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19 Abstract

20 Many methodologies in disease modeling are invaluable in the evaluation of health interventions. Of 

21 these methodologies, one of most fundamental is compartmental modeling. Compartmental models 

22 have many different forms with one of the most general characterizations occurring from the 

23 description of disease dynamics with nonlinear Volterra integral equations. Despite this generality, the 

24 vast majority of disease modellers prefer the special case where nonlinear Volterra integral equations 

25 reduce to systems of differential equations through the traditional assumptions that 1) the 

26 infectiousness of a disease corresponds to incidence, and 2) the duration of infection follows either an 

27 exponential or Erlang distribution. However, these assumptions are not the only ones that simplify 

28 nonlinear Volterra integral equations in such a way. In what follows, we illustrate a biologically more 

29 accurate description of the total infectivity of a disease that reduces systems of nonlinear Volterra 

30 integral equations to a class of novel compartmental models, as described by systems of differential 

31 equations. We demonstrate the consistency of these novel compartmental models to their traditional 

32 counterparts when the duration of infection follows either an exponential or Erlang distribution, and 

33 provide a novel compartmental model for a Pearson distributed duration of infection. Significant 

34 outcomes of our work include a compartmental model that captures any Erlang distributed duration of 

35 infection with only 3 differential equations, instead of the typical inflated model sizes, and a 

36 compartmental models that capture any mean, standard deviation, skewness, and kurtosis of the 

37 duration of infection distribution with only 4 differential equations. 

38 Keywords: Differential equations, integral equations, infectious disease models, compartmental models, 

39 disease infectivity, survival analysis, infectious period
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42 Author summary: 

43 Compartmental models are a powerful tool for predicting disease outbreaks, and evaluating public 

44 health policies and intervention effectiveness. However, such models typically have an inability to 

45 account for many of the biological features of a disease. For instance, the assumptions placed on the 

46 duration of infection required by most compartmental models are due to mathematical convenience, 

47 and are known to massively effect model behavior and quality of predictions. Our work illustrates a 

48 simple solution to these erroneous assumptions by proposing a new simplification of the general model 

49 proposed by Kermack and McKendrick. In doing so, we obtain a new class of compartmental models 

50 with many of the features that make traditional compartmental the go-to disease model for the vast 

51 majority the epidemiological modeling community, such as their formulations as systems of differential 

52 equations, while adding the ability to more accurately account for effects of variability in an individual’s 

53 duration of infection. As such, our work may be viewed as the starting point for multiple research 

54 avenues, as it opens up a new class of compartmental model for investigation under the contexts of 

55 mathematics, public health, and evolutionary biology.  

56
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63 1. Introduction

64 The compartmental model of Kermack and McKendrick [1–3] is arguably one of the greatest 

65 development in disease modeling. The formulation of this model, in its original form as a system of 

66 nonlinear Volterra integral equations [4], provides a general characterization of the transmission cycle 

67 between susceptible individuals and a disease that propagates throughout an environment [5]. Despite 

68 this generality, the vast majority of disease modellers prefer differential equation compartmental 

69 models [6]. While this particular formulation of compartmental models has distinct advantages, such as 

70 the non-requirement of specialist knowledge to implement and well-developed numerical methods [7], 

71 they are in fact a special case of the aforementioned system of nonlinear Volterra integral equations [8]. 

72 Specifically, one obtains differential equation compartmental models from the nonlinear Volterra 

73 integral equations by imposing only two traditional assumptions: 1) the infectiousness of a disease 

74 corresponds to disease incidence, and 2) the duration of infection follows either an exponential or an 

75 Erlang distribution. Unfortunately, the vast majority of diseases do not have infectious periods that 

76 follow these distributions [9–14], and force fitting such a distributional structure is known to have a 

77 massive effect on the behavior and quality of model predictions [15]. Regardless of these issues, the 

78 compartmental models obtained by the two traditional assumptions have undergone many extensions. 

79 A few noteworthy examples include modifying the force of infection to account for the saturation of 

80 infection in a population [16,17], behavioral characteristics [18–21], modification of the recovery rate to 

81 better capture a disease’s infectious period [22], disease burnout [23], and the inclusion of additional 

82 disease stages [8]. Furthermore, the applications of these models have also grown considerably from 

83 just predicting a disease’s trajectory. Today, these traditional compartmental models are used to 

84 evaluate the health benefits and cost-effectiveness of public health policies and disease interventions 

85 [24,25], gauge the potential for disease virulence evolution [26], predict dominant influenza strains [27], 

86 investigate the complexities of disease co-infection [28], among many others. However, despite this 
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87 growth in theory and application, the generalization of the very foundational assumptions that simplifies 

88 systems of nonlinear Volterra integral equations to differential equation compartmental models remains 

89 largely undeveloped. 

90 In what follows, we propose new assumptions to simplify systems of nonlinear Volterra integral 

91 equations to systems of differential equations. The biological motivation for these new assumptions 

92 stem from the idea that a disease’s average duration of infection changes throughout an epidemic, 

93 whereas the average infectious period of a disease remains constant. Consequently, we extend current 

94 models from solely tracking the disease incidence to tracking the number of person-days of infected 

95 individuals. To do this, we assume 1) the total infectiousness of a disease corresponds to the product of 

96 disease incidence with a time-varying average duration of infection and 2) the duration of infection is 

97 distributed according to a non-homogeneous analog to the exponential distribution. Under these 

98 assumptions, we derive a novel class of differential equation compartmental models, provide model 

99 equilibria, and disease reproductive numbers [29]. 

100 Essential in the development of this new class of models is the use of survival analysis. Specifically the 

101 development of our novel class of models requires the hazard function and the mean residual waiting-

102 time of a distribution [30,31], which is used to describe the time-varying average duration of infection. 

103 Therefore, we briefly outline some of the fundamental properties of these functions, in addition to their 

104 relationship to one another. We then demonstrate the consistency of our new class of models to 

105 traditional models when the duration of infection follows an exponential distribution. Next, we consider 

106 our model with a duration of infection that follows an Erlang distribution, and illustrate how this choice 

107 of distribution has a representation as either an ODE system of 3 equations, regardless of the Erlang 

108 distribution parameters, or as an ODE system that features a chain of infected equations, as is typical 

109 from the linear chain trick [9,32,33]. Finally, we consider a duration of infection that is Pearson 
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110 distributed. In choosing the Pearson distribution, we develop a model that is capable of accounting for 

111 any possible mean, standard deviation, skewness, and kurtosis of the duration of infection. Thereby, we 

112 provide a simple approach for measuring how altering the infectivity profile of a disease, as described by 

113 the first four statistical moments, influences a diseases trajectory.

114

115 2. Methods

116 In what follows, we develop a novel class of ODE compartmental models to describe the progression of 

117 a disease throughout a population. To obtain such models, we impose new assumptions on the notion 

118 of infectivity used in the integral equations of Kermack and McKendrick. Before reducing the integral 

119 equations of Kermack and McKendrick to their differential equation counterparts, we briefly highlight 

120 the formal relationship in our assumptions in the context of survival analysis. Finally, we present the 

121 class of novel compartmental models, their equilibria, and basic reproductive number.

122 2.1 Traditional compartmental models. To begin, considered the general compartmental model of 

123 Kermack and McKendrick [1–3,5]. For this general compartmental model, we consider the number of 

124 susceptible individuals to be denoted as , and the total infectivity of the disease (at time ) to be 𝑆 𝑡

125 denoted as . We define  as the sum of the products of the number of individuals at a particular 𝜙(𝑡) 𝜙(𝑡)

126 age of infection that remain infectious with their mean infectivity for that particular infection age. We 

127 also define  as the total infectivity of the individuals initial infected with the disease at the start of the 𝜙0

128 epidemic. In addition, we characterize the fraction of infected individuals remaining infected at time , 𝑡

129 who where initially infected at time , with the duration of infection distribution, as described by the 𝑥

130 survival function . Furthermore, we also define the mean infectivity of an infected individual  𝑃(𝑡,𝑥) 𝑡 ‒ 𝑥

131 units of time after the start of the infection as , where , and the mean 𝜋(𝑡 ‒ 𝑥) 0 ≤ 𝜋(𝑡 ‒ 𝑥) ≤ 1

132 infectivity of individuals in the population at time  who where initially infected at time  as 𝑡 𝑥

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/777250doi: bioRxiv preprint 

https://doi.org/10.1101/777250
http://creativecommons.org/licenses/by/4.0/


7

133 𝐴(𝑡,𝑥) = 𝜋(𝑡 ‒ 𝑥)𝑃(𝑡,𝑥).

134 For simplicity, we assume that , and so the progression of an epidemic throughout a 𝜋(𝑡 ‒ 𝑥) = 1

135 population can be described with the integral equations,  

𝑆(𝑡) = 𝑆0 ‒
𝑡

∫
0

𝜆(𝑥)𝑆(𝑥)𝑑𝑥,

𝜙(𝑡) = 𝜙0(𝑡) +
𝑡

∫
0

𝜆(𝑥)𝑆(𝑥)𝑃(𝑡,𝑥)𝑑𝑥.

(1)

136 Here  is the force of infection, which we assume to be  𝜆

𝜆(𝑡) = 𝛽
𝜙(𝑡)

𝑁 , (1b)

137 where  is the average number of contacts individuals in a population make per unit of time. 𝛽

138 Traditionally, to reduce (1) to a system of differential equations requires that 1) the duration of infection 

139 follows the exponential distribution,

140 𝑃(𝑡,𝑥) = 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥),

141 where  is the recovery rate, and 2) that the infectiousness of a disease corresponds directly to the 𝛾

142 number of infected individuals, . Combining these assumptions, along with an additional 𝜙 = 𝐼

143 compartment to track recovered individuals,  transforms system (1) into 𝑅,

𝑆(𝑡) = 𝑆0 ‒
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)𝑑𝑥, (2)
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𝐼(𝑡) = 𝐼0𝑒 ‒ 𝛾𝑡 +
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)𝑒 ‒ 𝛾(𝑡 ‒ 𝑥)𝑑𝑥,

𝑅(𝑡) = (𝑅0 + 𝐼0 ‒ 𝐼0𝑒 ‒ 𝛾𝑡) +
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)(1 ‒ 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥))𝑑𝑥.

144 An important feature of system (2) is that it conserves the total population: 

145 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑆0 + 𝐼0 + 𝑅0 = 𝑁.

146 Differentiating system (2) with respect to , and substituting the integral equation for  for the 𝑡  𝐼(𝑡)

147 remaining integrals yields the classic SIR system:

𝑆'(𝑡) =‒ 𝛽
𝐼(𝑡)
𝑁 𝑆(𝑡),

𝐼'(𝑡) = 𝛽
𝐼(𝑡)
𝑁 𝑆(𝑡) ‒ 𝛾𝐼(𝑡),

𝑅'(𝑡) = 𝛾𝐼(𝑡).

(2b)

148 Alternatively, (1) reduces to a system of differential equations when 1) the duration of infection is the 

149 survival function of the Erlang distribution, 

150 𝑃(𝑡,𝑥) = 𝑃(𝑡 ‒ 𝑥) =
𝑘 ‒ 1

∑
𝑗 = 0

(𝛾(𝑡 ‒ 𝑥))𝑗

𝑗! 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥),

151 where  is a shape parameter that determines the total number of infection stages and  is the average 𝑘
1
𝛾

152 duration spent in each stage, and 2) the total infectivity of the disease corresponds to  identical stages 𝑘

153 (in terms of the average duration spent in each stage) of infected individuals, 
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154 𝜙 = 𝐼 =
𝑘

∑
𝑗 = 1

𝐼𝑗.

155 Combining these assumptions, along with an additional compartment to track recovered individuals,  𝑅,

156 transforms system (1) into 

𝑆(𝑡) = 𝑆0 ‒
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)𝑑𝑥,

𝐼(𝑡) = 𝐼0

𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡 +
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)
𝑘 ‒ 1

∑
𝑗 = 0

(𝛾(𝑡 ‒ 𝑥))𝑗

𝑗! 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥)𝑑𝑥,

𝑅(𝑡) = (𝑅0 + 𝐼0 ‒ 𝐼0

𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡) +
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)(1 ‒
𝑘 ‒ 1

∑
𝑗 = 0

(𝛾(𝑡 ‒ 𝑥))𝑗

𝑗! 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥))𝑑𝑥.

(3)

157 Equivalently, if the linear chain trick is applied, we have that

158 𝐼𝑗(𝑡) = 𝐼0,𝑗
(𝛾𝑡)𝑗 ‒ 1

(𝑗 ‒ 1)!𝑒 ‒ 𝛾𝑡 +
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑆(𝑥)
(𝛾(𝑡 ‒ 𝑥))𝑗 ‒ 1

(𝑗 ‒ 1)! 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥)𝑑𝑥,

159 where

160 𝐼(𝑡) = ∑
𝑗

𝐼𝑗(𝑡).

161 An important feature of system (3) is that it conserves the total population: 

162 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑆0 + ∑
𝑗

𝐼0,𝑗 + 𝑅0 = 𝑁.

163 Differentiating system (3) with respect to , applying the ‘linear chain trick’, and substituting  as 𝑡 𝛾𝐼𝑗(𝑡)

164 needed yields the classic SIkR system:
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𝑆'(𝑡) =‒ 𝛽
𝐼(𝑡)
𝑁 𝑆(𝑡),

𝐼 '
1(𝑡) = 𝛽

𝑘

∑
𝑗 = 1

𝐼𝑗(𝑡)

𝑁 𝑆(𝑡) ‒ 𝛾𝐼1(𝑡),

𝐼'
𝑗(𝑡) = 𝛾𝐼𝑗 ‒ 1(𝑡) ‒ 𝛾𝐼𝑗(𝑡),

𝑅'(𝑡) = 𝛾𝐼𝑗(𝑡).

(3b)

165 To obtain our novel differential equation compartmental models, we generalize the assumptions used to 

166 formulate system (2). We first assume the infectiousness of a disease corresponds to the product of the 

167 number of infected individuals with their average duration of infectiousness at time  𝑡:

𝜙(𝑡) = 𝐼(𝑡)𝑚(𝑡). (4)

168 Here  is a mean residual waiting-time [31]. Motivation for choosing  over the typical (constant) 𝑚(𝑡) 𝑚(𝑡)

169 average waiting-time stems from the fact that the composition of infected individuals  includes 𝐼(𝑡)

170 individuals from different initial infectiontimes, and that individuals infected at different times are not 

171 likely to remain infectious for the same time period. By including  in (4), our notion of infectivity is 𝑚(𝑡)

172 able to differentiatie between similar quantities of infected individuals that may (or may not) contribute 

173 differently to the spread of an epidemic. 

174 In addition to assumption (4), we also assume that the duration of infection distribution corresponds to 

175 a non-homogeneous analog of the exponential distribution, namely the survival function given by
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𝑃(𝑡,𝑥) = 𝑃(𝑇 > 𝑡|𝑇 > 𝑥) =
𝑃(𝑇 > 𝑡)
𝑃(𝑇 > 𝑥) =

𝑒
‒

𝑡

∫
0

𝜂(𝑧)𝑑𝑧

𝑒
‒

𝑥

∫
0

𝜂(𝑧)𝑑𝑧

= 𝑒
‒

𝑡

∫
𝑥

𝜂(𝑧)𝑑𝑧
, (5)

176 where , and  is a random variable that denotes the sojourn time in the infectious state. 𝑡 ≥ 𝑥 𝑇

177 2.2 The hazard function and mean residual waiting-time. Due to the importance of assumptions (4) and 

178 (5), we now provide a brief overview of the relationship between the hazard function, the mean residual 

179 waiting-time, and the survival function [30]. Consider a random variable  characterized by the survival  𝑇

180 function (5), which represents the probability of remaining infectious  units after becoming infectious 𝑡

181 at time .  The associated hazard function to  is given by 𝑥 𝑇

𝜂(𝑡) =‒
1

𝑃(𝑡,𝑥)
𝑑𝑃
𝑑𝑡 , (6)

182 where  is the survival function (for remaining infected) for individuals initially infected at time .𝑃(𝑡,𝑥) 𝑥

183  Similarly, the mean residual waiting-time associated with  is also determined from (5) [30], and 𝑇

184 defined as

𝑚(𝑡) = 𝔼[𝑇 ‒ 𝑡|𝑇 > 𝑡] =
1

𝑃(𝑡,𝑥)

∞

∫
𝑡

𝑃(𝑧,𝑥)𝑑𝑧. (7)

185 From the mean residual waiting-time (7), it is also possible to uniquely determine the hazard function (6) 

186 through the relation [30], 

𝜂(𝑡) =
𝑚'(𝑡) + 1 

𝑚(𝑡) . (8)

187 An important feature of the mean residual waiting-time (7) is that it is initially equivalent to the average 

188 duration of infectiousness, as 
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lim
𝑡→0

𝑚(𝑡) = lim
𝑡→𝑥

1
𝑃(𝑡,𝑥)

∞

∫
𝑥

𝑃(𝑧,𝑥)𝑑𝑧 = 𝜇. (9)

189 It follows from (7) and (8), and through the application of l’H pitials rule, that o

lim
𝑡→∞

𝑚'(𝑡) + 1
𝜂(𝑡) = lim

𝑡→∞

1
𝑃(𝑡,𝑥)

∞

∫
𝑡

𝑃(𝑧,𝑥)𝑑𝑧 = lim
t→ ∞

‒
𝑃(𝑡,𝑥)

𝑑𝑃
𝑑𝑡

= lim
𝑡→∞

1
𝜂(𝑡). (10)

190 This implies if   that 𝜂(𝑡) > 0 ∀𝑡

lim
𝑡→∞

𝑚'(𝑡) = 0. (11)

191 In addition to determining  from , the receprical relation is also possible. For convenience we 𝜂(𝑡) 𝑚(𝑡)

192 restrict (5) to the family of distributions [30] that satisfy

𝑔'(𝑡)
𝑑𝑃
𝑑𝑡 + 𝑔(𝑡)

𝑑2𝑃
𝑑𝑡2 = (𝜇 ‒ 𝑡)

𝑑𝑃
𝑑𝑡 . (12)

193 Note condition (12) ensures that both  and  exist and are finite [30]. Integrating (12) over , 𝑚(𝑡) 𝜂(𝑡) [𝑡,∞)

194 and using the property that , we obtain lim
𝑡→∞

𝑃(𝑡,𝑥) = 0

‒ 𝑔(𝑡)
𝑑𝑃
𝑑𝑡 =‒ 𝜇𝑃(𝑡,𝑥) ‒

∞

∫
𝑡

𝑡
𝑑𝑃
𝑑𝑡 𝑑𝑡. (13)

195 Noting that , definitions (6) and (7), and dividing through by  we obtain∫∞
𝑡 𝑡

𝑑𝑃
𝑑𝑡𝑑𝑡 = 𝔼[𝑇|𝑇 > 𝑡] 𝑃(𝑡,𝑥)

𝔼[𝑇|𝑇 > 𝑡] = 𝜇 + 𝑔(𝑡)𝜂(𝑡). (14)

196 Thus, subtracting  from both sides we have that𝑡
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𝑚(𝑡) = 𝜇 ‒ 𝑡 + 𝑔(𝑡)𝜂(𝑡). (15)

197 2.3 Novel compartmental models. Before presenting the novel compartmental model we briefly 

198 contextualize its differences in comparison to traditional compartmental models. The traditional 

199 compartmental models of (2b) and (3b) track the changes in the number of persons suscpetible to, 

200 infected with, and recovered from infection for a disease circulating in a population. The premise of our 

201 novel compartmental model is to instead consider tracking the change in the number of person-days 

202 (i.e. the number of people in a particular state multipled by a duration of time) susceptible to, infected 

203 with, and recovered from infection for a disease circulating in a population.  Therefore, to appropriately 

204 account for the temporal aspect of person-days we incorporate  into each compartment and the 𝑚(𝑡)

205 total population. Thus, we have that the person-days of the susceptible, infected, and recovered 

206 individuals in a population are governed by, 

𝑆(𝑡)𝑚(𝑡) = 𝑁𝑚(𝑡) ‒ (𝐼0 + 𝑅0)𝜇 ‒
𝑡

∫
0

𝜆(𝑥)𝑆(𝑥)𝑑𝑥,

𝐼(𝑡)𝑚(𝑡) = 𝐼0𝑃(𝑡,0)𝜇 +
𝑡

∫
0

𝜆(𝑥)𝑆(𝑥)𝑃(𝑡,𝑥)𝑑𝑥,

𝑅(𝑡)𝑚(𝑡) = (𝑅0 + 𝐼0 ‒ 𝐼0𝑃(𝑡,0))𝜇 +
𝑡

∫
0

𝜆(𝑥)𝑆(𝑥)(1 ‒ 𝑃(𝑡,𝑥))𝑑𝑥,

(16)

207 where  by (9), and  is given by (5). Note, the term  accounts for 𝑚(0) = 𝜇 𝑃(𝑡,𝑥) 𝑁𝑚(𝑡) ‒ (𝐼0 + 𝑅0)𝜇

208 changes in the time-varying reference frame for the total person-days of those susceptible to infection 

209 in the population.  

210 Adding the equations of system (16) together, it follows that 

211 (𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡))𝑚(𝑡) = 𝑁𝑚(𝑡) ‒ (𝑁 ‒ 𝑆0 ‒ 𝐼0 ‒ 𝑅0)𝜇.
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212 Given  and  for all , we have that𝑁 = 𝑆0 + 𝐼0 + 𝑅0 𝑚(𝑡) ≠ 0 𝑡

213 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁. 

214 Imposing (4-7), taking the time derivative of system (16), and applying Leibniz rule for the derivatives of 

215 integrals as needed, we obtain

𝑆'(𝑡)𝑚(𝑡) + 𝑆(𝑡)𝑚'(𝑡) = 𝑁𝑚'(𝑡) ‒ 𝛽
𝐼(𝑡)
𝑁 𝑚(𝑡)𝑆(𝑡),

𝐼'(𝑡)𝑚(𝑡) + 𝐼(𝑡)𝑚'(𝑡) =‒ 𝜂(𝑡)𝐼0𝑃(𝑡,0)𝜇 ‒ 𝜂(𝑡)
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑚(𝑥)𝑆(𝑥)𝑃(𝑡,𝑥)𝑑𝑥 + 𝛽
𝐼(𝑡)
𝑁 𝑚(𝑡)𝑆(𝑡),

𝑅'(𝑡)𝑚(𝑡) + 𝑅(𝑡)𝑚'(𝑡) = 𝜂(𝑡)𝐼0𝑃(𝑡,0)𝜇 + 𝜂(𝑡)
𝑡

∫
0

𝛽
𝐼(𝑥)

𝑁 𝑚(𝑥)𝑆(𝑥)𝑃(𝑡,𝑥)𝑑𝑥,

(18)

216 where  is given by (5), and  is given by (8).𝑃(𝑡,𝑥) 𝜂(𝑡)

217 Substituting (16) into (1) to eliminate the integrals, and isolating for each of , , and , we 𝑆'(𝑡) 𝐼'(𝑡) 𝑅'(𝑡)

218 obtain:

𝑆'(𝑡) +
𝑚'(𝑡)
𝑚(𝑡)𝑆(𝑡) = 𝑁 

𝑚'(𝑡)
𝑚(𝑡) ‒ 𝛽

𝐼(𝑡)
𝑁 𝑆(𝑡),

𝐼'(𝑡) +
𝑚'(𝑡)
𝑚(𝑡)𝐼(𝑡) = 𝛽

𝐼(𝑡)
𝑁 𝑆(𝑡) ‒ (𝑚'(𝑡) + 1

𝑚(𝑡) )𝐼(𝑡),

𝑅'(𝑡) +
𝑚'(𝑡)
𝑚(𝑡)𝑅(𝑡) = (𝑚'(𝑡) + 1

𝑚(𝑡) )𝐼(𝑡).

(19)

219 2.4 Equilibria, the basic reproductive number , and the effective reproductive number . The 𝓡𝟎 𝓡𝒆

220 compartmental model (19) potentially has several equilibria. As is standard, (19) possess the standard 

221 disease free equilibrium:
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𝑆 ∗ = 𝑁,

𝐼 ∗ = 0,

  𝑅 ∗ = 0.

(20)

222 In addition, an equilibrium where the infection was exhausted, leaving susceptible individuals that 

223 escaped infection, and recovered individuals: 

 𝑆 = 𝑆∞,  

𝐼 = 0,

 𝑅 = 𝑅∞.

(21)

224 Turning our attention to the reproductive numbers of the disease, the basic reproductive number 

225 obtained directly from the survival function is

226 ℛ0 = 𝛽
∞

∫
0

𝑃(𝑡,0)𝑑𝑡 = 𝛽𝜇.

227 To estimate the basic reproductive number using the next-generation method, we have that  and ℱ =
𝛽
𝑁𝑆

228  Note, the motivation for  instead of  arises from the 𝒱 ‒ 1 =
𝑚(𝑡)

𝑚'(𝑡) + 1. 𝒱 ‒ 1 =
𝑚(𝑡)

𝑚'(𝑡) + 1 𝒱 ‒ 1 =
𝑚(𝑡)

2𝑚'(𝑡) + 1
𝑚'(𝑡)
𝑚(𝑡)𝐼

229  accounting for a change in average duration of infectivity, instead of the transfer of infected (𝑡)

230 individuals to the recovered state. It follows that

ℛ0 = 𝜌(ℱ|𝐷𝐹𝐸 ⋅ 𝒱 ‒ 1|𝐷𝐹𝐸) = 𝛽𝑚 ∗ , (22)

231 where
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232 𝑚 ∗ ∈ [lim
t→∞

𝑚(𝑡)
𝑚'(𝑡) + 1

,lim
t→0

𝑚(𝑡)
𝑚'(𝑡) + 1

,]
233 Finally, we consider the effective reproductive number, in the face of time variability of , and 𝑚(𝑡), 𝑚'(𝑡)

234 , to be𝑆(𝑡)

ℛ𝑒(𝑡) =
𝛽𝑚(𝑡)

𝑚'(𝑡) + 1
𝑆(𝑡)

𝑁 . (23)

235

236 3. Special cases of the duration of infection distribution

237 We now consider the duration of infection distributions used in traditional differential equation 

238 compartmental models, namely the exponential distribution, and the Erlang distribution. In addition, we 

239 illustrate a compartmental model that accounts for any mean, standard deviation, skewness, and excess 

240 kurtosis, by assuming that the duration of infection is Pearson distributed.

241 3.1 The exponential distribution. If the duration of infection is exponentially distributed, then the 

242 associated survival function at the onset of the epidemic is . Under this assumption, 𝑃(𝑡,𝑥) = 𝑒 ‒ 𝛾(𝑡 ‒ 𝑥)

243 we have that [30],

𝜂(𝑡) =‒
1

𝑃(𝑡,𝑥)
𝑑𝑃
𝑑𝑡 = 𝛾, (24)

244 and

𝑔(𝑡) =
1
𝛾𝑡. (25)

245 Solving (8) under the assumption of (25) yields,
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𝑚(𝑡) =
1
𝛾. (26)

246 Substituting (26) into (19), we arrive at the traditional form of differential equation compartmental 

247 models:

𝑆'(𝑡) =‒ 𝛽
𝐼(𝑡)
𝑁 𝑆(𝑡),

𝐼'(𝑡) = 𝛽
𝐼(𝑡)
𝑁 𝑆(𝑡) ‒ 𝛾𝐼(𝑡),

𝑅'(𝑡) = 𝛾𝐼(𝑡).

(27)

248 Finally, because the basic reproductive numbers are𝑚(𝑡) =
1
𝛾 = 𝜇,  

ℛ0 =
𝛽
𝛾 and ℛ0 =

𝛽
𝛾 (28)

249

250 3.5 The Erlang distribution. If the duration of infection is Erlang distributed, then the survival function is

𝑃(𝑡,𝑥) =
𝑃(𝑇 > 𝑡)
𝑃(𝑇 > 𝑥) = (𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑥)𝑗

𝑗! 𝑒 ‒ 𝛾𝑥)
‒ 1𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡. (29)

251 Note, this formulation of an Erlang distributed random variable differs from that used in the derivation 

252 of traditional compartmental models, as in general . 𝑃(𝑡,𝑥) ≠ 𝑃(𝑡 ‒ 𝑥)

253 From (6) and (29), it follows that

𝜂(𝑡) = (𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡)
‒ 1

𝛾(𝛾𝑡)𝑘 ‒ 1

(𝑘 ‒ 1)! 𝑒 ‒ 𝛾𝑡 = (𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! )
‒ 1

𝛾(𝛾𝑡)𝑘 ‒ 1

(𝑘 ‒ 1)! . (30)
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254 We also have that [30]

𝑔(𝑡) =
1
𝛾𝑡 . (31)

255 Substituting (31) in (8), we obtain the mean residual waiting-time:

𝑚(𝑡) =
𝑘
𝛾 ‒ 𝑡 +

1
𝛾𝑡(𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! )
‒ 1

𝛾(𝛾𝑡)𝑘 ‒ 1

(𝑘 ‒ 1)! . (32)

256 Using (32) and its derivative in system (19), we obtain a compartmental model of only 3 equations that 

257 features a duration of infection that is Erlang distributed, regardless of the value of .𝑘

258 We now apply ‘linear chain trickery’ [9,32,33] to the obtained compartmental model of only 3 equations 

259 to further illustrate the effects of a duration of infection that is Erlang distributed.

260

261 Imposing the assumption of (30)-(32) on (22), we have that

𝑚(𝑡)𝐼(𝑡) = 𝐼0
𝑘
𝛾

𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡 +
𝑡

∫
0

𝛽
𝑁𝐼(𝑥)𝑚(𝑥)𝑆(𝑥)(𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑥)𝑗

𝑗! 𝑒 ‒ 𝛾𝑥)
‒ 1

(𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑡)𝑗

𝑗! 𝑒 ‒ 𝛾𝑡)𝑑𝑥. (33)

262 Differentiating yields

𝑚'(𝑡)𝐼(𝑡) + 𝑚(𝑡)𝐼'(𝑡) = 𝐼0
𝑘
𝛾( ‒ 𝛾(𝛾𝑡)𝑘 ‒ 1

(𝑘 ‒ 1)! )𝑒 ‒ 𝛾𝑡 +

𝑡

∫
0

𝛽
𝑁𝐼(𝑥)𝑚(𝑥)𝑆(𝑥)(𝑘 ‒ 1

∑
𝑗 = 0

(𝛾𝑥)𝑗

𝑗! 𝑒 ‒ 𝛾𝑥)
‒ 1

( ‒ 𝛾(𝛾𝑡)𝑘 ‒ 1

(𝑘 ‒ 1)! 𝑒 ‒ 𝛾𝑡)𝑑𝑥 +
𝛽
𝑁𝐼(𝑡)𝑚(𝑡)𝑆(𝑡).

(34)

263 Mimicking the method of stages, we define 
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𝑚𝑗(𝑡)𝐼𝑗(𝑡) = 𝐼0
𝑘
𝛾((𝛾𝑡)𝑗 ‒ 1

(𝑗 ‒ 1)!)𝑒 ‒ 𝛾𝑡 +
𝑡

∫
0

𝛽
𝑁𝐼(𝑥)𝑚(𝑥)𝑆(𝑥)(𝑘 ‒ 1

∑
𝑖 = 0

(𝛾𝑥)𝑖

𝑖! 𝑒 ‒ 𝛾𝑥)
‒ 1

((𝛾𝑡)𝑗 ‒ 1

(𝑗 ‒ 1)!𝑒 ‒ 𝛾𝑡)𝑑𝑥, (35)

264 for .1 ≤ 𝑗 ≤ 𝑘

265

266 Thereby, from (34) and (35), we have that 

𝑚'(𝑡)𝐼(𝑡) + 𝑚(𝑡)𝐼'(𝑡) =‒ 𝛾𝑚𝑘(𝑡)𝐼𝑘(𝑡) +
𝛽
𝑁𝐼(𝑡)𝑚(𝑡)𝑆(𝑡). (36)

267 By differentiating (35), making the appropriate substitutions of  and , and ‒ 𝛾𝑚𝑗(𝑡)𝐼𝑗(𝑡) 𝛾𝑚𝑗 ‒ 1(𝑡)𝐼𝑗 ‒ 1(𝑡)

268 recognizing that  we have that(∑𝑘 ‒ 1
𝑖 = 0

(𝛾𝑡)𝑖

𝑖! ) ‒ 1((𝛾𝑡)𝑗 ‒ 1

(𝑗 ‒ 1)!) =
(𝑘 ‒ 1)!
(𝑗 ‒ 1)!

𝜂(𝑡)
𝛾(𝛾𝑡)𝑘 ‒ 𝑗,

𝑚'
𝑗(𝑡)𝐼𝑗(𝑡) + 𝑚𝑗(𝑡)𝐼'

𝑗(𝑡) =‒ 𝛾𝑚𝑗(𝑡)𝐼𝑗(𝑡) + 𝛾𝑚𝑗 ‒ 1(𝑡)𝐼𝑗 ‒ 1(𝑡) +
𝛽
𝑁𝐼(𝑡)𝑚(𝑡)𝑆(𝑡)

(𝑘 ‒ 1)!
(𝑗 ‒ 1)!

𝜂(𝑡)
𝛾(𝛾𝑡)𝑘 ‒ 𝑗. (37)

269 for , and when 1 < 𝑗 ≤ 𝑘 𝑗 = 1,

𝑚 '
1(𝑡)𝐼1(𝑡) + 𝑚1(𝑡)𝐼 '

1(𝑡) =‒ 𝛾𝑚1(𝑡)𝐼1(𝑡) +
𝛽
𝑁𝐼(𝑡)𝑚(𝑡)𝑆(𝑡)(𝑘 ‒ 1)!

𝜂(𝑡)
𝛾(𝛾𝑡)𝑘 ‒ 1 . (38)

270 Summing over the index yields,

𝑘

∑
𝑗 = 1

𝑚'
𝑗(𝑡)𝐼𝑗(𝑡) + 𝑚𝑗(𝑡)𝐼'

𝑗(𝑡) =‒ 𝛾𝑚𝑘(𝑡)𝐼𝑘(𝑡) +
𝛽
𝑁𝐼(𝑡)𝑚(𝑡)𝑆(𝑡)𝜂(𝑡)

𝑘 ‒ 1

∑
𝑗 = 0

(𝑘 ‒ 1)!
𝑗!

1
𝛾(𝛾𝑡)𝑘 ‒ 𝑗 ‒ 1, (39)

271 Noting that , it follows from (36) that∑𝑘 ‒ 1
𝑗 = 0

(𝑘 ‒ 1)!
𝑗!

1
𝛾(𝛾𝑡)𝑘 ‒ 𝑗 ‒ 1 =

1
𝜂(𝑡)
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𝑚'(𝑡)𝐼(𝑡) + 𝑚(𝑡)𝐼'(𝑡) =
𝑘

∑
𝑗 = 1

𝑚'
𝑗(𝑡)𝐼𝑗(𝑡) + 𝑚𝑗(𝑡)𝐼'

𝑗(𝑡), (40)

and 

𝑚(𝑡)𝐼(𝑡) =
𝑘

∑
𝑗 = 1

𝑚𝑗(𝑡)𝐼𝑗(𝑡).

(41)

272 Thereby, using (41) and simplifying the expression of  we have that 𝜂(𝑡)∑𝑘 ‒ 1
𝑗 = 0

(𝑘 ‒ 1)!
𝑗!

1
𝛾(𝛾𝑡)𝑘 ‒ 𝑗 ‒ 1,

𝑚'
𝑗(𝑡)𝐼𝑗(𝑡) + 𝑚𝑗(𝑡)𝐼'

𝑗(𝑡)

=‒ 𝛾𝑚𝑗(𝑡)𝐼𝑗(𝑡) + 𝛾𝑚𝑗 ‒ 1(𝑡)𝐼𝑗 ‒ 1(𝑡) +
𝛽
𝑁( 𝑘

∑
𝑖 = 1

𝑚𝑖(𝑡)𝐼𝑖(𝑡))𝑆(𝑡)(𝑘 ‒ 1

∑
𝑖 = 0

(𝑗 ‒ 1)!
𝑖!

1
(𝛾𝑡)𝑗 ‒ 𝑖 ‒ 1)

‒ 1

,

(42

)

and 

𝑚 '
1(𝑡)𝐼1(𝑡) + 𝑚1(𝑡)𝐼 '

1(𝑡) =‒ 𝛾𝑚1(𝑡)𝐼1(𝑡) +
𝛽
𝑁( 𝑘

∑
𝑖 = 1

𝑚𝑖(𝑡)𝐼𝑖(𝑡))𝑆(𝑡)(𝑘 ‒ 1

∑
𝑖 = 0

(𝑗 ‒ 1)!
𝑖!

1
(𝛾𝑡)𝑗 ‒ 𝑖 ‒ 1)

‒ 1

.

(43

)

273 Isolating (42)-(43) for and , respectively, we arrive at𝐼'
𝑗(𝑡) 𝐼 '

1(𝑡)

𝐼 '
1(𝑡) =‒ (𝑚 '

1(𝑡)
𝑚1(𝑡) + 𝛾)𝐼1(𝑡) +

1
𝑚1(𝑡)

𝛽
𝑁( 𝑘

∑
𝑖 = 1

𝑚𝑖(𝑡)𝐼𝑖(𝑡))𝑆(𝑡)(𝑘 ‒ 1

∑
𝑖 = 0

(𝑗 ‒ 1)!
𝑖!

1
(𝛾𝑡)𝑗 ‒ 𝑖 ‒ 1)

‒ 1

, (44)

274 and

𝐼'
𝑗(𝑡) =‒ (𝑚'

𝑗(𝑡)
𝑚𝑗(𝑡) + 𝛾)𝐼𝑗(𝑡) + 𝛾

𝑚𝑗 ‒ 1(𝑡)
𝑚𝑗(𝑡) 𝐼𝑗 ‒ 1(𝑡) +

1
𝑚𝑗(𝑡)

𝛽
𝑁( 𝑘

∑
𝑖 = 1

𝑚𝑖(𝑡)𝐼𝑖(𝑡))𝑆(𝑡)(𝑘 ‒ 1

∑
𝑖 = 0

(𝑗 ‒ 1)!
𝑖!

1
(𝛾𝑡)𝑗 ‒ 𝑖 ‒ 1)

‒ 1

.
(45

)

275 Finally, we consider the special case when individual stages feature identically constant waiting-times, 

276 which implies that
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𝐼 '
1(𝑡) =‒ 𝛾𝐼1(𝑡) +

𝛽
𝑁( 𝑘

∑
𝑗 = 1

𝐼𝑗(𝑡)𝑆(𝑡))(𝑘 ‒ 1

∑
𝑖 = 0

1
𝑖!

1
(𝛾𝑡) ‒ 𝑖)

‒ 1

,

and

(46)

𝐼'
𝑗(𝑡) =‒ 𝛾𝐼𝑗(𝑡) + 𝛾𝐼𝑗 ‒ 1(𝑡) +

𝛽
𝑁( 𝑘

∑
𝑖 = 1

𝐼𝑖(𝑡))𝑆(𝑡)(𝑘 ‒ 1

∑
𝑖 = 0

(𝑗 ‒ 1)!
𝑖!

1
(𝛾𝑡)𝑗 ‒ 𝑖 ‒ 1)

‒ 1

. (47)

277 Through (29), (30) and (32), we reduce system (19) to a system of 3 differential equations based on an 

278 Erlang distributed duration of infection, or through the ‘linear chain trick’ a system of  differential 𝑘 + 2

279 equations (i.e. (46)-(47),  and . An important distinction between (46)-(47) and the traditional 𝑆' 𝑅')

280 system of differential equations (3b) with an Erlang distributed duration of infection is that new 

281 infections enter into any given infectious state in (46)-(47), based on a component of the duration of 

282 infection distribution, whereas (3b) requires all new infections to enter the first stage of infection. 

283 Thereby, (46)-(47) present an approach that is likely to better conserve the variation in infectious period, 

284 at least relative to its traditional compartmental model counterparts. 

285 Finally, in regards to the basic reproductive numbers, we have that ,   and  ∫∞
𝑥 𝑃(𝑡,𝑥)𝑑𝑥 =

𝑘
𝛾 lim

𝑡→∞

𝑚(𝑡)
𝑚'(𝑡) + 1 =

1
𝛾

286 solim
𝑡→0

𝑚(𝑡)
𝑚'(𝑡) + 1 =

𝑘
𝛾,  

ℛ0 = 𝛽
𝑘
𝛾,  and,  ℛ0 ∈ [𝛽

𝛾,𝛽
𝑘
𝛾]. (48)

287 3.3. The Pearson distribution. If the duration of infection is Pearson distributed, then the associated 

288 survival function does not posses a general closed form. Thus, we define the Pearson distribution as
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𝑃(𝑡,𝑥) =
𝑃(𝑇 > 𝑡)
𝑃(𝑇 > 𝑥)

where

𝑑2

𝑑𝑡2𝑃(𝑡,𝑥) = ℎ(𝑡;𝜇,𝜎,𝛾1,𝛾2) 
𝑑
𝑑𝑡𝑃(𝑡,𝑥),

(49)

289 and

ℎ(𝑡;𝜇,𝜎,𝛾1,𝛾2) =
( ‒ 12𝛾2

1 + 10𝛾2 + 12)(𝑡 ‒ 𝜇) + (𝛾1𝛾2 + 6𝛾1)𝜎

(3𝛾2
1 ‒ 2𝛾2)(𝑡 ‒ 𝜇)2 ‒ 𝜎𝛾1(𝛾2 + 6)(𝑡 ‒ 𝜇) + (3𝛾2

1 ‒ 12 ‒ 4𝛾2)𝜎2. (50)

290 Note,  and  are the mean, standard deviation, skewness, and excess kurtosis of the duration of 𝜇,𝜎,𝛾1, 𝛾2

291 infection [30,34,35]. 

292 To obtain the mean residual waiting-time in terms of the hazard function, we have that [30,36]:

𝑔(𝑡) =
1

1 ‒ 2𝑐
(𝜎2𝑎 + 𝜎𝑏(𝑡 ‒ 𝜇) + 𝑐(𝑡 ‒ 𝜇)2), (51)

293 where  and .𝑎 =
1
2

3𝛾2
1 ‒ 4𝛾2 ‒ 12

6𝛾2
1 ‒ 5𝛾2 ‒ 6 ,𝑏 =‒

1
2

𝛾1(𝛾2 + 6)
6𝛾2

1 ‒ 5𝛾2 ‒ 6, 𝑐 =
1
2

3𝛾2
1 ‒ 2𝛾2

6𝛾2
1 ‒ 5𝛾2 ‒ 6

294 It follows from (15) that the mean residual waiting-time is:

𝑚(𝑡) = 𝜇 ‒ 𝑡 + ( 1
1 ‒ 2𝑐

(𝜎2𝑎 + 𝜎𝑏(𝑡 ‒ 𝜇) + 𝑐(𝑡 ‒ 𝜇)2))𝜂(𝑡), (52)

295 where .𝑐 ≠ 1/2

296 Through the use of (8), we obtain from (52) a first order differential equation to determine :𝑚(𝑡)
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𝑚'(𝑡) = ( 1
1 ‒ 2𝑐

(𝜎2𝑎 + 𝜎𝑏(𝑡 ‒ 𝜇) + 𝑐(𝑡 ‒ 𝜇)2)) ‒ 1

(𝑚(𝑡) + 𝑡 ‒ 𝜇)𝑚(𝑡) ‒ 1, (53)

297 provided .𝜎2𝑎 + 𝜎𝑏(𝑡 ‒ 𝜇) + 𝑐(𝑡 ‒ 𝜇)2 ≠ 0, and 𝑐 ≠
1
2

To ensure the mean residual waiting-time is finite we apply l’H pital’s rule to obtaino

lim
t→∞

𝑚(𝑡) = lim
t→∞

𝜇 ‒
𝑡

∫
0

𝑃(𝑧,0)𝑑𝑧

𝑃(𝑡,0) = lim
t→∞

‒
𝑃(𝑡,0)

𝑑𝑃
𝑑𝑡

= lim
t→∞

‒

𝑑𝑃
𝑑𝑡

𝑑2𝑃
𝑑𝑡2

= lim
t→∞

‒
1

ℎ(𝑡;𝜇,𝜎,𝛾1,𝛾2).

(54)

298 Thus, we require that  to force the terms involving  to drop out. Under this assumption, 3𝛾2
1 ‒ 2𝛾2 = 0 𝑡2

299 we have that 

lim
t→∞

‒
1

ℎ(𝑡;𝜇,𝜎,𝛾1,
3
2𝛾2

1)
=

1
2𝜎𝛾1,

(55)

300 Given (55), the two formulations of the basic reproductive number are:

ℛ0 = 𝛽𝜇, (56)

301 and

ℛ0 ∈ [1
2𝛽𝜎𝛾1, 𝛽𝜇]. (57)

302 Note, the lower bound of (57) is consistent with the next-generation method estimate for the basic 

303 reproductive numbers (28) and (48), as the Erlang distribution has moments  and , which  𝜎 =
𝑘

𝛾 𝛾1 =
2
𝑘

304 implies .
1
2𝜎𝛾1 =

1
𝛾
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305

306 4. Discussion

307 In this work, we presented a class of novel differential equation compartmental models by modifying 

308 the classical assumptions that simplify nonlinear Volterra integral equations into systems of differential 

309 equations. To do this, we generalize the notion of the total infectivity of a disease, and the 

310 representation of its duration of infection. We illustrate the consistency of our class of novel models to 

311 the traditional models for exponential and Erlang distributed durations of infections, present a new class 

312 of differential equation compartmental models based a Pearson distributed duration of infection, and 

313 provide equilibria and basic reproductive numbers for our approach.

314 The requirement that the duration of infection follows an exponential distribution is often a source of 

315 weakness with regards to the biological validity of differential equation compartmental models. While 

316 the extension of such models through the linear chain trick [9,32,33] to a duration of infection that 

317 follows the Erlang distribution alleviates this weakness to some degree, it does so at the cost of inflating 

318 the size of the compartmental model, and thereby increasing the computational complexity of the 

319 system. Our new class of models avoids this inflation, while retaining the benefits of having a 

320 distribution of infection that follows an Erlang distribution. Thereby our new class of models offer an 

321 approach to reduce model complexity in an era when the complexity of compartmental models is ever 

322 increasing. Furthermore, if one generalizes the concept of a function to include the survival function of 

323 the Gamma distribution, our new class of models advantageously accounts for any Gamma distribution 

324 parameter values, including non-integer cases.

325 A main advantage of the new class of models is that they are ODE based. Therefore, like the traditional 

326 compartmental models, they do not require specialist knowledge to use, and possess well-developed 

327 numerical methods for their simulation. Furthermore, the theoretical extensions of the traditional 
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328 models to include alternative formulations of the force of infection, state-dependent recovery rates, in 

329 addition to the inclusion of additional disease compartments are easily implemented in the new class of 

330 models. In addition, many of the applications of the traditional models, such as the study of multi-strain 

331 dynamics, health benefit analysis, and cost effectiveness analysis, should naturally carry over without 

332 the need to reinvent the procedures of each analysis. 

333

334 A potentially fruitful avenue for future applications of our new class of models is in the study of 

335 virulence and disease evolution. To elaborate, because our new class of model includes both the 

336 quantity of infected individuals and their duration of infection, it may serve as a better paradigm for 

337 investigating selective pressures that pathogens face, at least relative to traditional models. Similarly, 

338 our idea to track both the quantity of infected individuals along with their duration of infection could be 

339 adapted to study species competition, as a similar modification should provide stronger intuition on 

340 species fitness. 

341

342 A surprising outcome of our work is the discovery that the lower bound provided by the next-generation 

343 method estimate of the basic reproductive number for the Pearson distributed example depends on 

344 standard deviation and skewness, instead of the mean. As standard deviation and skewness indicate the 

345 spread and lean of a distribution, it seems reasonable that their combination makes for a decent proxy 

346 for the location of the middle of a distribution. While this could be a consequence of assuming that the 

347 duration of infection follows the Pearson distribution, it also highlights a potentially new approach to 

348 bound the basic reproductive number for a disease directly from data.

349

350 The use of a duration of infection that is Pearson distributed may also open up an interesting avenue 

351 into bifurcation analysis. In particular, with modifications to incorporate demographic turnover or loss of 
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352 immunity, and the use of the Pearson distribution, one could investigate if a relationship exists between 

353 the occurrence of periodic cycles and the first four moments of the duration of infection. Thereby, one 

354 may be able to gain intuition as to whether bifurcations are likely to occur simply by examining 

355 statistical moments and the diseases transmission rate.  In addition, through such modified models, it 

356 may be possible to determine the existence (or non-existence) of hopf bifurcations by examining 

357 whether  is periodic, as this seems like it would a requirement for such behavior in reality. 𝑚(𝑡)

358

359

360 As our new class of models are based on the integral equation version of the Kermack and McKendrik 

361 model, it shares this model’s limitations. Namely, the assumptions of a sufficiently large and well-mixed 

362 population, the compartmentalization of diseases into distinct stages, and the transmission assumption 

363 of the law of mass-action. While these limitations may seem numerous, they do not impeded research 

364 on traditional models, and thereby should inhibit the theoretical extension and application of the 

365 broader class of models proposed here. 

366

367 The traditional assumptions that reduce the integral equation version of the Kermack and McKendrik 

368 model to a system of differential equations provides disease modellers with a rich source for 

369 mathematical and scientific discovery. Here, we proposed a generalization of these traditional 

370 assumptions to a biologically more accurate description of the total infectivity of a disease. By imposing 

371 these new assumptions, we provide a more descript picture of how a disease propagates throughout a 

372 population, while retaining the convenience and simplicity of differential equation compartmental 

373 models. 

374

375
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