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Abstract 19 

Chromatin conformation regulates gene expression and thus constant remodeling of chromatin 20 

structure is essential to guarantee proper cell function. To gain insight into the spatio-temporal 21 

organization of the genome, we employ high-density photo-activated localization microscopy and 22 

deep learning to obtain temporally resolved super-resolution images of chromatin in vivo. In 23 

combination with high-resolution dense motion reconstruction, we confirm the existence of 24 

elongated ~ 45 to 90 nm wide chromatin ‘blobs’, which appear to be dynamically associating 25 

chromatin fragments in close physical and genomic proximity and adopt TAD-like interactions in 26 

the time-average limit. We found the chromatin structure exhibits a spatio-temporal correlation 27 

extending ~ 4 μm in space and tens of seconds in time, while chromatin dynamics are correlated 28 

over ~ 6 μm and outlast 40 s. Notably, chromatin structure and dynamics are closely interrelated, 29 

which may constitute a mechanism to grant access to regions with high local chromatin 30 

concentration.   31 
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Introduction 32 

The three-dimensional organization of the eukaryotic genome plays a central role in gene regulation 33 

(1–3). Its spatial organization has been prominently characterized by molecular and cellular 34 

approaches including high-throughput chromosome conformation capture (Hi-C) (4) and 35 

fluorescent in situ hybridization (FISH) (5). Topologically associated domains (TADs), genomic 36 

regions that display a high degree of interaction, were revealed and found to be a key architectural 37 

feature (6). Direct 3D localization microscopy of the chromatin fiber at the nanoscale (7) confirmed 38 

the presence of TADs in single cells but also, among others, revealed great structural variation of 39 

chromatin architecture (8, 9). To comprehensively resolve the spatial heterogeneity of chromatin, 40 

super-resolution microscopy must be employed. Previous work showed that nucleosomes are 41 

distributed as segregated, nanometer-sized accumulations throughout the nucleus (10–13) and that 42 

the epigenetic state of a locus has a large impact on its folding (14, 15). However, to resolve the 43 

fine structure of chromatin, high labeling densities, long acquisition times and, often, cell fixation 44 

are required. This precludes capturing dynamic processes of chromatin in single live cells, yet 45 

chromatin moves at different spatial and temporal scales.  46 

The first efforts to relate chromatin organization and its dynamics were made using a combination 47 

of Photo-activated Localization Microscopy (PALM) and tracking of single nucleosomes (16). It 48 

could be shown that nucleosomes mostly move coherently with their underlying domains, in 49 

accordance with conventional microscopy data (17); however, a quantitative link between the 50 

observed dynamics and the surrounding chromatin structure could not yet be established in real-51 

time. Although it is becoming increasingly clear that chromatin motion and long-range interactions 52 

are key to genome organization and gene regulation (18), tools to detect and to define bulk 53 

chromatin motion simultaneously at divergent spatio-temporal scales and high resolution are still 54 

missing. 55 
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Here we apply deep learning-based photo-activated localization microscopy (Deep-PALM) for 56 

temporally resolved super-resolution imaging of chromatin in vivo. Deep-PALM acquires a single 57 

resolved image in a few hundred milliseconds with a spatial resolution of ~ 60 nm. We observed 58 

elongated ~ 45 to 90 nm wide chromatin domain ‘blobs’. Employing a computational chromosome 59 

model, we inferred that blobs are highly dynamic entities, which dynamically assemble and 60 

disassemble. Consisting of chromatin in close physical and genomic proximity, blobs nevertheless 61 

adopt TAD-like interaction patterns when chromatin confirmations are averaged over time. Using 62 

a combination of Deep-PALM and high-resolution dense motion reconstruction (17), we 63 

simultaneously analyzed both structural and dynamic properties of chromatin. Our analysis 64 

emphasizes the presence of spatio-temporal cross-correlations between chromatin structure and 65 

dynamics, extending several micrometers in space and tens of seconds in time. Furthermore, 66 

extraction and statistical mapping of multiple observables from the dynamic behavior of chromatin 67 

blobs shows that local chromatin density regulates local chromatin dynamics. 68 

 69 

Results  70 

Deep-PALM reveals dynamical chromatin remodeling in living cells. 71 

Super-resolution imaging of complex and compact macromolecules such as chromatin requires 72 

dense labeling of the chromatin fiber in order to resolve fine features. We employ Deep-STORM, 73 

a method which uses a deep convolutional neural network (CNN) to predict super-resolution images 74 

from stochastically blinking emitters (19) (Figure 1A; Materials and Methods). The CNN was 75 

trained to specific labeling densities for live-cell chromatin imaging using a photo-activated 76 

fluorophore (PATagRFP); we therefore refer to the method as Deep-PALM. We chose three 77 

labeling densities 4, 6 and 9 emitters per µm2 per frame in the ON-state to test, based on the 78 

comparison of simulated and experimental wide field images (Supplementary Figure 1A). The 79 

CNN trained with 9 emitters per µm2 performed significantly worse than the other CNNs and was 80 
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thus excluded from further analysis (Supplementary Figure 1B; Materials and Methods). We 81 

applied Deep-PALM to reconstruct an image set of labeled histone protein (H2B-PATagRFP) in 82 

human bone osteosarcoma (U2OS) cells using the networks trained on 4 and 6 emitters per µm2 per 83 

frame (Materials and Methods). A varying number of predictions by the CNN of each individual 84 

frame of the input series were summed to reconstruct a temporal series of super resolved images 85 

(Supplementary Figure 1C). The predictions made by the CNN trained with 4 emitters per µm2 86 

show large spaces devoid of signal intensity, especially at the nuclear periphery, making this CNN 87 

inadequate for live-cell super-resolution imaging of chromatin. While collecting photons from long 88 

acquisitions for super-resolution imaging is desirable in fixed cells, Deep-PALM is a live imaging 89 

approach. Summing over many individual predictions leads to considerable motion blur and thus 90 

loss in resolution. Quantitatively, the Nyquist criterion states that the image resolution 𝑅 = 2/√𝜏𝜌 91 

depends on 𝜌, the localization density per second and the time resolution 𝜏 (20). In contrast, motion 92 

blur strictly depends on the diffusion constant 𝐷 of the underlying structure 𝑅 = √4𝐷𝜏. There is 93 

thus an optimum resolution due to the tradeoff between increased emitter sampling and the 94 

avoidance of motion blur, which was at a time resolution of 360 ms for our experiments (Figure 95 

1B; Supplementary Figure 1D). Super-resolution imaging of H2B-PATagRFP in live cells at this 96 

temporal resolution shows a pronounced nuclear periphery while fluorescent signals in the interior 97 

vary in intensity (Figure 1C). This likely corresponds to chromatin-rich and chromatin-poor regions 98 

(13). These regions rearrange over time, reflecting the dynamic behavior of bulk chromatin. 99 

Chromatin-rich and chromatin-poor regions were visible not only at the scale of the whole-nucleus, 100 

but also at the resolution of a few hundred nanometers (Figure 1D). Within chromatin-rich regions, 101 

the intensity distribution was not uniform but exhibited spatially segregated accumulations of 102 

labeled histones of variable shape and size, reminiscent of nucleosome clutches (10), nanodomains 103 

(14, 16) or TADs (21). At the nuclear periphery, prominent structures arise. Certain chromatin 104 

structures could be observed for ~ 1 s, which underwent conformational changes during this period 105 
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(Figure 1E). The spatial resolution at which structural elements can be observed (Materials and 106 

Methods) in time-resolved super-resolution data of chromatin was 63 ± 2 nm (Figure 1E), slightly 107 

more optimistic than the theoretical prediction (Figure 1B) (22). Thus, Deep-PALM identifies 108 

spatially heterogeneous coverage of chromatin as previously reported (10, 13, 14, 16, 21). We 109 

further monitor chromatin temporally at nanometer scale in living cells. 110 

 111 

Chromatin appears in elongated nanometer-sized blobs with a non-random spatial 112 

distribution. 113 

To quantitatively assess the spatial distribution of H2B, we developed an image segmentation 114 

scheme (Materials and Methods, Supplementary Figure 2) which allowed us to segment spatially 115 

separated accumulations of H2B signal with high fidelity (Supplementary Note 1, Supplementary 116 

Figure 3, Supplementary Figure 4). Applying our segmentation scheme, ~ 10,000 separable 117 

elements, blob-like structures were observed for each super-resolved image (166 resolved images 118 

per movie; Figure 2A). To elucidate their origin and formation, we used a transferable 119 

computational model introduced by Qi et al. (23), which is based on one-dimensional genomics 120 

and epigenomics data, including histone modification profiles and CTCF binding sites. Super-121 

resolution images were generated from the modeled chromosomes. Within these images we 122 

identified and characterized ‘chromatin blobs’ analogously as for experimental data (Materials and 123 

Methods; Figure 2B).  124 

For both imaged and modeled chromatin, we first computed the kth nearest neighbor distance (NND; 125 

centroid-to-centroid) distributions, taking into account the nearest 1st to 40th neighbors (Figure 2C, 126 

blue to red). Centroids of nearest neighbors are (95 ± 30) nm (mean ± standard deviation) apart, 127 

consistent with previous super-resolution images of chromatin in fixed cells (14) and slightly 128 

further than what was found for clutches of nucleosomes (10). The envelope of all NND 129 

distributions (Figure 2C, black line) shows several weak maxima at ~ 95 nm, 235 nm, 335 nm, and 130 
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450 nm, which roughly coincide with the peaks of the 1st, 7th, 14th and 25th nearest neighbors 131 

respectively (Figure 2C, red dots). In contrast, simulated data exhibit a prominent first nearest 132 

neighbor peak at slightly smaller distance and higher-order NND distribution decay quickly and 133 

appear washed out (Figure 2D). This hints towards greater levels of spatial organization of 134 

chromatin in vivo, which is not readily recapitulated in the employed state-of-the-art chromosome 135 

model. 136 

Next, we were interested in the typical size of chromatin blobs. Their area distribution (Figure 2E) 137 

fit a log-normal distribution with parameters (3.3 ± 2.8) ⋅ 10−3 μm2 (mean ± standard deviation), 138 

which is in line with the area distribution derived from modeled chromosomes. Notably, blob areas 139 

vary considerably as indicated by the high standard deviation and the prominent tail of the area 140 

distribution towards large values. Following this we calculated the eccentricity of each blob to 141 

resolve their shape (Figure 2F). The eccentricity is a measure of the elongation of a region reflecting 142 

the ratio of the longest chord of the shape and the shortest chord perpendicular to it (Figure 2F, 143 

illustrated shapes at selected eccentricity values). The distribution of eccentricity values shows an 144 

accumulation of values close to 1, with a peak value of ~ 0.9, which shows that most blobs have an 145 

elongated, fiber-like shape and are not circular. In particular, the eccentricity value of 0.9 146 

corresponds to a ratio between the short and long axis of the ellipse of ~ ½ (Materials and Methods), 147 

which results, considering the typical area of blobs, in roughly 92 nm long and 46 nm wide blobs 148 

on average. The length coincides with the value found for the typical nearest-neighbor distance 149 

(Figure 2C; (95 ± 30) nm). However, due to the segregation of chromatin into blobs, their 150 

elongated shape and their random orientation (Figure 2A), the blobs cannot be closely packed 151 

throughout the nucleus. We find that chromatin has a spatially heterogeneous density, occupying 5 152 

- 60% of the nuclear area (Supplementary Figure 5A, B), which is supported by a previous electron 153 

microscopy study (24). The blob dimensions also fall within previously determined size ranges (10, 154 

14), confirming the existence of spatially segregated chromatin structures in the sub-100 nm range.  155 
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Chromatin blobs identified by Deep-PALM are coherent with sub-TADs 156 

Due to the projection of the nuclear volume to the imaging plane, the observed blobs could simply 157 

be overlays of distant, along the one-dimensional genome, non-interacting genomic loci. To 158 

exclude this possibility, we analyzed the gap length along the simulated chromosome between 159 

beads belonging to the same blob. The analysis showed that the blobs are mostly made of 160 

consecutive beads along the genome, thus implying an underlying domain-like structure, similar to 161 

TADs (Figure 3A). Using the affiliation of each bead to an intrinsic chromatin state of the model 162 

(Figure 3B), it became apparent that blobs along the simulated chromosome consisting mostly of 163 

active chromatin are significantly larger than those formed by inactive and repressive chromatin 164 

(Figure 3C). These findings are in line with experimental results (15) and results from the 165 

simulations directly (23), thereby validating the projection and segmentation process. 166 

Since chromatin is dynamic in vivo and in computer simulations, each bead can diffuse in and 167 

out of the imaging volume from frame to frame. We estimated that, on average, each bead spent 168 

approximately 1.5 s continuously within a slab of 200 nm thickness (Figure 3D). Furthermore, a 169 

bead is on average found only 0.55 ± 0.33 s continuously within a blob, which corresponds to 1 – 170 

2 experimental super-resolved images (Figure 3D). These results suggest that chromatin blobs are 171 

highly dynamic entities, which usually form and dissemble within less than one second. We thus 172 

constructed a time-averaged association map for the modeled chromosomes, quantifying the 173 

frequency at which each locus is found with any other locus within one blob. The association map 174 

is comparable to interaction maps derived from Hi-C (Figure 3E). Strikingly, inter-loci association 175 

and Hi-C maps are strongly correlated, and the association map shows similar patterns as those 176 

identified as TADs in Hi-C maps, even for relatively distant genomic loci (> 1 Mbp). A similar 177 

TAD-like organization is also apparent when the average inverse distance between loci is 178 

considered (Figure 3F, upper panel), suggesting that blobs could be identified in super-resolved 179 

images due to the proximity of loci within blobs in physical space. Using the computational 180 
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chromosome model, we conclude that chromatin blobs identified by Deep-PALM are mostly made 181 

of continuous regions along the genome and cannot be attributed to artifacts originating from the 182 

projection of the three-dimensional genome structure to the imaging plane. The blobs associate and 183 

dissociate within less than one second, but loci within blobs are likely to belong to the same TAD. 184 

Their average genomic content is 75 kb, only a fraction of typical TAD lengths in mammalian cells 185 

(average size 880 kb) (6), suggesting that blobs likely correspond to sub-TADs or TAD nano-186 

compartments (21). 187 

 188 

Super-resolution chromatin dynamics using Deep-PALM 189 

To quantify the experimentally observed chromatin dynamics at the nanoscale, down to the size of 190 

one pixel (13.5 nm), we used a dense reconstruction of flow fields, Optical Flow (OF; Figure 4A, 191 

Materials and Methods), which was previously used to analyze images taken on confocal (25, 26), 192 

and Structured Illumination Microscopes (13). We examined the suitability of OF for super-193 

resolution based on single molecule localization images using simulations. We find that the 194 

accuracy of OF is slightly enhanced on super-resolved images, compared to conventional 195 

fluorescence microscopy images (Supplementary Note 2, Supplementary Figure 6). Experimental 196 

super-resolution flow fields are illustrated on the basis of two subsequent images, between which 197 

the dynamics of structural features are apparent to the eye (Figure 4B-C). On the nuclear periphery, 198 

connected regions spanning up to ~ 500 nm can be observed (Figure 4B (i-ii), marked by arrows). 199 

These structures are stable for at least 360 ms but move from frame to frame. The flow field is 200 

shown on top of an overlay of the two super-resolve images and color-coded (Figure 4B (iii), the 201 

intensity in frame 1 is shown in green, the intensity in frame one is shown in purple, co-localization 202 

of both is white). Displacement vectors closely follow the redistribution of intensity from frame to 203 

frame (roughly from green to purple). Similarly, structures within the nuclear interior (Figure 4C) 204 
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can be followed by eye, thus further validating and justifying the use of a dense motion 205 

reconstruction as a quantification tool of super-resolved chromatin motion. 206 

Using Optical Flow fields, we linked the spatial appearance of chromatin to their dynamics. 207 

Effectively, the blobs were characterized with two structural parameters (NND and area) and their 208 

flow magnitude (Figure 4D). Supplementary Movie 1 shows the time evolution of those parameters 209 

for an exemplary nucleus. Blobs at the nuclear periphery showed a distinct behavior from those in 210 

the nuclear interior. In particular, the periphery exhibits a lower density of blobs, but those appear 211 

slightly larger and are less mobile than in the nuclear interior (Supplementary Figure 7), in line with 212 

previous findings using conventional microscopy (26). 213 

 214 

Chromatin structure and dynamics are linked  215 

To further elucidate the relationship between chromatin structure and dynamics, we analyzed the 216 

correlations between each pair of parameters in space and time. Therefore, we computed the auto- 217 

and cross-correlation of parameter maps with a given time lag across the entire nucleus (in space) 218 

(Figure 5A). In general, a positive correlation denotes a low-low or a high-high relationship (a 219 

variable de-/increases when another variable de-/increases) while analogously a negative 220 

correlation denotes a high-low relationship. The autocorrelation of NND maps (Figure 5A(i)) shows 221 

a positive correlation, thus regions exist spanning 2 - 4 µm, in which chromatin is either closely 222 

packed (low-low) or widely dispersed (high-high). Likewise, blobs of similar size tend to be in 223 

spatial proximity (Figure 5A(iii)). These regions are not stable over time but rearrange 224 

continuously, an observation bolstered by the fact that the autocorrelation diminishes with 225 

increasing time lag. The cross-correlation between NND and area (Figure 5A(ii)) shows a negative 226 

correlation for short time lags, suggesting that large blobs appear with a high local density while 227 

small ones are more isolated. Interestingly, the correlation becomes slightly positive for time lags 228 

≥ 20 s, indicating that big blobs are present in regions which were sparsely populated before and 229 
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small blobs tend to accumulate in previously densely populated regions. This is in line with dynamic 230 

reorganization and reshaping of chromatin domains on a global scale as observed in snapshots of 231 

the Deep-PALM image series (Figure 1A). 232 

The flow magnitude is positively correlated for all time lags, while the correlation displays a slight 233 

increase for time lags ≤ 20 s (Figure 5A(vi)), which has also been observed previously (13, 25, 27). 234 

The spatial autocorrelation of dynamic and structural properties of chromatin are in stark contrast. 235 

While structural parameters are highly correlated at short, but not at long time scales, chromatin 236 

motion is still correlated at a time scale exceeding 30 s. At very short time scales (< 100 ms), 237 

stochastic fluctuations determine the local motion of the chromatin fiber, while coherent motion 238 

becomes apparent at longer times (27). However, there exists a strong cross-correlation between 239 

structural and dynamic parameters: the cross-correlation between the NND and flow magnitude 240 

shows striking negative correlation at all time lags (Figure 5A(iv)), strongly suggesting that sparsely 241 

distributed blobs appear less mobile than densely packed ones. The area seems to play a negligible 242 

role for short time lags, but there is a modest tendency that regions with large blobs tend to exhibit 243 

increased dynamics at later time points (≥ 10 s; Figure 5A(v)), likely due to the strong relationship 244 

between area and NND.  245 

In general, parameter pairs involving chromatin dynamics exhibit an extended spatial auto- or cross-246 

correlation (up to ~ 6 µm; the lower row of Figure 5A), compared to correlation curves including 247 

solely structural parameters (up to 3 - 4 µm). Furthermore, the cross-correlation of flow magnitude 248 

and NND does not considerably change for increasing time lag, suggesting that the coupling 249 

between those parameters is characterized by a surprisingly resilient memory, lasting for at least 250 

tens of seconds (28). Concomitantly, the spatial correlation of time-averaged NND maps and maps 251 

of the local diffusion constant of chromatin for the entire acquisition time enforce their negative 252 

correlation at the time scale of ~ 1 min (Supplementary Figure 8). Such resilient memory was also 253 

proposed by a computational study that observed that interphase nuclei behave like concentrated 254 
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solutions of unentangled ring polymers (29). Our data support the view that chromatin is mostly 255 

unentangled since entanglement would influence the anomalous exponent of genomic loci in 256 

regions of varying chromatin density (29, 30). However, our data do not reveal a correlation 257 

between the anomalous exponent and the time-averaged chromatin density (Supplementary Figure 258 

8), in line with our previous results using conventional microscopy (26). 259 

Overall, the spatial cross-correlation between chromatin structure and dynamics indicates that the 260 

NND between blobs and their mobility stand in a strong mutual, negative, relationship. This 261 

relationship, however, concerns chromatin density variations at the nanoscale, but not global spatial 262 

density variations such as in eu- or heterochromatin (26). These results support a model in which 263 

regions with high local chromatin density, larger blobs are more prevalent and are mobile, while 264 

small blobs are sparsely distributed and less mobile (Figure 5B). Blob density and dynamics in the 265 

long-time limit are to a surprisingly large extent influenced by preceding chromatin conformations. 266 

 267 

The local chromatin density is a key regulator of instantaneous chromatin dynamics 268 

The spatial correlations above were only evaluated pairwise, while the behavior of every blob is 269 

likely determined by a multitude of factors in the complex energy landscape of chromatin (23, 27). 270 

Here, we aim to take a wider range of available information into account in order to reveal the 271 

principle parameters, driving the observed chromatin structure and dynamics. Employing a 272 

microscopy-based approach, we have access to a total of six relevant structural, dynamic and global 273 

parameters, which potentially shape the chromatin landscape in space and time (Figure 6A). In 274 

addition to the parameters used above, we included the confinement level as a relative measure, 275 

allowing the quantification of transient confinement (Materials and Methods). We further included 276 

the bare signal intensity of super-resolved images and, as the only static parameter, the distance 277 

from the periphery since it was shown that dynamic and structural parameters show some 278 

dependence on this parameter (Supplementary Figure 7). We then employed t-Distributed 279 
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Stochastic Neighbor Embedding (31) (t-SNE), a state of the art dimensionality reduction technique, 280 

to map the six-dimensional chromatin ‘features’ (the six input parameters) into two dimensions. 281 

(Figure 6A, see Supplementary Note 3). The t-SNE algorithm projects data points such that 282 

neighbors in high-dimensional space likely stay neighbors in two-dimensional space (31). Visually 283 

apparent grouping of points (Figure 6B) implies that grouped points exhibit great similarity with 284 

respect to all input features and it is of interest to reveal which subset of the input features can 285 

explain the similarity among chromatin blobs best. It is likely that points appear grouped because 286 

their value of a certain input feature is considerably higher or lower than the corresponding value 287 

of other data points. We hence labeled points in t-SNE maps which are smaller than the first quartile 288 

point or larger than the third quartile point. Data points falling in either of the low/high partition of 289 

one input feature are colored accordingly for visualization (Figure 6D; blue/red points respectively). 290 

We then assigned a rank to each of the input features according to their nearest-neighbor fraction 291 

(n-n fraction): Since the t-SNE algorithm conserves nearest neighbors, we described the extent of 292 

grouping in t-SNE maps by the fraction of nearest neighbors which fall in either one of the 293 

subpopulations of low or high points (illustrated in Supplementary Figure 9). A high nearest 294 

neighbor fraction (n-n fraction; Figure 6C) therefore indicates that many points marked as low/high 295 

are indeed grouped by t-SNE and are therefore similar. The ranking (from low to high n-n fraction) 296 

reflects the potency of a given parameter to induce similar behavior between chromatin blobs with 297 

respect to all input features. 298 

The relative frequency at which each parameter ranked first provides an intuitive feeling for the 299 

most ‘influential’ parameters in the dataset (Figure 6E). The signal intensity plays a negligible role, 300 

suggesting that our data is free of potential artifacts related to the bare signal intensity. Furthermore, 301 

the blob area and the distance from the periphery likewise do not considerably shape chromatin 302 

blobs. In contrast, the NND between blobs was found to be the main factor inducing the observed 303 

characteristics in 67 % of all-time frames across all nuclei. The flow magnitude and confinement 304 
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level together rank 1st in 26 % of all cases (11 % and 17 %, respectively). These numbers suggest 305 

that the local chromatin density is a universal key regulator of instantaneous chromatin dynamics. 306 

Note that no temporal dependency is included in the t-SNE analysis and thus the feature extraction 307 

concerns only short-term (≤ 360 ms) relationships. The characteristics of roughly one-fourth of all 308 

blobs at each time point are mainly determined by similar dynamical features. Mapping chromatin 309 

blobs as marked in Figure 6C, D back to their respective positions inside the nucleus (Figure 6F) 310 

shows that blobs with low/high flow magnitude or confinement level markedly also grouped in 311 

physical space, which is highly reminiscent of coherent motion of chromatin (25). In contrast, blobs 312 

with extraordinary low or high NND were found interspersed throughout the nucleus, in line with 313 

spatial correlation analysis between structural and dynamic features (Figure 5). Our results point 314 

towards a large influence of the local chromatin density on the dynamics of chromatin at the scale 315 

of a few hundred nanometers and within a few hundred milliseconds. At longer time and length 316 

scales, however, previous results suggest that this relationship is lost (26) 317 

 318 

Discussion  319 

With Deep-PALM we present temporally resolved super-resolution images of chromatin in living 320 

cells. Our technique identified chromatin nanodomains, called “blobs”, which mostly have an 321 

elongated shape, consistent with the curvilinear arrangement of chromatin as revealed by Structured 322 

Illumination Microscopy (13) with typical axes length of 45 – 90 nm. A previous study reported 323 

~30 nm wide ‘clutches of nucleosomes’ in fixed mammalian cells using STORM nanoscopy (10), 324 

while the larger value obtained using Deep-PALM may be attributed to the motion blurring effect 325 

in live-cell imaging. However, histone acetylation and methylation marks were shown to form 326 

nanodomains of diameter 60 – 140 nm, respectively (14), which includes the computed dimensions 327 

for histone H2B using Deep-PALM. 328 
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Using an established chromosome model, chromatin blobs were shown to consist of continuous 329 

genomic regions with an average length of 75 kb. While assembling and disassembling dynamically 330 

within less than one second. Monomers within blobs display a distinct TAD-like association pattern 331 

in the long-time limit, suggesting that the identified blobs represent sub-TADs. Transient formation 332 

is consistent with recent findings that TADs are not stable structural elements, but exhibit extensive 333 

heterogeneity and dynamics (7, 9). 334 

We found that structural and dynamic parameters exhibit extended spatial and temporal (cross-) 335 

correlations. Structural parameters such as the local chromatin density (expressed as the NND 336 

between blobs) and area lose their correlation after 3 – 4 μm and roughly 40 s in the spatial and 337 

temporal dimension, respectively. In contrast, chromatin mobility correlations extend over ~ 6 μm 338 

and persist during the whole acquisition period (≥ 40 s). Extensive spatio-temporal correlation of 339 

chromatin dynamics have been presented previously, both experimentally (25) and in simulations 340 

(27), but was not linked to the spatio-temporal behavior of the underlying chromatin structure until 341 

now. We found that the chromatin dynamics are closely linked to the instantaneous, but also to past 342 

local structural characterization of chromatin. In other words, the instantaneous local chromatin 343 

density influences chromatin dynamics in the future and vice versa. Based on these findings, we 344 

suggest that chromatin dynamics exhibit an extraordinary long memory. This strong temporal 345 

relationship might be established by the fact that stress propagation is affected by the folded 346 

chromosome organization (32). Fiber displacements cause structural reconfiguration, ultimately 347 

leading to a local amplification of chromatin motion in local high-density environments. This 348 

observation is also supported by the fact that increased nucleosome mobility grants chromatin 349 

accessibility even within regions of high nucleosome density (33). 350 

Given the persistence at which correlations of chromatin structure and, foremost, dynamics occur 351 

in a spatio-temporal manner, we speculate that the interplay of chromatin structure and dynamics 352 

could involve a functional relationship (34): transcriptional activity is closely linked to chromatin 353 
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accessibility and the epigenomic state (35). Because chromatin structure and dynamics are related, 354 

dynamics could also correlate with transcriptional activity (26, 36). However, it is currently 355 

unknown if the structure-dynamics relationship revealed here is strictly mutual or if it may be 356 

causal. Simulations hint that chromatin dynamics follows from structure (27, 28), this question will 357 

be exciting to answer experimentally and in the light of active chromatin remodelers in order to 358 

elucidate a potential functional relationship to transcription. Chromatin regions which are switched 359 

from inactive to actively transcribing, for instance, undergo a structural reorganization 360 

accompanied by epigenetic modifications (37, 38). The mechanisms driving recruitment of 361 

enzymes inducing histone modifications such as histone acetyltransferases, deacetylases or 362 

methyltransferases is largely unknown, but often involves the association to proteins (39). Their 363 

accessibility to the chromatin fiber is inter alia determined by local dynamics (33). Such a structure-364 

dynamics feedback loop would constitute a quick and flexible way to transiently alter gene 365 

expression patterns upon reaction to external stimuli or to co-regulate distant genes (40, 41). Future 366 

work will study how structure-dynamics correlations differ in regions of different transcriptional 367 

activity and/or epigenomic states. Furthermore, to probe the interactions between key 368 

transcriptional machines such as RNA polymerases with the local chromatin structure and to record 369 

their (possibly collective) dynamics could shed light into the target search and binding mechanisms 370 

of RNA polymerases with respect to the local chromatin structure. Deep-PALM in combination 371 

with Optical Flow paves the way to answer these questions by enabling the analysis of time-372 

resolved super-resolution images of chromatin in living cells.  373 

 374 

 375 

 376 

 377 

 378 
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Materials and Methods 379 

Cell Culture. 380 

Human osteosarcoma U2OS expressing H2B-PATagRFP cells were a gift from Sébastien Huet 381 

(CNRS, UMR 6290, Institut Génétique et Développement de Rennes, Rennes, France); the histone 382 

H2B was cloned as described previously (42). U2OS cells were cultured in DMEM (with 4.5 g/l 383 

glucose) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, 100 μg/ml penicillin, 384 

and 100 U/ml streptomycin in 5% CO2 at 37°C. Cells were plated 24 hours before imaging on 35 385 

mm Petri dishes with a #1.5 coverslip like bottom (ibidi, Biovalley) with a density of 2×105 386 

cells/dish. Just before imaging, the growth medium was replaced by Leibovitz’s L-15 medium (Life 387 

Technologies) supplemented with 20% FBS, 2 mM glutamine, 100 μg/ml penicillin, and 100 U/ml 388 

streptomycin.  389 

 390 

PALM Imaging.  391 

Imaging of H2B-PAtagRFP in live U2OS cells was carried out on a fully automated Nikon TI-E/B 392 

PALM (Nikon Instruments) microscope. The microscope is equipped with a full incubator 393 

enclosure with gas regulation to maintain a temperature of ~37°C for normal cell growth during 394 

live-cell imaging. A laser line of 561 nm (~50-60 W/cm2 at the sample) was applied for PATagRFP 395 

excitation and the 405 nm laser used for photo-activation (~2-2.5 W/cm2 at the sample). Laser beam 396 

powers were controlled by acoustic optic-modulators (AA Opto-Electronics). Both wavelengths 397 

were united into an oil immersion 1.49 NA TIRF objective (100x; Nikon). An oblique illumination 398 

was applied to acquire image series with high signal to noise ratio. The fluorescence emission signal 399 

was collected by using the same objective and spectrally filtered by a Quad-Band beam splitter 400 

(ZT405/488/561/647rpc-UF2, Chroma Technology) with Quad-Band emission filter 401 

(ZET405/488/561/647m-TRF, Chroma). The signal was recorded on an EMCCD camera (Andor 402 

iXon X3 DU-897, Andor Technologies) with a pixel size of 108 nm. For axial correction, Perfect 403 
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Focus System was applied to correct for defocusing. NIS-Elements software was used for acquiring 404 

the images at 30 ms per frame. 405 

 406 

Deep-PALM analysis. The convolutional neural network (CNN) was trained using simulated data 407 

following Nehme et al. (19) for three labeling densities (4, 6 and 9 emitters per µm2 per frame). 408 

Raw imaging data were checked for drift as previously described (25). The detected drift in raw 409 

images is in the range < 10 nm and therefore negligible. The accuracy of the trained net was 410 

evaluated by constructing ground truth images from the simulated emitter positions. The Structural 411 

Similarity Index is computed to assess the similarity between reconstructed and ground truth images 412 

(43):  413 

 𝑆𝑆𝐼𝑀 = ∑
(2𝜇𝑥𝜇𝑥 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
𝑥,𝑦

, (1) 

where 𝑥 and 𝑦 are windows of the predicted and ground truth images, respectively, 𝜇 and 𝜎 denote 414 

their local means and standard deviation, respectively and 𝜎𝑥𝑦 their cross-variance. 𝐶1 = (0.01𝐿)2 415 

and 𝐶2 = (0.03𝐿)2 are regularization constants, where 𝐿 is the dynamic range of the input images. 416 

The second quantity to assess CNN accuracy is the Root Mean Square Error between the ground 417 

truth G and reconstructed image R: 418 

 419 

 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑅 − 𝐺)2

𝑁

, (2) 

 420 

Where 𝑁 is the number of pixels in the images. After training, experimental data were supplied 421 

to the trained network and predictions of single Deep-PALM images were summed to a final super-422 

resolved image. An up-sampling factor of 8 was used, resulting in an effective pixel size of 423 

108 nm/8 = 13.5 nm. The image quality assessment in order to determine the optimal number of 424 

predictions to be summed, we use a blind/referenceless image spatial quality evaluator (BRISQUE) 425 
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(44). For visualization, super-resolved images were convolved with a Gaussian kernel (𝜎 =  1 426 

pixel) and represented using a false RGB colormap.  427 

 428 

Fourier Ring Correlation analysis. Fourier Ring Correlation (FRC) is an unbiased method to 429 

estimate the spatial resolution in microscopy images. We follow an approach similar to the one 430 

described in Nieuwenhuizen et al. (45). For localization-based super-resolution techniques, the set 431 

of localizations is divided into two statistically independent subsets and two images from these 432 

subsets are generated. The FRC is computed as the statistical correlation of the Fourier transforms 433 

of both sub-images over the perimeter of circles of constant frequency in the frequency domain. 434 

Deep-PALM, however, does not result in a list of localizations, but in predicted images directly. 435 

The set of 12 predictions from Deep-PALM were thus split into two statistically independent 436 

subsets and the method described in Nieuwenhuizen et al. (45) was applied. 437 

 438 

Chromatin blob identification. The super-resolved images displayed isolated regions of 439 

accumulated emitter density. To quantitatively assess the structural information implied by these 440 

accumulation of emitters in the focal plane, we developed a segmentation scheme which aims to 441 

identify individual blobs (Supplementary Figure 2). A marker-assisted watershed segmentation was 442 

adapted in order to accurately determine blob boundaries. For this purpose, we use the raw 443 

predictions from the deep convolutional neural network without convolution (Supplementary 444 

Figure 2A). The foreground in this image is marked by regional maxima and pixels with very high 445 

density (i.e. those with 𝐼 > 0.99 𝐼𝑚𝑎𝑥, Supplementary Figure 2B). Since blobs are characterized by 446 

surrounding pixels of considerably less density, the Euclidian distance transform is computed on 447 

the binary foreground markers. Background pixels (i.e. those pixels not belonging to any blobs) are 448 

expected to lie far away from any blob center and thus, a good estimate for background markers are 449 

those pixels being furthest from any foreground pixel. We hence compute the watershed transform 450 
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on the distance transform of foreground markers and the resulting watershed lines depict 451 

background pixels (Supplementary Figure 2C). Equipped with fore- and background markers 452 

(Supplementary Figure 2D), we apply a marker-controlled watershed transform on the gradient of 453 

the input image (Supplementary Figure 2E). The marker-controlled watershed imposes minima on 454 

marker pixels preventing the formation of watershed lines across marker pixels. Therefore, the 455 

marker-controlled watershed accurately detects boundaries as well as blobs which might not have 456 

been previously marked as foreground (Supplementary Figure 2F). Finally, spurious blobs whose 457 

median- or mean intensity is below 10% of the maximum intensity are discarded and each blob is 458 

assigned a unique label for further correspondence (Supplementary Figure 2G). The area and 459 

centroid position are computed for each identified blob for further analysis. This automated 460 

segmentation scheme performs considerably better than other state-of-the-art algorithms for image 461 

segmentation due to the reliable identification of fore- and background markers accompanied by 462 

the watershed transform (Supplementary Note 1).  463 

 464 

Chromatin blob properties. Centroid position, area, and eccentricity were computed. The 465 

eccentricity is computed by describing the blobs as an ellipse: 466 

 𝐸 = √1 − 𝑎2/𝑏2  (3) 

where 𝑎 and 𝑏 are the short and long axes of the ellipse, respectively. 467 

 468 

Chromatin blob identification from a computational chromatin model. We chose to employ a 469 

computational chromatin model, recently introduced by Qi et al. (23), in order to elucidate the 470 

origin of experimentally determined chromatin blobs. Each bead of the model covers a sequence 471 

length of 5 kb and is assigned one of 15 chromatin states to distinguish promoters, enhancers, 472 

quiescent chromatin, etc. Starting from the simulated polymer configurations, we consider 473 

monomers within a 200 nm thick slab through the center of the simulated chromosome. In order to 474 
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generate super-resolved images as those from Deep-PALM analysis, fluorescence intensity is 475 

ascribed to each monomer. Monomer positions are subsequently discretized on a grid with 13.5 nm 476 

spacing and convolved with a narrow point-spread function, which results in images closely 477 

resembling experimental Deep-PALM images of chromatin. Chromatin blobs were then be 478 

identified and characterized as on experimental data (Figure 2A, B). Mapping back the association 479 

of each bead to a blob (if any) allows us to analyze principles of blob formation and maintenance 480 

using the distance and the association strength between each pair of monomers, averaged over all 481 

20,000 simulated polymer configurations. 482 

 483 

Radial distribution function. The radial distribution function 𝑔(𝑟) (RDF, also pair correlation 484 

function) is calculated (in two dimensions) by counting the number of blobs in an annulus of radius 485 

𝑟 and thickness 𝑑𝑟. The result is normalized by the bulk density 𝜌 = 𝑛/𝐴, with the total number of 486 

blobs 𝑛 and 𝐴 the area of the nucleus, and the area of the annulus, 2𝜋𝑟 𝑑𝑟: 487 

 𝑑𝑛(𝑟) = 𝜌 ⋅ 𝑔(𝑟) ⋅ 2𝜋𝑟 𝑑𝑟 (4) 

Quantification of chromatin dynamics. Super-resolved images of chromatin showed spatially 488 

distributed blobs of varying size, but the resolved structure is too dense for state-of-the-art single 489 

particle tracking methods to track. Furthermore, are highly dynamic structures, assembling and 490 

dissembling within 1 – 2 super-resolved frames (Figure 3D), which makes a Single Particle 491 

Tracking approach unsuitable. Instead, we used a method for dynamics reconstruction of bulk 492 

macromolecules with dense labeling, Optical Flow. Optical Flow builds upon the computation of 493 

flow fields between two successive frames of an image series. The integration of these flow fields 494 

from super-resolution images results in trajectories displaying the local motion of bulk chromatin 495 

with temporal and high spatial resolution. Further, the trajectories are classified into various 496 

diffusion models and parameters describing the underlying motion are computed (26). Here, we use 497 

the effective diffusion coefficient 𝐷 (in units of 𝑚2/𝑠𝛼), which reflects the magnitude of 498 

displacements between successive frames (the velocity of particles or monomers in the continuous 499 
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limit) and the anomalous exponent 𝛼 (26). The anomalous exponent reflects if the diffusion is free 500 

(𝛼 = 1, e.g. for non-interacting particles in solution), directed (𝛼 > 1, e.g. as the result from active 501 

processes) or hindered (𝛼 < 1, e.g. due to obstacles or an effective back-driving force). 502 

Furthermore, we compute the length of constraint 𝐿𝑐 which is defined as the standard deviation of 503 

the trajectory positions with respect to its time-averaged position. Denoting 𝑹(𝑡; 𝑹𝟎) the trajectory 504 

at time 𝑡 originating from 𝑹𝟎, the expression reads (46) 𝐿𝑐(𝑹𝟎) = 𝑣𝑎𝑟(𝑹(𝑡; 𝑹𝟎))
1/2

, where 𝑣𝑎𝑟 505 

denotes the variance. The length of constraint is a measure of the length scale explored of the 506 

monomer during the observation period. A complementary measure is the confinement level (47), 507 

which computes the inverse of the variance of displacements within a sliding window of length 𝜔: 508 

𝐶 ∝ 𝜔/var(𝑹(𝑡; 𝑹𝟎)), where the sliding window length is set to 4 frames (1.44 s). Larger values 509 

of 𝐶 denote a more confined state than small ones. 510 

 511 

Spatial correlation for temporally varying parameters. The nearest-neighbor distance and the 512 

area, as well as the flow magnitude, were calculated and assigned to the blobs’ centroid position. 513 

In order to calculate the spatial correlation between parameters, the parameters were interpolated 514 

from the scattered centroid positions onto a regular grid spanning the entire nucleus. Because not 515 

every pixel in the original super-resolved images is assigned a parameter value, we chose an 516 

effective grid spacing of 5 pixels (67.5 nm) for the interpolated parameter maps. After interpolation, 517 

the spatial correlation was computed between parameter pairs: Let 𝒓 = (𝑥, 𝑦)𝑇 denote a position 518 

on a regular two-dimensional grid and 𝑓(𝒓, 𝑡) and 𝑔(𝒓, 𝑡) two scalar fields with mean zero and 519 

variance one, at time 𝑡 on that grid. The time series of parameter fields consist of 𝑁 time points. 520 

The spatial cross-correlation between the fields 𝑓 and 𝑔, which lie a lag time 𝜏 apart, is then 521 

calculated as 522 
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 𝐶(𝝆, 𝜏) =
1

𝑁
∑

∑ 𝑓(𝒓, 𝑡)𝑔(𝒓 + 𝝆, 𝑡 + 𝜏)𝑥,𝑦

∑ 𝑓(𝒓, 𝑡) ⋅ 𝑔(𝒓, 𝑡 + 𝜏)𝑥,𝑦
𝑡

 (5) 

where the space lag 𝝆 is a two-dimensional vector 𝝆 = (Δ𝑥, Δ𝑦)𝑇. The sums in the numerator and 523 

denominator are taken over the spatial dimensions, the first sum is taken over time. The average is 524 

thus taken over all time points which are compliant with time lag 𝜏. Subsequently, the radial average 525 

in space is taken over the correlation, thus effectively calculating the spatial correlation 𝐶(𝜌, 𝜏) 526 

over the space lag 𝜌 = √Δ𝑥2 + Δ𝑦2. If 𝑓 = 𝑔, the spatial autocorrelation is computed. 527 

 528 

Spatial correlation for static parameters. We denote global parameters as those, which reflect 529 

the structural and dynamic behavior of chromatin spatially resolved, but in a time-averaged manner. 530 

Examples involve the diffusion constant, the anomalous exponent, the length of constraint, but also 531 

time-averaged nearest-neighbor distance maps, etc. (Supplementary Figure 8). Those parameters 532 

are useful to determine time-universal characteristics. The spatial correlation between those 533 

parameters is equivalent to the expression given for temporally varying parameters when the 534 

temporal dimension is omitted, effectively resulting in a correlation curve 𝐶(𝜌). 535 

 536 

t-Distributed Stochastic Neighbor Embedding (t-SNE). The distance from the periphery, 537 

intensity, their nearest-neighbor distance, area, flow magnitude and confinement level of each 538 

identified blob form the six-dimensional input feature space for t-SNE analysis. The parameters for 539 

each blob (n = 3,260,232, divided into subsets of approximately 10,000) were z-transformed prior 540 

to the t-SNE analysis. The t-SNE analysis was performed using MATLAB and the Statistics and 541 

Machine Learning Toolbox (Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United 542 

States) with the Barnes-Hut approximation. The algorithm was tested using different distance 543 

metrics and perplexity values and showed robust results within the examined ranges 544 

(Supplementary Note 3, Supplementary Figure 10). 545 

 546 
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H2: Supplementary Materials 547 

 548 

Note S1. Performance of the segmentation scheme employed for this study in comparison to other 549 

state-of-the-art algorithms for general purpose and comparison of blob segmentation on 550 

experimental images and on images containing randomly distributed emitters. 551 

Note S2. Suitability of Optical Flow for super-resolution images of chromatin. 552 

Note S3. t-SNE and its robustness with respect to distance metrics and perplexity values. 553 

Figure S1. CNN training and time-resolution determination. 554 

Figure S2. Chromatin blob identification pipeline. 555 

Figure S3. Performance of segmentation algorithms on super-resolved images of chromatin in vivo. 556 

Figure S4. Segmentation on images of randomly distributed emitters. 557 

Figure S5. Chromatin area fraction. 558 

Figure S6. Performance of Optical Flow on conventional and super-resolved images. 559 

Figure S7. Structural and dynamic parameters are dependent on the proximity to the nuclear 560 

periphery. 561 

Figure S8. Global spatial correlation of structural and dynamic parameters. 562 

Figure S9. Clustering illustration of points within a subset based on nearest-neighbors in t-SNE 563 

maps. 564 

Figure S10. t-SNE for different distance metrics and perplexity values. 565 

Movie S1. Time series of super-resolved chromatin structure and dynamics. 566 

 567 
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 731 

Figures and Tables 732 

Figure 1: Temporally resolved super-resolution images of chromatin in U2OS nuclei. A) 733 

Widefield images of U2OS nuclei expressing H2B-PATagRFP are input to a trained convolutional 734 

neural network (CNN) and predictions from multiple input frames are summed to construct a super-735 

resolved image of chromatin in vivo. B) The resolution tradeoff between the prolonged acquisition 736 

of emitter localizations (green line) and motion blur due to diffusion of the underlying diffusion 737 

processes (purple line). For our experimental data, the localization density per second is 𝜌 =738 

(2.4 ± 0.1) 𝜇𝑚−2𝑠−1, the diffusion constant is 𝐷 = (3.4 ± 0.8) ⋅ 10−3 𝜇𝑚2𝑠−1 (see 739 

Supplementary Figure 8B) and the acquisition time per frame is 𝜏 = 30 𝑚𝑠. The spatial resolution 740 

assumes a minimum (69 ± 5 nm) at a time resolution of 360 ms. C) Super-resolution images of a 741 

single nucleus at time intervals of about 10 seconds. Scale bar is 2 µm. D) Magnification of 742 

segregated accumulations of H2B within a chromatin-rich region. Scale bar is 200 nm. E) 743 

Magnification of a stable, but dynamic structure (arrows) over three consecutive images. Scale bar 744 

is 500 nm. F) Fourier Ring Correlation (FRC) for super-resolved images resulting in a spatial 745 

resolution of 63 ± 2 nm. 746 
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 747 

Figure 2: Chromatin blob identification and characterization of imaged and modeled 748 

chromatin. A) Super-resolved images show blobs of chromatin (left). These blobs are segmented 749 

(Materials and Methods, Supplementary Note 1) and individually labeled by random color (right). 750 

Magnifications of the boxed regions are shown. Scale bars: whole nucleus 2 µm, magnifications 751 

200 nm. B) Generation of super-resolution images and blob identification and characterization for 752 

a 25 Mbp segment of chromosome 1 from GM12878 cells as simulated in Qi et al. (23). Beads (5 753 

kb genomic length) of a simulated polymer configuration within a 200 nm thick slab are projected 754 

to the imaging plane, resembling experimental super-resolved images of live chromatin. Blobs are 755 

identified as on experimental data. C) From the centroid positions, the nearest-neighbor distance 756 

(NND) distributions are computed for up to 40 nearest neighbors (blue to red). The envelope of the 757 

k-NND distributions (black line) shows peaks at approximately 95 nm, 235 nm, 335 nm and 450 758 

nm (red dots). D) k-NND distributions as in B) for simulated data. E) Area distribution of 759 

experimental and simulated blobs. The distribution is in both cases well described by a lognormal 760 

distribution with parameters (𝟑. 𝟑 ± 𝟐. 𝟖) ⋅ 𝟏𝟎−𝟑 μm2 for experimental blobs and (𝟑. 𝟏 ± 𝟑. 𝟐) ⋅761 

𝟏𝟎−𝟑 μm2 for simulated blobs (mean ± standard deviation). F) Eccentricity distribution for 762 

experimental and simulated chromatin blobs. Selected eccentricity values are illustrated by ellipses 763 

with the corresponding eccentricity. Eccentricity values range from 0, describing a circle, to 1, 764 

describing a line. Prominent peaks arise due to the discretization of chromatin blobs in pixels. 765 

Figure 3: Chromatin blobs on modeled chromosomes consist of continuous loci along the 766 

genome and exhibit a TAD-like time-averaged conformation. A) Gap length between beads 767 

belonging to the same blob. An exemplary blob with small gap length is shown. The blob is mostly 768 

made of consecutive beads being in close spatial proximity. B) A representative polymer 769 

configuration is colored according to chromatin states (red: active, green: inactive, blue: 770 

repressive). C) The cumulative distribution function of clusters within active, inactive and 771 
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repressive chromatin. Inset: Mean area of clusters within the three types of chromatin. The 772 

distributions are all significantly different from each other as determined by a two-sample 773 

Kolmogorov-Smirnov test (p < 10-50). D) Distribution of the continuous residence time of any 774 

monomer within a cluster (0.5 ± 0.3 s; mean ± standard deviation). Inset: Continuous residence 775 

time of any monomer within a slab of 200 nm thickness (1.5 ± 1.6 s; mean ± standard deviation). 776 

E) The blob association strength between any two beads is measured as the frequency at which any 777 

two beads are found in one blob. The association map is averaged over all simulated configurations 778 

(upper triangular matrix; from simulations) and experimental Hi-C counts are shown for the same 779 

chromosome segment (lower triangular matrix; from Rao et al. (48)). The association and Hi-C 780 

maps are strongly correlated (Pearson’s correlation coefficient PCC = 0.76) F) Close-up views 781 

around the diagonal of Hi-C-like matrices. The association strength is shown together with the 782 

inverse distance between beads (upper panel; PCC = 0.85) and with experimental Hi-C counts 783 

(lower panel; as in E)). 784 

 785 

Figure 4: Super-resolution chromatin dynamics. A) A time series of super-resolution images 786 

(left panel) is subject to Optical Flow (right panel). B) (i-ii) Two subsequent images of chromatin. 787 

Magnifications show prominent mobile blobs on the nuclear periphery in both images (colored 788 

arrows). (iii) The flow field and corresponding magnification are shown on top of a fused image of 789 

both super-resolved images in (i) and (ii) (green and purple respectively, co-localization are white). 790 

The flow field is colored according to the direction of vectors (see color wheel) C) As for B) in the 791 

nuclear interior. Scale bars: whole nucleus 2 µm, magnifications 500 nm. Flow vectors are not 792 

drawn to scale and down-sampled 8-fold for clarity. D) Blobs of a representative nucleus (see 793 

Supplementary Movie 1) are labeled by their NND (left), area (middle) and flow magnitude (right). 794 

Colors denote the corresponding parameter magnitude. 795 

 796 
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Figure 5: Spatio-temporal correlations between structural and dynamic parameters. A) The 797 

spatial auto- and cross-correlation between parameters were computed for different time lags. The 798 

graphs depict the correlation over space lag for each parameter pair and different colors denote the 799 

time lag (increasing from blue to red). B) Illustration of the instantaneous relationship between local 800 

chromatin density and dynamics. The blob density is shown in blue; the magnitude of chromatin 801 

dynamics is shown by red arrows. The consistent negative correlation between NND and flow 802 

magnitude is expressed by increased dynamics in regions of high local blob density. 803 

Figure 6: Chromatin feature extraction. A) The six-dimensional parameter space is input to the 804 

t-SNE algorithm and projected to two dimensions. B) The 2D embedding of an exemplary data set 805 

is shown and colored according to the magnitude of each input feature (blue to red, the parameter 806 

average is shown in beige) C) Points below the first (blue) and above the third (red) quartile points 807 

of the corresponding parameter are marked and the parameters are ranked according to the fraction 808 

of nearest neighbors which fall in one of the marked regions. D) Data points marked below the first 809 

or above the third quartile points are labeled according to the feature in which they were marked. 810 

Priority is given to the feature with the higher nearest-neighbor fraction if necessary. E) t-SNE 811 

analysis is carried out for each nucleus over the whole time series and it is counted how often a 812 

parameter ranked 1st. The results are visualized as a pie chart. The NND predominantly ranks 1st in 813 

about 2/3 of all cases. F) Marked points in C-D) are mapped back onto the corresponding nuclei 814 

and the cumulative distribution function (CDF) over space is shown. 815 

 816 

 817 

 818 
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Figure 4 825 
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Figure 5 827 
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Figure 6 830 
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Supplementary Figure 1: CNN training and time-resolution determination. A) Experimental 848 

and simulated widefield images with varying labeling density. Predictions by the trained CNNs are 849 

shown as false-color images and the ground truth emitter positions are overlaid as green crosses. 850 

Scale bar for experimental widefield image is 2 μm, simulated images are the same size. Scale bar 851 

on predictions are 200 nm. B) The accuracy of the trained CNNs was evaluated using the Structural 852 

Similarity Index and the Root Mean Square Error (Materials and Methods). The CNN trained with 853 

9 emitters per μm2 (CNN 9) performs significantly worse than the other two CNNs. Statistical 854 

significance assessed by a two-sample t-test (*** p < 0.001). C) Predictions from single acquired 855 

images are summed over different times from 360 ms to 1020 ms. A subset of reconstructions up 856 

to a time resolution of 660 ms are shown for CNN 4 and CNN 6. Scale bar is 2 μm. D) The structural 857 

image quality as quantified by BRISQUE (44) for CNN 6 at varying temporal resolution. The 858 

optimal (maximum) value is found at a time resolution of 360 ms. 859 

 860 

 861 
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Supplementary Figure 2: Chromatin blob identification pipeline. A) A grayscale image as 863 

output from the Deep-PALM algorithm is to be segmented. Magnified views correspond to the red 864 

rectangle. B) Foreground pixels are marked by finding the regional maxima. Additionally, very 865 

bright pixels (i.e. those with 𝑰 > 𝟎. 𝟗𝟗 ⋅ 𝑰𝒎𝒂𝒙) are marked as foreground. Only the magnification is 866 

shown. C) The watershed algorithm (without markers) is applied to the distance transform of the 867 

foreground mask. The resulting watershed lines represent lines in between pixels marked as 868 

foreground and therefore represent pixels of (local) low intensity, i.e. background markers. The 869 

background mask is corrected for pixels which nevertheless exert high intensity (i.e. those with 𝑰 >870 

𝟎. 𝟖 ⋅ 𝑰𝒎𝒂𝒙). Only the magnification is shown. D) Input image with the foreground (red) and 871 

background (green) markers superimposed. E) The watershed algorithm is applied to the gradient 872 

of the input image with minima imposed on pixels belonging to fore- or background. F) The regions 873 

defined by watershed lines (the basins) are post-processed in order to keep only those whose mean 874 

and median intensity exceed a threshold of 𝟎. 𝟏 ⋅ 𝑰𝒎𝒂𝒙. G) Resulting segmentation of the input 875 

image. Scale bars correspond to 2 µm and 0.5 µm in the full and magnified regions respectively. 876 

  877 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/777482doi: bioRxiv preprint 

https://doi.org/10.1101/777482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 45 of 57 

 

SUPPLEMENTARY NOTE 1 878 

Segmentation performance 879 

The marker-assisted watershed segmentation pipeline developed to segment chromatin blobs in 880 

super-resolved images is tested against other state-of-the-art segmentation algorithms in order to 881 

validate its performance. We evaluated our approach against three fully automated improvements 882 

of the widely spread watershed algorithm: the enhanced waterfall algorithm, the ‘standard’ 883 

algorithm, and the P-algorithm (49). To this end, we simulated images which closely resemble 884 

experimental super-resolved images of histone-labeled chromatin. We generated random shapes by 885 

thresholding randomly generated 1/f noise and gave intensity to the shapes according to 886 

experimental images. An exemplary simulated and experimental image is shown in Supplementary 887 

Figure 3A, B. The segmentation result of an exemplary simulated image is shown in Supplementary 888 

Figure 3D, I. We used the Rand index as a measure of the similarity of two segmentation algorithms. 889 

In particular, the Rand index is computed between the ground truth and the segmentation result of 890 

each algorithm as an estimate of the likelihood of a correctly classified element. An image 891 

segmentation problem can be formulated as a partitioning of the image pixels into several subsets. 892 

Let 𝑃 denote the set of 𝑛 pixels to be segmented, 𝐺 = {𝐺1, … , 𝐺𝑔} denotes the ground truth 893 

segmentation of 𝑛 pixels into 𝑔 subsets and 𝑅 = {𝑅1, … , 𝑅𝑟} denotes the resulting segmentation 894 

into 𝑟 subsets from an algorithm to test. The number of agreements between 𝐺 and 𝑅 consists of (i) 895 

the true positives (TP), i.e. the pairs of elements in 𝑃 that are in the same subset in 𝐺 and 𝑅 and (ii) 896 

the true negatives (TN), i.e. the pairs of elements in 𝑃 that are not in the same subset in 𝐺 and not 897 

in 𝑅. Likewise, the number of disagreements consists of (iii) the false negatives (FN), i.e. elements 898 

in 𝑃 that are in the same subset in 𝐺 but not in 𝑅 and (iv) the false positives (FP), i.e. elements in 899 

𝑃 that are not in the same subset in 𝐺 but that are in 𝑅. Taken together, the Rand index expresses 900 

the number of agreements over the total number of pairs, i.e. agreements and disagreements (50): 901 

 Rand Index =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
=
𝑇𝑃 + 𝑇𝑁

(
𝑛
2
)

  (6) 

The Rand index ranges from 0 to 1 and gives the fraction of matching pairs of pixels in the ground 902 

truth and computed segmentation. Our custom marker-controlled watershed algorithm performs 903 

significantly better than other tested algorithms, with a Rand index of about 75%.  904 

To further validate the segmentation algorithm, the blob segmentation on experimental images of 905 

chromatin (Supplementary Figure 4A) was compared to images, in which emitters were randomly 906 

distributed (Supplementary Figure 4B). On random images, the blob density was ~ 19-fold reduced 907 

compared to segmentation on experimental images (Supplementary Figure 4C) and the blob area 908 

was about one order of magnitude smaller (Supplementary Figure 4D). These results show that 909 

blobs were identified due to the appearance of chromatin as blobs and not due to apparent grouping 910 

of randomly distributed emitters. 911 

 912 
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Supplementary Figure 3: Performance of segmentation algorithms on super-resolved images 914 

of chromatin in vivo. A) Exemplary simulated image for which the ground truth segmentation is 915 

known, used to compare different segmentation algorithms. The section in the red triangle is 916 

magnified in D-I). B) Exemplary experimental image to be compared to the simulated image. C) 917 

The Rand index reveals that our custom maker-controlled watershed algorithm significantly 918 

outperforms all other tested algorithms. Statistical significance assessed from 20 independent 919 

segmentation runs by a two-sample t-test (*** p < 0.001). D) Binary image (right) displaying the 920 

ground truth segmentation of the simulated image. Different segments are randomly colored for 921 

clarity and the magnified region marked in A) is shown. E-I) Exemplary segmentation results from 922 

the tested algorithms. 923 

 924 

 925 

 926 
Supplementary Figure 4: Segmentation on images of randomly distributed emitters. A) An 927 

exemplary super-resolved image of chromatin in vivo, the identified blobs are overlaid and 928 

randomly colored. B) Emitters were randomly distributed, and the segmentation algorithm was 929 

applied to those images. The number of emitter was matched to the number of beads of the modeled 930 

chromosomes within the imaging volume (compare Figure 2B). Scale bar is 0.5 µm. C) The blob 931 

density for blobs identified on experimental images and images containing randomly distributed 932 

emitters. Experimental images contained ~20-fold more blobs than could be identified using 933 

random images. D) Area distribution for blobs identified on images containing randomly distributed 934 

emitters (mean ± std.: (𝟎. 𝟒 ± 𝟎. 𝟐) ⋅ 𝟏𝟎−𝟑 μm2). 935 
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 936 
Supplementary Figure 5: Chromatin area fraction. A) Segmented images are divided into boxes 937 

with dimensions 120 nm x 120 nm and the chromatin area fraction is computed for each box. 938 

Exemplary, a map of chromatin area fractions is shown color-coded from low to high chromatin 939 

density (purple to red). Scale bar is 2 µm. B) Histogram of the observed chromatin area fractions. 940 

The black line denotes 18 ± 14 % (mean ± std).  941 
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SUPPLEMENTARY NOTE 2 942 

Suitability of Optical Flow for super-resolution images of chromatin 943 

Optical Flow is used to compute a flow field between two subsequent images in scenarios in which 944 

dynamic information cannot be retrieved from single-particle tracking approaches, for example, 945 

due to high labeling densities (26). Optical Flow algorithms are generally evaluated with respect to 946 

the angular error (AE), a measure for the error in the direction between a computed and a ground 947 

truth vector. Likewise, the endpoint error (EE) is a measure for the error in the magnitude. For two 948 

computed vectors 𝒂 and 𝒃, the AE and EE are computed as (25) 949 

 𝐴𝐸 = cos−1 (
𝒂𝒃

|𝐚||𝐛|
) (7) 

and 950 

 𝐸𝐸 = |𝐚 − 𝐛| (8) 

Current Optical Flow algorithms achieve sub-pixel EE and AE of around 20° for bulk chromatin 951 

imaging. Here, we prove that the Optical Flow algorithm used previously for conventional 952 

microscopes (25, 26) results in comparable AE and EE values using super-resolved time series of 953 

chromatin. To this end, ground truth data is simulated as described previously (26). A density of 6 954 

emitters per µm2 and an acquisition time of 30 ms was used to resemble experimental data 955 

(Supplementary Figure 1). The images were either summed up directly in sets of 12 in order to 956 

achieve experimental time resolution of 360 ms or first processed by Deep-PALM and then 957 

summed. Optical Flow was computed for both sets and the AE and EE were computed. Exemplary 958 

simulated images and ground truth vectors, as well as computed flow fields, are superimposed in 959 

Supplementary Figure 6A-B. The resulting AE and EE from 20 independent runs are summarized 960 

in Supplementary Figure 6C. Optical Flow on super-resolved images did not significantly change 961 

the accuracy in direction, however the endpoint error is slightly smaller for flow fields computed 962 

on super-resolved images. These results thus validate Optical Flow for the use on super-resolution 963 

time series of chromatin. 964 

 965 

 966 

 967 
Supplementary Figure 6: Performance of Optical Flow on conventional and super-resolved 968 

images. A) Exemplary simulated conventional fluorescence microscopy images (left), ground truth 969 

and estimated flow field (middle). Magnified regions as indicated by the red boxes (right). B) As 970 
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A) for images analyzed with Deep-PALM. For visualization, only every eighth vector is shown 971 

(Deep-PALM images are up-sampled 8-fold compared to the input images). C) Angular and 972 

endpoint error over 20 independent sets of simulated images. Statistical significance was 973 

determined by a two-sided t-test. 974 

 975 

 976 

Supplementary Movie 1: Time series of super-resolved chromatin structure and dynamics. 977 

The centroid positions of each identified blob are mapped onto the nucleus and colored according 978 

to their nearest-neighbor distance, area, mean displacement direction, and magnitude. Colors are 979 

given such that the respective maximum parameter value over the whole image series is red, the 980 

minimum parameter value is blue. Colors thus indicate parameter values relative to the parameter 981 

range. Displacement direction is color-coded according to the color-wheel shown.  982 

 983 

 984 

 985 
Supplementary Figure 7: Structural and dynamic parameters are dependent on the proximity 986 

to the nuclear periphery. A) The average area, B) NND, C) density and D) flow magnitude versus 987 

the normalized distance from the nuclear periphery (0 is on the periphery and 1 is at the center of 988 

the nucleus). Line and shaded area denote the mean ± standard error.  989 

 990 

A C

B D

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/777482doi: bioRxiv preprint 

https://doi.org/10.1101/777482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 51 of 57 

 

 991 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/777482doi: bioRxiv preprint 

https://doi.org/10.1101/777482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 52 of 57 

 

Supplementary Figure 8: Global spatial correlation of structural and dynamic parameters. 992 

A) Illustration of the Hi-D workflow. A time series of super-resolution images (left panel) is input 993 

to the Optical Flow algorithm resulting in flow fields with a pixel size of 13.5 nm (middle panel). 994 

By trajectory reconstruction and motion classification, quantities describing the underlying bulk 995 

motion are computed. B) Eight parameters characterizing the global chromatin structure and 996 

dynamics during the whole time series are shown. The structural parameters (upper row) are the 997 

total intensity of super-resolved images, the counts how often each pixel was identified as part of a 998 

chromatin blob, the average blob area per pixel and the average nearest-neighbor distance for each 999 

pixel. Dynamic parameters are the diffusion constant and anomalous exponent, which was 1000 

computed by regression of mean squared displacement curves (Materials and Methods), the length 1001 

of constraint and the average confinement level. Scale bar is 3 µm. C) The spatial correlation 1002 

between all combinations of structural and dynamic parameters over space lag is shown. 1003 

 1004 

  1005 
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SUPPLEMENTARY NOTE 3 1006 

t-SNE and its robustness with respect to distance metrics and perplexity 1007 

High-Dimensional parameter space is input to the t-SNE algorithm. The underlying principle is that 1008 

data points, which are similar with respect to a number of factors (dimensions) lie close in high-1009 

dimensional space (employing a certain distance metric). The mapping into lower dimensionality 1010 

(for instance in 2D) by t-SNE is initialized by assigning each point a random position in 2D (Figure 1011 

6A). Illustratively, a set of springs between all data points exert a repelling or attractive force on 1012 

each other depending on if the current distances between data points in 2D represent the distances 1013 

between the data points in high-dimensional space. The 2D positions are iteratively refined in order 1014 

to minimize the divergence between the high-dimensional and two-dimensional distributions.  1015 

More specifically, a high-dimensional pairwise distance measure can be defined between all points. 1016 

The similarity of data points xi and xj is expressed as the conditional probability, pj|i, that xi would 1017 

pick xj as its neighbor under the assumption that neighbors are picked in proportion to their 1018 

probability density under a Gaussian centered at xi (31): 1019 

  𝑗|𝑖 =
exp (−‖𝒙𝒊 − 𝒙𝒋‖

2
/2𝜎𝑖

2)

∑ exp(−‖𝒙𝒊 − 𝒙𝒌‖2/2𝜎𝑖
2)𝑘≠𝑖

, (9) 

and as the symmetrized conditional probabilities 1020 

  𝑖𝑗 =
 𝑗|𝑖 +  𝑖|𝑗

2𝑛
 , (10) 

where n is the number of data points. The variance of the Gaussian, 𝜎𝑖
2, is determined by a binary 1021 

search in order to obtain a user-specified value for the Perplexity, which is defined as 1022 

 𝑃𝑒𝑟 𝑙𝑒𝑥𝑖𝑡𝑦(𝑃𝑖) = 2𝐻(𝑃𝑖) , (11) 

 1023 

where H(Pi) is Shannon’s entropy 1024 

 𝐻(𝑃𝑖) = −∑ 𝑗|𝑖 log2  𝑗|𝑖
𝑗

 (12) 

and Pi is the conditional probability distribution over all other data points given xi. The perplexity 1025 

is, loosely speaking, controlling the number of close neighbors of each point and can have a 1026 

complex non-linear influence of the resulting distribution of points.  1027 

The conditional probability qj|i of two points yi and yj in the two-dimensional space is modelled by 1028 

a t-distribution: 1029 

 𝑞𝑖𝑗 =
(1 + ‖𝒚𝒊 − 𝒚𝒋‖

2
)
−1

∑ (1 + ‖𝒚𝒌 − 𝒚𝒍‖2)−1𝑘≠𝑙
   (13) 

 1030 

The algorithm first randomly assigns a position to each data point in two-dimensional space and 1031 

then iteratively refines the position of data points such as to minimize the Kullback-Leibler (KL) 1032 

divergence, a natural measure for the mismatch between the joint probability distributions in the 1033 

high-dimensional space, P, and in the low-dimensional space, Q. Thus, the cost function at every 1034 

iteration is the KL divergence between P and Q, 1035 

 𝐾𝐿(𝑃||𝑄) =∑∑ 𝑖𝑗 log (
 𝑖𝑗

𝑞𝑖𝑗
) ,

𝑗𝑖

   (14) 

which is minimized using a gradient descent method. In other words, the two-dimensional position 1036 

yi is modified such as to minimize the KL divergence between P and Q. This minimization scheme 1037 

depends critically on the conditional probabilities  𝑖𝑗 and 𝑞𝑖𝑗 and therefore on the distance ‖⋅‖ 1038 

between points and the perplexity. We tested the influence of different distance metrics and 1039 

perplexity values on our data set to exclude artifacts arising through an improper choice of 1040 

parameters. The following distance metrics were tested: 1041 
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1) Euclidian distance 1042 

 ‖𝒙𝒊 − 𝒙𝒋‖ = √(𝒙𝒊 − 𝒙𝒋)
𝑇
(𝒙𝒊 − 𝒙𝒋) (15) 

2) Mahalanobis distance 1043 

 ‖𝒙𝒊 − 𝒙𝒋‖ = √(𝒙𝒊 − 𝒙𝒋)
𝑇
𝑆−1(𝒙𝒊 − 𝒙𝒋) (16) 

where 𝑆 is the covariance matrix. The Mahalanobis distance reduces to the Euclidian 1044 

distance if 𝑆 is the identity matrix. 1045 

3) Correlation distance 1046 

 
‖𝒙𝒊 − 𝒙𝒋‖ = 1 −

(𝒙𝒊 − 𝒙𝒊̅)
𝑇(𝒙𝒋 − 𝒙𝒋̅)

√(𝒙𝒊 − 𝒙𝒊̅)𝑇(𝒙𝒊 − 𝒙𝒊̅)√(𝒙𝒋 − 𝒙𝒋̅)
𝑇
(𝒙𝒋 − 𝒙𝒋̅) 

 
(17) 

where 𝒙̅ denotes the average value of 𝒙𝒊. 1047 

Perplexity values were varied from 30 to 200. Note that t-SNE is a probabilistic approach since 1048 

points are initially distributed randomly in two dimensions. Therefore, multiple runs on the same 1049 

data set might result in varying results.  1050 

Exemplary t-SNE maps are shown in Supplementary Figure 10A for the tested perplexity values 1051 

and distance metrics. Maps are colored corresponding to Figure 6D. The embedding of points in 1052 

two dimensions varies greatly among the scenarios. However, the probability of two points being 1053 

nearest neighbors is largely conserved and thus ranking of input parameters yield similar results 1054 

across the employed scenarios (Supplementary Figure 10B). Rankings are especially robust when 1055 

the distance metric is the Euclidian distance or the Mahalanobis distance. When the correlation 1056 

distance is employed, the rankings slightly change. Especially, the area of blobs seems to be more 1057 

prominent than the flow magnitude, in contrast to rankings when one of the other distance metrics 1058 

is used. However, rankings change only to a small extent among the different distance metrics and 1059 

perplexity values and the presented results are therefore free of artifacts of t-SNE or algorithm-1060 

dependent parameters. 1061 

 1062 

 1063 
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 1064 
Supplementary Figure 9: Clustering illustration of points within a subset based on nearest-1065 

neighbors in t-SNE maps. Dimension reduction using t-SNE results in point clouds in which 1066 

nearest neighbors in high-dimensional space are conserved and mapped as nearest neighbors in two 1067 

dimensions. Points at which a number of interest exhibits unusually high/low values are identified 1068 

(red points). Mapping of two points as nearest neighbors in reduced t-SNE space can be because 1069 

nearest neighbors belong to the same subset of high/low values of a variable of interest. To quantify 1070 

this empirical characteristic, the number of nearest neighbors within the same subset in t-SNE space 1071 

is counted relative to the total number of nearest neighbors of all points within the subset. A) A 1072 

subset mostly contains its own nearest neighbors (86% of nearest neighbors of all points in the 1073 

subset are contained within the subset). The magnification shows nearest neighbor connections 1074 

within the subset (red lines) and between points in the subset and points not contained in the subset 1075 

(black lines). B) Points within the subset are distributed over the whole t-SNE space and thus do 1076 

not form a grouped region. The fraction of nearest neighbor links within the subset is small (14%) 1077 

compared to the clustered case. 1078 

 1079 
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Supplementary Figure 10: t-SNE for different distance metrics and perplexity values. We 1081 

tested the influence of different distance measures between the high-dimensional data points as well 1082 

as variations in the perplexity from 30 to 200 and found that our data are robust to changes in these 1083 

parameters within the explored range. A) Exemplary t-SNE maps and B) feature ranking 1084 

considering various distance metrics and values for the perplexity parameter applied to our data. 1085 
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