616-631 (2015).
842 843 844	54.	Kan AA, <i>et al.</i> Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. <i>Cell Mol Life Sci</i> 69 , 3127-3145 (2012).
845 846 847	55.	Janssen HL, <i>et al.</i> Treatment of HCV infection by targeting microRNA. <i>N Engl J Med</i> 368 , 1685-1694 (2013).
848 849 850 851	56.	Tang C, <i>et al.</i> Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced status epilepticus model via PTEN-mTOR. <i>Epilepsy Res</i> 144 , 34-42 (2018).
852 853 854	57.	Cacheaux LP, <i>et al.</i> Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. <i>J Neurosci</i> 29 , 8927-8935 (2009).
855 856 857	58.	Bar-Klein G, et al. Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol 75 , 864-875 (2014).
858 859 860 861	59.	La Rocca G, <i>et al.</i> In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA. <i>Proc Natl Acad Sci U S A</i> 112 , 767-772 (2015).
862 863 864	60.	Leshkowitz D, Horn-Saban S, Parmet Y, Feldmesser E. Differences in microRNA detection levels are technology and sequence dependent. <i>RNA</i> 19 , 527-538 (2013).
865 866 867	61.	Norwood BA, <i>et al.</i> Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats. <i>J Comp Neurol</i> 518 , 3381-3407 (2010).
868 869 870	62.	Mouri G, et al. Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res

- **1213**, 140-151 (2008).
- 873 63. Reschke CR, *et al.* Potent anti-seizure effects of locked nucleic acid antagomirs
 874 targeting miR-134 in multiple mouse and rat models of epilepsy. *Mol Thera* 6, 45-56
 875 (2017).
- 877 64. Vangoor VR, *et al.* Antagonizing increased miR-135a levels at the chronic stage of 878 experimental TLE reduces spontaneous recurrent seizures. *J Neurosci*, (2019).
- 880 65. Haunsberger SJ, Connolly NM, Prehn JH. miRNAmeConverter: an R/Bioconductor package for translating mature miRNA names to different miRBase versions.
 882 *Bioinformatics*, (2016).
- Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB. Mapping
 Argonaute and conventional RNA-binding protein interactions with RNA at singlenucleotide resolution using HITS-CLIP and CIMS analysis. *Nat Protoc* 9, 263-293
 (2014).
- Tan NC, Berkovic SF. The Epilepsy Genetic Association Database (epiGAD): analysis
 of 165 genetic association studies, 1996-2008. *Epilepsia* 51, 686-689 (2010).
- 892 68. Wang J, *et al.* Epilepsy-associated genes. *Seizure* **44**, 11-20 (2017). 893
- Bavis AP, *et al.* The Comparative Toxicogenomics Database: update 2019. *Nucleic Acids Res* 47, D948-D954 (2019).
- 897 70. Boyle EI, *et al.* GO::TermFinder--open source software for accessing Gene Ontology
 898 information and finding significantly enriched Gene Ontology terms associated with a
 899 list of genes. *Bioinformatics* 20, 3710-3715 (2004).
- 900 901

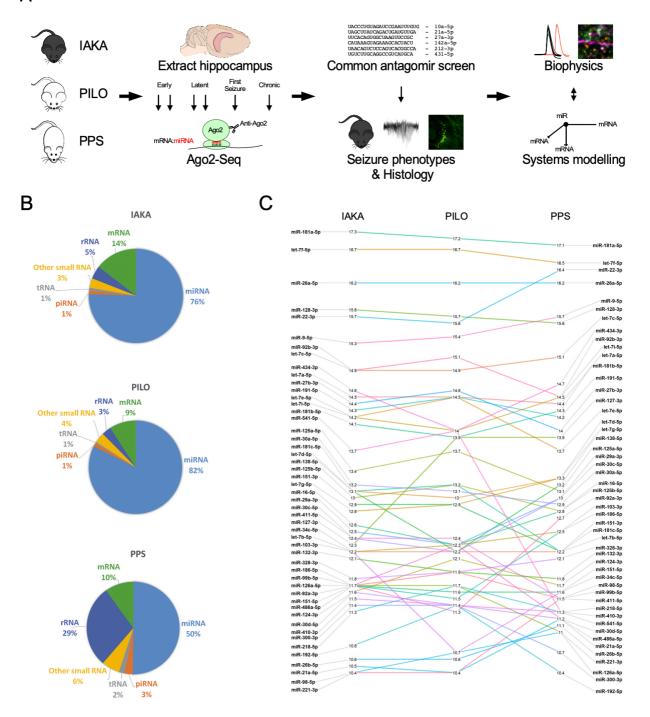
872

876

879

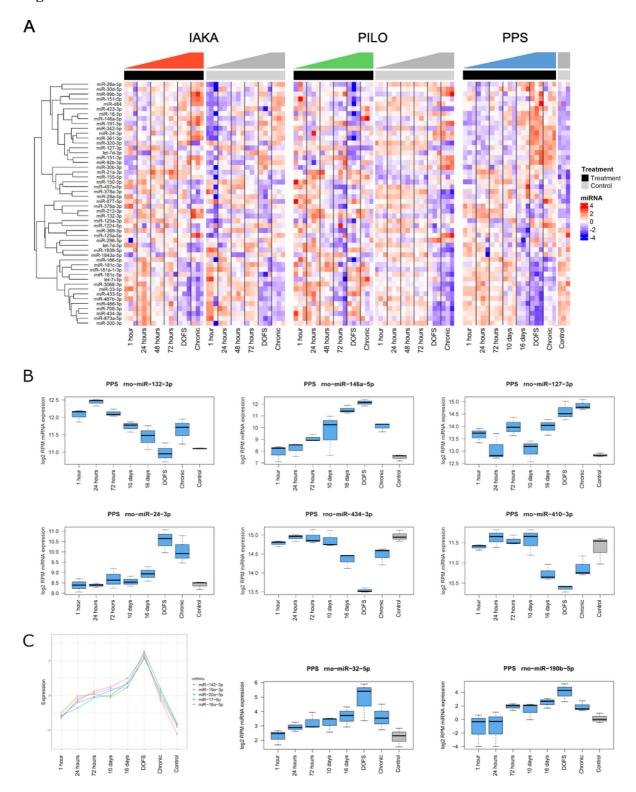
883

888

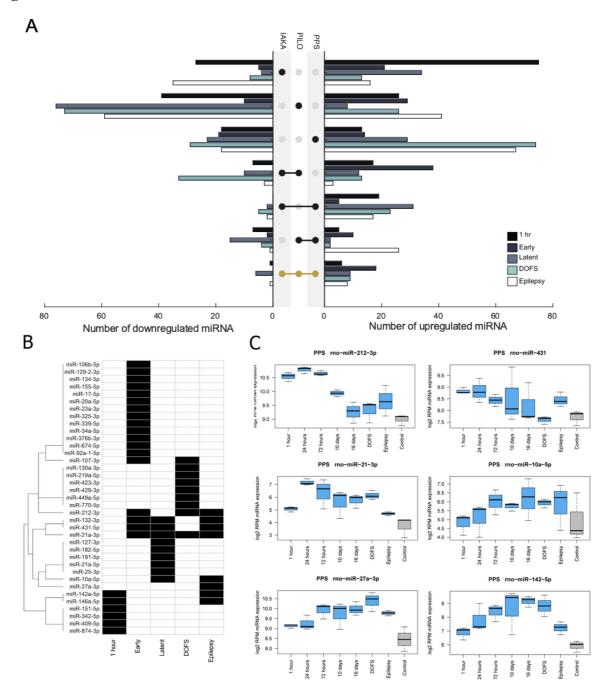

891

896

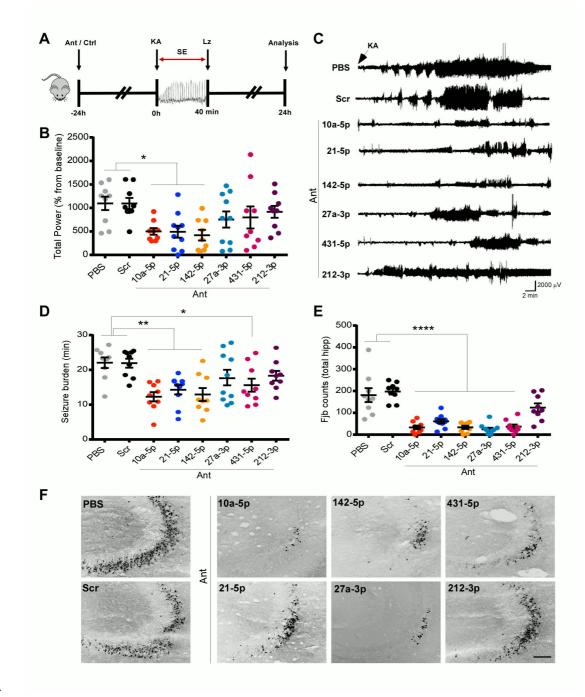
903 Figures


904 Figure 1

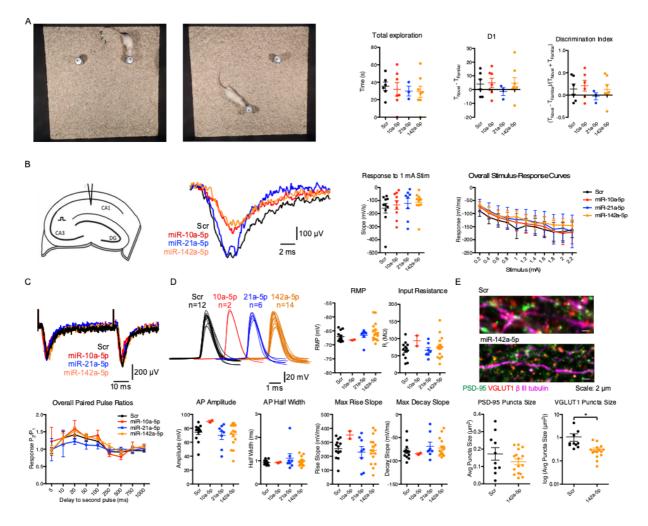
Α



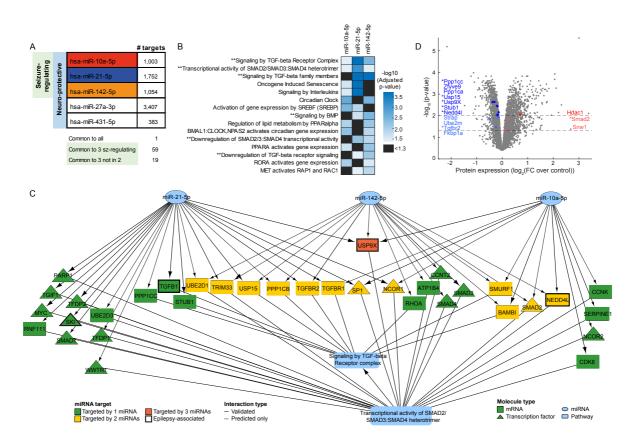
906


Figure 2

910 Figure 3



913 Figure 4



914

Figure 5

918 Figure 6

919

921 Figure Legends

922 Figure 1 – Experimental design and small RNA sequencing

923 (A) Schematic showing the full study design. 1) Three rodent models of epilepsy were 924 generated: IAKA (intraamygdala kainic acid-induced status epilepticus in C57BL/6 mice), 925 PILO (pilocarpine-induced status epilepticus in NMRI mice) and PPS (perforant pathway 926 stimulation-induced hippocampal lesioning in Sprague-Dawley rats), 2) Hippocampi were 927 extracted at six times-points and processed for Ago2 immunoprecipitation and small RNA 928 sequencing (Ago2-seq). 3) Novel miRNAs with consistent up-regulation in all three models 929 were selected for antagomir-based screen for anti-seizure phenotypes and neuroprotection. 4) 930 Pathway modelling and biophysics approaches were used to investigate the function of the miRNAs. (B) The read mapping distribution for the three rodent models. Note, majority of 931 932 small RNA reads mapped to miRNAs. (C) Expression of the top 50 miRNAs between the three 933 models showing highly similar expression levels.

934

935 Figure 2 – Extensive dysregulation of Ago2-loaded miRNAs across all phases of epilepsy 936 development

937 (A) The 50 most significantly differentially expressed miRNAs are shown as a heatmap 938 covering all samples from IAKA, PILO and PPS models. Top annotation shows epileptic 939 animals as black and control animals as grey. Shown are z-scores of log2 transformed RPM 940 values. (B) Examples of individual miRNA expression responses from the PPS model. Shown 941 are miR-132 and miR-146 and potential novel epilepsy-associated miRNAs, miR-127, -24, -942 434 and -410. (C) Clustering analysis shows that miRNAs from the miR-17~92 cluster peak at 943 DOFS. miR-142-3p also peaks at DOFS, though not transcribed from the miR-17~92 cluster. 944 Shown are also miR-32-5p and miR-190b-5p, both peaking at DOFS (day of first spontaneous 945 seizure).

946 Figure 3 – Identification of common-to-all model miRNAs

947 (A) Graphs show the overlap of up-and down-regulated miRNAs between the three models at
948 various phases of epilepsy development. (B) The miRNAs with consistent up-regulation in all
949 three models, common-to-all miRNAs, are further highlighted. (C) Examples of the expression
950 data from the PPS model for the common-to-all miRNAs upregulated in chronic epilepsy
951 (excluding miR-146a-5p and miR-132-3p).

952

953 Figure 4 – Seizure phenotype screening of antagomirs (A) Schematic shows the 954 experimental design. Briefly, mice were equipped for EEG recordings and underwent ICV 955 injection of one of six antagomirs targeting miR-10a-5p, miR-21a-5p, miR-142a, miR-27a-3p, 956 -5p, miR-431-5p, miR-212-3p and or controls (PBS or Scr). After 24 h, status epilepticus (SE) 957 was induced by IAKA followed by lorazepam (Lz) to reduce mortality and morbidity. 958 Hippocampal neuronal death was assessed at 24 h after SE. (B) Graph shows EEG total power 959 during status epilepticus as a percentage of each animal's own baseline data. Mice pre-treated with antagomirs for miR-10a-5p, miR-142a-5p, and miR-21a-5p displayed reduced seizure 960 961 severity when compared to PBS or Scramble controls. (C) Representative traces show 962 amplitude (μV) of EEG recordings over time (in min; starting from the IAKA injection) for 963 each group. (D) Graph showing seizure burden (time in ictal activity) for each group. (E) Graph 964 and (F) representative photomicrographs from the dorsal ipsilateral hippocampus of mice 24 h 965 after status epilepticus, stained using the irreversible damage marker Fluoro-Jade B (FJB). Scale 966 bars, 100 μ m). All error bars shown as mean + S.E.M. n = 9-10 / group; *P < 0.05, **P<0.01, 967 ***P<0.001 compared either to PBS or Scr by One-Way ANOVA.

969 Figure 5 Antagomir effects on behavior and hippocampal biophysics in naïve animals.

970 (A) Novel object location test - rats explored two identical objects for five minutes (left 971 *image*) and were returned to the same arena after one hour with one object moved to a novel 972 location (*right image*). Antagomirs did not cause a difference in total exploration time or any 973 clear effect on absolute preference for the novel object (D1 scatterplot) or in discrimination 974 index. (B) Stimulus-response curves - we stimulated the Schaffer collateral pathway in the 975 hippocampus and recorded the population synaptic response in CA1 stratum radiatum (left 976 schematic). Robust responses were observed in all treatment groups (middle left panel) and no 977 significant differences in excitability were seen between groups (right panels). (C) Paired-978 pulse facilitation - we used the same electrode configuration as (B) but this time delivered two 979 pulses (30% maximal response) at varying intervals. Robust facilitation was seen in all groups 980 (upper panel - representative raw data for 50 ms stimulation interval) with no clear 981 differences between groups (*lower panel*). (D) Single cell biophysics - we made current clamp 982 recordings from CA1 pyramidal neurons and stimulated with a train of hyperpolarizing and 983 depolarizing current steps. There were no differences in any passive properties (resting 984 membrane potential (RMP) and input resistance scatterplots) or in properties of the threshold 985 action potential (upper left panel - raw data for all recorded action potentials; lower 986 scatterplots - properties of threshold action potentials). (E) Immunofluorescence for excitatory 987 synaptic markers - staining for the excitatory pre-synaptic (VGLUT1) and postsynaptic (PSD-988 95) showed that ant-142 caused a selective reduction in VGLUT1 puncta size (lower panel: * 989 - unpaired *t*-test on log-transformed data, p = 0.029). 990

991	Figure 6: Target identification and pathway enrichment analysis identified TGF β
992	signaling as a potential convergent mechanism of the seizure-modifying miRNAs. (A)
993	Number of mRNAs targeted by each miRNA. 1 mRNA (Thyroid Hormone Receptor Beta;
994	THRB) is targeted by all 5 miRNA. 59 mRNA are targeted by the three seizure-modifying
995	miRNAs, 19 of which are not targeted by miR-27a-3p nor miR-431 (see also Table 1). All
996	targets are listed in Supplementary Data 5. (B) Significantly enriched Reactome pathways for
997	each of the seizure-modifying miRNAs. $**$ indicates pathways associated with TGF β
998	signaling. (C) Wiring diagram depicting mRNA targets of the three seizure-modifying
999	miRNAs that are involved in the reactome pathways 'Signaling by TGF-beta receptor
1000	complex' and 'Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer',
1001	illustrating the convergence of diverse miRNA targets at the pathway level. (D) Protein
1002	expression levels (normalized to control) of rat hippocampi isolated at the chronic time-point
1003	of the PPS model, (FC: foldchange). Proteins above the dashed lines (drawn at -log10(p-
1004	value) = 1.3, equivalent to $p = 0.05$ and at $-\log 10(p-value) = 2$, equivalent to $p = 0.01$) are
1005	considered significantly significant. Fold changes are shown on the x-axis with proteins
1006	involved in the TGF- β signaling pathways are highlighted in blue (downregulation) and red
1007	(upregulation). * denotes proteins which are targeted by miR-10a-5p, miR-21-5p and/or miR-
1008	142-5p, as depicted in panel C.
1009	

- 1010 Table 1 mRNAs targeted by all 3 seizure-modifying miRNAs (miR-142a-5p, miR-21a-
- 1011 **5p, miR-10a-5p).** mRNAs in *black font* are not targeted by miR-27a-3p nor miR-431,
- 1012 indicating that these targets may be specific to the observed seizure-modifying effects. See
- 1013 Supplementary Data 5 for more details. TF: transcription factor.

Gene	Gene Name	Туре	Epilepsy Assoc.
ACVR2A	activin A receptor type 2A	Gene	No
APPBP2	amyloid beta precursor protein binding protein 2	Gene	No
ARHGEF12	Rho guanine nucleotide exchange factor 12	Gene	No
ARRDC3	arrestin domain containing 3	Gene	No
BNIP2	BCL2 interacting protein 2	Gene	No
CADM1	cell adhesion molecule 1	Gene	No
CADM2	cell adhesion molecule 2	Gene	No
CAPRIN1	cell cycle associated protein 1	Gene	No
CDK19	cyclin dependent kinase 19	Gene	No
CDK6	cyclin dependent kinase 6	Gene	No
CELF1	CUGBP Elav-like family member 1	Gene	No
CEP170	centrosomal protein 170	Gene	No
CLCN5	chloride voltage-gated channel 5	Gene	No
CNOT6	CCR4-NOT transcription complex subunit 6	Gene	No
CREBL2	cAMP responsive element binding protein like 2	Gene	No
CSDE1	cold shock domain containing E1	Gene	No
DDHD2	DDHD domain containing 2	Gene	No
DLG1	discs large MAGUK scaffold protein 1	Gene	No
EGR3	early growth response 3	TF	Yes
EXOC5	exocyst complex component 5	Gene	No
FIGN	fidgetin, microtubule severing factor	Gene	No
FNDC3A	fibronectin type III domain containing 3A	Gene	No
FOXP1	forkhead box P1	TF	No
GATA3	GATA binding protein 3	TF	No
HIF1A	hypoxia inducible factor 1 alpha subunit	TF	No
HSPA8	heat shock protein family A (Hsp70) member 8	Gene	No
ITGB8	integrin subunit beta 8	Gene	No
KMT2A	lysine methyltransferase 2A	Gene	Yes
LEMD3	LEM domain containing 3	Gene	No
LRP12	LDL receptor related protein 12	Gene	No
LTBP1	latent transforming growth factor beta binding protein 1	Gene	No
MACF1	microtubule-actin crosslinking factor 1	Gene	No
MAN1A2	mannosidase alpha class 1A member 2	Gene	No
MAP3K2	mitogen-activated protein kinase kinase kinase 2	Gene	No
NFAT5	nuclear factor of activated T-cells 5	TF	No
ONECUT2	one cut homeobox 2	TF	No
PCBP2	poly(rC) binding protein 2	Gene	No
PDLIM5	PDZ and LIM domain 5	Gene	No
PSD3	pleckstrin and Sec7 domain containing 3	Gene	No
PTEN	phosphatase and tensin homolog	Gene	Yes
RPRD1A	regulation of nuclear pre-mRNA domain containing 1A	Gene	No
RYBP	RING1 and YY1 binding protein	Gene	No
SERP1	stress associated endoplasmic reticulum protein 1	Gene	No
SERTAD2	SERTA domain containing 2	Gene	No
SLC38A2	solute carrier family 38 member 2	Gene	No
JECJOAZ	solute carrier family 5 member 2 solute carrier family 5 member 3	Gene	NO

SMCHD1	structural maintenance of chromosomes flexible hinge domain containing 1	Gene	No
SNTB2	syntrophin beta 2	Gene	No
THRB	thyroid hormone receptor beta	TF	Yes
TIAM1	T-cell lymphoma invasion and metastasis 1	Gene	No
TMEM245	transmembrane protein 245	Gene	No
TRIM2	tripartite motif containing 2	Gene	No
UBE2K	ubiquitin conjugating enzyme E2 K	Gene	No
UBN2	ubinuclein 2	Gene	No
USP34	ubiquitin specific peptidase 34	Gene	No
USP9X	ubiquitin specific peptidase 9, X-linked	Gene	Yes
WDR26	WD repeat domain 26	Gene	No
ZBTB8A	zinc finger and BTB domain containing 8A	Gene	No
ZDHHC17	zinc finger DHHC-type containing 17	Gene	No

1016 Table 2 - mRNAs targeted by >1 seizure-modifying miRNA (miR-142a-5p, miR-21a-5p,

1017 miR-10a-5p) that have previously been associated with epilepsy. See Supplementary Data

1018 5 for more details. TF: transcription factor

gene	geneName	type	targeting miRNAs
ACTG1	actin gamma 1	Gene	142-5p, 10-5p
BRWD3	bromodomain and WD repeat domain containing 3	Gene	142-5p, 21-5p
CAMTA1	calmodulin binding transcription activator 1	Gene	142-5p, 21-5p
CHL1	cell adhesion molecule L1 like	Gene	10-5p, 21-5p
DLG2	discs large MAGUK scaffold protein 2	Gene	142-5p, 21-5p
DMD	dystrophin	Gene	142-5p, 21-5p
DPYSL2	dihydropyrimidinase like 2	Gene	10-5p, 21-5p
EGR3	early growth response 3	TF	142-5p, 10-5p, 21-5
FBXO28	F-box protein 28	Gene	10-5p, 21-5p
FMR1	fragile X mental retardation 1	Gene	142-5p, 21-5p
GABRB2	gamma-aminobutyric acid type A receptor beta2 subunit	Gene	10-5p, 21-5p
GATAD2B	GATA zinc finger domain containing 2B	Gene	10-5p, 21-5p
HS2ST1	heparan sulfate 2-O-sulfotransferase 1	Gene	142-5p, 21-5p
KCNA1	potassium voltage-gated channel subfamily A member 1	Gene	10-5p, 21-5p
KCNJ10	potassium voltage-gated channel subfamily J member 10	Gene	142-5p, 21-5p
KMT2A	lysine methyltransferase 2A	Gene	142-5p, 10-5p, 21-5
KRIT1	KRIT1, ankyrin repeat containing	Gene	142-5p, 21-5p
MBD5	methyl-CpG binding domain protein 5	Gene	142-5p, 10-5p
MYT1L	myelin transcription factor 1 like	Gene	142-5p, 10-5p
NEDD4L	neural precursor cell expressed, developmentally down-regulated 4-like,		•••••
NEDD4L	E3 ubiquitin protein ligase	Gene	142-5p, 10-5p
NF1	neurofibromin 1	TF	10-5p, 21-5p
NIN	ninein	Gene	142-5p, 21-5p
NSD2	nuclear receptor binding SET domain protein 2	TF	10-5p, 21-5p
PAFAH1B1	platelet activating factor acetylhydrolase 1b regulatory subunit 1	Gene	10-5p, 21-5p
PLD1	phospholipase D1	Gene	142-5p, 21-5p
PLP1	proteolipid protein 1	Gene	10-5p, 21-5p
PTEN	phosphatase and tensin homolog	Gene	142-5p, 10-5p, 21-5
PTGS2	prostaglandin-endoperoxide synthase 2	Gene	10-5p, 21-5p
PURA	purine rich element binding protein A	TF	142-5p, 21-5p
RNF213	ring finger protein 213	Gene	10-5p, 21-5p
SCARB2	scavenger receptor class B member 2	Gene	10-5p, 21-5p
SCN3A	sodium voltage-gated channel alpha subunit 3	Gene	142-5p, 10-5p
SETD2	SET domain containing 2	Gene	142-5p, 21-5p
SLC7A11	solute carrier family 7 member 11	Gene	142-5p, 10-5p
SLC9A6	solute carrier family 9 member A6	Gene	142-5p, 21-5p
SMC1A	structural maintenance of chromosomes 1A	Gene	10-5p, 21-5p
SON	SON DNA binding protein	Gene	142-5p, 10-5p
SOX5	SRY-box 5	TF	142-5p, 21-5p
SPTAN1	spectrin alpha, non-erythrocytic 1	Gene	10-5p, 21-5p
SYNJ1	synaptojanin 1	Gene	142-5p, 10-5p
SYT14	synaptotagmin 14	Gene	142-5p, 21-5p
TCF4	transcription factor 4	TF	142-5p, 21-5p
THRB	thyroid hormone receptor beta	TF	142-5p, 10-5p, 21-5
UBR5	ubiquitin protein ligase E3 component n-recognin 5	Gene	142-5p, 21-5p
USP9X	ubiquitin specific peptidase 9, X-linked	Gene	142-5p, 10-5p, 21-5
UTRN	utrophin	Gene	142-5p, 21-5p
VDAC1	voltage dependent anion channel 1	Gene	10-5p, 21-5p
	zinc finger MYND-type containing 11	0.0110	,

1019 Supplementary Data 1 - Summary of EEG data for IAKA, PILO and PPS models

Animal ID	Species	Model	Latency to 1st Sz	No of Sz before hippocampus extracted	Time between final Sz and hippocampus extracted
RMK_DOFS_RH_85	C57BL/6 mouse	IAKA	73 hrs	2	4 hrs
RMK_DOFS_RH_94	C57BL/6 mouse	IAKA	81 hrs	1	4.5 hrs
RMK_DOFS_RH_95	C57BL/6 mouse	IAKA	73 hrs	3	3.5 hrs
MRP07_RH_64	Sprague Dawley rat	PPS	33 days	8	17 hrs
MRP07_RH_69	Sprague Dawley rat	PPS	12 days	1	30.5 hrs
MRP07_RH_74	Sprague Dawley rat	PPS	19 days	1	-
VMP_DOFS_LH_1	NMRI mouse	PILO	86 hrs	9	19 mins
VMP_DOFS_LH_2	NMRI mouse	PILO	47 hrs	1	19 hrs
VMP_DOFS_LH_3	NMRI mouse	PILO	36 hrs	1	10.5 hrs

Animals sampled on day of first seizure

1020

1021

Animals sampled in chronic epilepsy

Animal ID	Species	Model	Latency to 1st Sz	Total no of Sz	Total time in Sz	No of Sz in final 24 hrs	Time in Sz in last 24 hrs	Time between final Sz and hippocampus extracted
RMK2W_RH_76	C57BL/6 mouse	IAKA	7 days	25	502s	0	0	72 hours
RMK2W_RH_101	C57BL/6 mouse	IAKA	3 days	108	2014s	11	229s	4 hours
RMK2W_RH_106	C57BL/6 mouse	IAKA	3 days	74	944s	10	109.25s	4 hours
MRP07_RH_37	SD rat	PPS	27 days	4	161.7	0	0	101 hours
MRP07_RH_43	SD rat	PPS	11 days	3	304	0	0	82 hours
MRP07_RH_75	SD rat	PPS	13 days	9	318.4	0	0	135 hours
VMP4W_LH_1	NMRI mouse	PILO	88 hrs	-	-	-	-	-
VMP4W_LH_2	NMRI mouse	PILO	135 hrs	-	-	-	-	-
VMP4W_LH_3	NMRI mouse	PILO	17 days	-	-	-	-	-

1022

1023 - : Data is unavailable

1025 Supplementary Data 2 - Summary of Ago2-seq reads

RNA species	IAKA	PILO	PPS
miRNA	75.5%	82.4%	50.2%
piRNA	1.2%	1.2%	2.8%
tRNA	1.0%	0.5%	2.0%
Other small RNA*	3.3%	3.6%	6.3%
rRNA	4.5%	3.2%	28.8%
mRNA	14.4%	9.1%	9.9%

RNA species detected in Ago2 small RNA sequencing

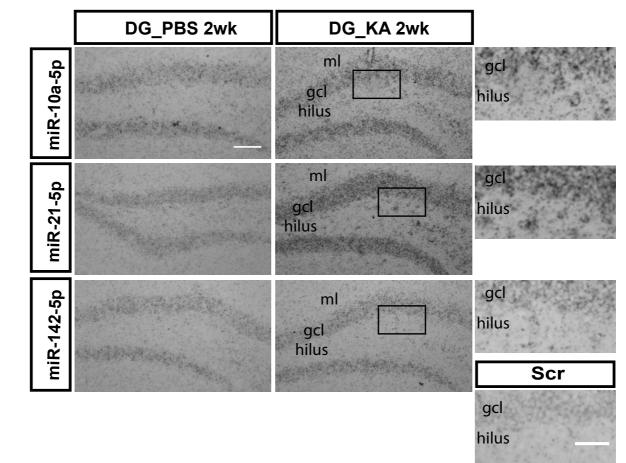
1026

1027 * Other small RNA refers to snoRNA, snRNA, yRNA, and small RNAs from Rfam

1028 (https://rfam.xfam.org/)

1030 Supplementary Data 3 -Expression of miRNAs in three rodent epilepsy models

1032 This is too large to show here. A separate excel file has been generated.


1033

1034 Supplementary Data 4 - MiRNA-Target Interactions for each miRNA, along with brain

1035 expression information for each target

1036 This is too large to show here. A separate excel file has been generated.

1038 Supplementary Data 5 - In situ hybridization for anti-seizure miRs1039

 $\begin{array}{c} 1040 \\ 1041 \end{array}$

- 1042 miRNA expression validation and cellular localization by *in situ* hybridization in IAKA mice
- 1043 at 2 weeks after injection. Low magnification images (main panels) show whole dentate gyrus
- 1044 (scale: 100 µm; scale for insets: 50 µm). All three miRs show stronger expression in KA
- 1045 injected mice compared to PBS injected mice.