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The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has lead to diverse
applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most
CRISPR-Cas systems, however, suffer from off-target effects and unpredictable non-specific binding
that negatively impact their reliability and broader applicability. To better evaluate the impact of mis-
matches on DNA target recognition and binding, we develop a massively parallel CRISPR interference
(CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA)
and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding
dynamics, our results unravel a comprehensive map of the energetic landscape of Francisella novicida
Cas12a (FnCas12a) as it searches for its DNA target. Our results reveal concealed thermodynamic
factors affecting FnCas12a DNA binding which should guide the design and optimization of crRNA
that limit off-target effects, including the crucial role of an extended, 6-base long PAM sequence and
the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach
should also provide a mechanistic understanding of target recognition and DNA binding when applied
to other CRISPR-Cas systems.

INTRODUCTION

Clustered regularly interspaced short palindromic
repeats (CRISPR) and its associated genes are part
of an adaptive immunity system used to combat phage
infections in bacteria and archaea [1]. The system
consists of two main components: a CRISPR array,
which contains repetitive sequences called repeats
and variable sequences called spacers, and CRISPR-
associated (Cas) genes, which facilitate spacer acqui-
sition and the destruction of foreign DNA and RNA.
Mature CRISPR RNAs (crRNAs) derived from the
CRISPR array can in turn program Cas nucleases
to recognize and cleave DNA targets whose nucleic
acid sequence is complementary with the guide por-
tion of the crRNA and proximal to a PAM (protospacer
adjacent motif) site. Due to their simple and pro-
grammable nature, the nucleases of class 2 CRISPR
systems, particularly Cas9 (type II) and Cas12 (type
V), have been the subject of intense research inter-
est for the purposes of genome editing [2–4], pro-
grammable gene regulation utilizing a catalytically-
dead CRISPR nuclease (dCas) [5–7], and nucleic acid
detection [8, 9].

While CRISPR has already revolutionized many ar-
eas of research, from fundamental biomedical sci-
ences to synthetic biology to disease diagnostics, a
fundamental understanding of the underlying factors
affecting CRISPR-Cas off-target binding is still lack-
ing. This is especially important in the context of
CRISPR base editors [10, 11] because off-target bind-
ing, which may not entirely correlate with DNA cleav-
age [12–14], needs to be reduced to a minimum level
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to prevent unintended base changes. While several in
silico models [15–20] have been developed to predict
the binding affinity of RNA guided CRISPR-Cas pro-
teins using data from in vitro biochemical assays [21–
24] or in vivo indel frequencies [12–14, 25–27], these
approaches only provide empirical interpretations of
CRISPR-Cas DNA binding and often fail to yield a
conceptual understanding of the underlying factors in-
volved in CRISPR-Cas binding. Furthermore, it can
be difficult to extract quantitative binding affinity mea-
surements from in vivo indel frequencies due to the in-
herent CRISPR-Cas binding inefficiencies associated
with cellular physiological factors such as cell type,
chromatin state, and delivery method [28–30]. Thus,
there is a critical need for fundamental models that can
help unravel the sequence-dependent determinants
of CRISPR-Cas target recognition and DNA binding
affinity.

To elucidate determinants of CRISPR-Cas12 off-
target binding, we combine a thermodynamic model of
dCas12a binding with a rationally designed CRISPRi
assays to map the binding energy landscape of a
type V CRISPR-Cas system from Francisella novicida
(FnCas12a) as it inspects and binds to its DNA tar-
gets. Our approach, inspired by a recent theoreti-
cal framework that employs a unified energetic anal-
ysis to predict S. pyogenes Cas9 (SpCas9) cleavage
activity [31] and recently developed massively paral-
lel multiplexed assays [32–35], aims to directly mea-
sure the energetic and thermodynamic determinants
of CRISPR-Cas binding. In other words, our assays
excludes sources of variation in DNA cleavage activity
caused by unknown physiological factors [28–30] by
only focusing on the steps leading to final DNA cleav-
age step. Furthermore, our predictive framework is
not limited to FnCas12a and can be applied to any
other CRISPR-Cas systems, which should in turn fa-
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FIG. 1. Thermodynamic model used to describe a nuclease-dead Cas12 endonuclease’s “PAM attachment,” “crRNA-DNA in-
spection,”, and “reconfiguration” steps. A) Energy states, energies and Boltzmann weights of a dCas12a (β = kBT ). The
fold-change, PAM occupancy and CRISPR-Cas occupancy depends on the effective PAM energy ϵPAM and CRISPR-Cas binding
energy ϵc. All expressions assume the weak promoter (λpe

−βϵp ≪ 1) and weak PAM binding (λce
−βϵPAM ≪ 1) limits. B) Internal

base-dependent states define a PAM specific binding energy. The specific PAM sequence dictates the relative PAM attachment
efficiency between two targets. The presence of crRNA-target DNA mismatches increase the effective activation energy Ea and
affect the effective reconfiguration rate ν.

cilitate the development of predictive models of target
recognition and binding efficiency for type II and type
V RNA-guided CRISPR-Cas proteins.

RESULTS

Thermodynamic model of dCas binding

DNA cleavage by CRISPR-Cas endonucleases may
be hindered by other factors [28–30] besides the spe-
cific crRNA-DNA sequence, and it is important to dis-
entangle these effects to gain a deep understand-
ing of off-target binding mechanisms. We thus hy-
pothesize that the variability in indel formation ob-
served in live cells may not entirely originate from
differences in Cas12a’s cleavage activity caused by
the specific crRNA-DNA sequence targeted, but also
from sequence-dependent PAM attachment efficien-
cies and the existence of crRNA-target DNA mis-
matches. In other words, we ask whether the steps
leading to a ternary complex formation play a role in
CRISPR-Cas off-target binding affinity.

To formalize this approach and to obtain a fun-
damental understanding of the energetic landscape
of dCas12a as it inspects and associates with its
DNA target, we developed a general thermodynamic
model of CRISPR-Cas binding dynamics to determine
how crRNA-DNA mismatches affect FnCas12a tar-
get recognition and binding. This model (see supple-
mentary information and Fig. 1) is based on recent
structural biology and single-molecule studies [36, 37]

which revealed that DNA hydrolysis by Cas12a occurs
in three discrete stages: “PAM attachment,” where Fn-
Cas12a latches onto a PAM site, “crRNA-DNA inspec-
tion,” where FnCas12a forms a partial crRNA-DNA hy-
brid, and “reconfiguration,” where the protein forms a
ternary complex and undergoes a conformal change
that exposes its catalytic residues. While the final DNA
cleaving step occurs after approximately 1 minute un-
der the conditions tested in [36], Cas12 molecules with
inactivated nuclease sites remain stably bound to their
DNA target for more than 500s. Hence, the reconfigu-
ration step effectively has no detectable off -rate, sug-
gesting that DNA cleavage may be inevitable (given
enough time) once Cas12a has reached this stably-
bound ternary state. The same stability has also been
observed in single-molecule Cas9 experiments [35].

Hence, our thermodynamic model describes the
probability that FnCas12a loaded with a crRNA se-
quence will bind to a free, unobstructed target DNA
sequence using the grand canonical ensemble [38–
40] to derive an expression for θc, the FnCas12a occu-
pancy, which is defined as the fraction of time a DNA
target will be occupied by nuclease-dead FnCas12a
endonuclease. This occupancy is given by

θc = ν
θPAM

Λ
(1)

where θPAM is the PAM occupancy (the attachment
probability) and ν is the probability that FnCas12a will
form a stable ternary complex once it encounters a
PAM site (the reconfiguration rate). Since DNA repli-
cation forks appear to be the only processes that can
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kick nuclease-dead SpCas9 off of its DNA binding site
[41], we assume dCas12a unbinding occurs through a
similar process–i.e. DNA duplication machinery kicks-
off FnCas12a at a rate equal to Λ (the cell’s duplication
rate).

We next use this approach to compare occupan-
cies of targets that vary by a few base determinants
(Fig. 1B). In this framework, the propensity of a given
crRNA to target to bind to an off-target DNA region
compared with its intended target is simply given by
the different energetic contributions of that specific off-
target location. For instance, two identical DNA tar-
gets that possess different PAM sequences have ef-
fective binding energies that differ by ∆ϵPAM , which in
turn translates in a reduction of the attachment prob-
ability by a factor equal to e−β∆ϵPAM (the Boltzmann
factor). Similarly, the presence of mismatches may al-
ter the crRNA-DNA duplex energy by ∆ϵ∗, which in
turn also yields a e−β∆ϵ∗ change in relative binding
probabilities. Hence, the relative binding affinity be-
tween two targets that have different PAM sites, or be-
tween an intended target and an off-target candidate,
is simply given by the binding sites’ Boltzmann weight

Relative binding affinity = e−β∆ϵPAM

︸ ︷︷ ︸
PAM

e−β∆ϵ∗

︸ ︷︷ ︸
Mismatches

. (2)

Our framework shares similarities with the
uCRISPR model recently developed by Zhang et
al. to describe SpCas9 cleavage activity [31]. How-
ever, instead of testing our model using in vivo indel
measurements performed in human cells (which can
be imprecise due to cellular physiological factors [28–
30]), we use a massively parallel CRISPRi assay to
directly measure the sequence-specific PAM binding
energies and the energetic costs associated with
crRNA-DNA mismatches in E. coli bacteria.

Context dependence of FnCas12a CRISPR interference

In order to test our thermodynamic model and fur-
ther explore FnCas12a target binding in E. coli, we de-
veloped a highly compact, 175bp-long genetic inverter
inserted into a low-copy number plasmid (pSC101)
containing a catalytically-dead nuclease FnCas12a
(Fig. 2A, inset). The inverter element consists of a
constitutive promoter driving the expression of a cr-
RNA followed by two rho-independent terminators. Lo-
cated immediately downstream of two terminators is
the output promoter, which either contains a built-in
PAM site within the promoter or after the promoter’s
+1 location.

We first sought to investigate effectiveness of
Cas12a-mediated CRISPRi by measuring protein and
mRNA levels of a simple inverter driving sfGFP ex-
pression. The inverter constitutively expresses a cr-
RNA targeting a DNA binding region located at the

promoter’s -19 position. Fluorescence levels for con-
structs containing a crRNA were 24.3 times lower than
those without a crRNA (Fig. 2B) and mRNA transcript
levels measured using digital droplet PCR resulted in
a 123-fold reduction in mRNA transcript levels when a
crRNA is expressed (Fig. 2C). Both of these results
confirm that FnCas12a can repress RNA transcription
[7].

Next, we tested how dCas12a interferes with RNA
transcription under various configurations (Figs. 2D-
E) by placing a library of up to several thousands sim-
ple inverter constructs in front of a tetA-sacB cassette.
Since sacB is counterselectable genetic markers in
the presence of sucrose [44] (see Fig. S2), the genetic
inverters that efficiently repress RNA transcription will
be enriched in the population when grown under su-
crose conditions (SK). Thus, we can evaluate the abil-
ity of a RNA-guided FnCas12a to prevent transcription
by comparing the number of times each construct is
present in the whole population for control (K) and SK
conditions using the MiSeq or iSeq100 platform from
Illumina. The relative change in the population frac-
tion is then used to find the effective growth rate Λ
of every construct in each condition. While selection
experiments are also performed under tetracycline-
selective (TK) media, the counterselection experiment
(SK) yields more useful information because the bind-
ing affinity and the dCas12 promoter occupancy is di-
rectly related to each construct’s growth rate (see sup-
plementary materials for a complete description of this
method).

Fig. 2D (top) and S3 shows that CRISPRi occurs
efficiently when the FnCas12a target is located after
the output promoter’s +1 transcription initiation site be-
cause the growth rate under SK conditions is close
to its maximum value (Λ0) regardless of the location
of the DNA binding site. Interestingly, while interfer-
ence measurements performed using SpCas9 (a type
II CRISPR-Cas nuclease) revealed that a second bind-
ing site results in suppressive combinatorial effects
that multiplicatively increases CRISPRi efficiency [5],
the existence of a second PAM+target DNA sequence
does not improve dCas12 CRISPRi efficiency beyond
what is achieved by a single target (Figs. 2D, bottom
and S3).

Next, we tested FnCas12’s ability to interfere
with RNA transcription initiation by introducing a
PAM+target DNA sequence within the promoter se-
quence. In particular, we tested several inverter con-
structs whose PAM+target DNA sequence was lo-
cated at different positions within the promoter’s -35
and -1 location, testing both the coding and template
strands without altering conserved promoter regions
(Fig. 2E). Our results show that CRISPR interfer-
ence through promoter occlusion is efficient for most
targets on both the coding and template strands, al-
though the effective repression rate is more variable
than what has been reported for CRISPR-Cas9 in-
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FIG. 2. A) Experimental workflow. More than 104 different crRNA-target DNA combinations are assembled in parallel using PCR
primers containing degenerate IUPAC DNA codes (e.g. S, W, N). The ability of each construct to repress a tetA-sacB cassette
is measured by comparing growth rates under control (K) and sucrose (SK) conditions. While the library construction is prone to
some biases in the PCR amplification and transformation steps, a high level of repeatability is observed between experiments that
started with the same assembled library (lower right). B) Protein and C) RNA level fold-change for a genetic inverter diving sfGFP
expression. D) Growth rate under sucrose conditions when one or two DNA targets are located after the +1 promoter location
and when E) the DNA target overlaps with the -35 and -10 regions of promoter. Λ0 = growth rate under control (K) conditions.
Error bars are calculated using a LOESS fit [42, 43] of the mean/variance relationship between experimental replicates of the fold
change.

terference [6]. Growth under SK conditions is also
lowest when the target DNA is located on the pro-
moter’s template strand at locations -1, -2, -3, and -
7 with respect to the transcription initiation site, which
suggests that RNA:DNA hybrids on the non-template
strand display a decreased effectiveness in preventing
RNA transcription initiation.

FnCas12a binding energies depend on an extended
PAM sequence

Having demonstrated the validity of our massively
parallel CRISPRi assay to test multiple genetic in-
verter combinations, we next investigated the im-
pact of a PAM sequence on the binding affinity of
dCas12. We first tested the sequence determinant
of the PAM attachment step using an oligo pool con-
taining a degenerate 5’-NNNNNN-3’ motif for a tar-
get DNA sequence located at the promoter’s -19 posi-
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tion (Fig. 3A) targeted by a single crRNA (targetDNA
sequence=CAGTCAGTAAAATGCA). While previous
work has shown that the PAM motif required for DNA
cleavage are TTV or TTTV, depending on the species
of Cas12 tested [3], we tested all 4,096 PAM site vari-
ants in a single experiment in order to measure the
attachment efficiency of all sequences containing up
to six bases of upstream context. These extra bases
turn out to be very important: Fig. 3B shows that
while TTV is a suitable PAM site, its attachment effi-
ciency is approximately six times lower than the PAM
site with the highest measured attachment efficiency
(TTTTTA). In both individual and aggregate measure-
ments, we observe that DNA binding to a DNA target
proximal to a TTTV or TTTTV PAM site is 3.6 and 5.5

times more efficient than a TTV PAM site, respectively
(Fig. 3C). This result is also confirmed by the bias to-
wards TTTTTV PAM sites in the information content
(Fig 3D) and the base-specific probability density in
SK conditions (Fig. 3E).

Our results agree with recent work [45] which
demonstrated that FnCas12a does exhibit activity in
mammalian cells, but only when used with a TTTV
PAM site. It is important to note that while Zetsche
et al. [3] showed that a TTV PAM site appears to
be sufficient to induce FnCas12a cleavage, it appears
to be the least efficient motif that permits DNA bind-
ing (which could explain why FnCas12a was found to
be ineffectual for mammalian cell editing using a TTV
PAM site). Hence, our results suggest that PAM sites
with an extended TTTTTV sequence should be prior-
itized when seeking potential FnCas12a DNA targets
for CRISPRi, gene editing, nucleic-acid detection, or
other applications.

Expanding on this result, we next used the mea-
sured attachment efficiencies to develop a predictive
model that takes into account the full 6-base PAM site
context to predict the attachment efficiency. Specifi-
cally, a natural prediction that emerges from our ther-
modynamics model is that the effective PAM site at-
tachment energy is additive, meaning that to PAM
binding energy ϵPAM of an arbitrary sequence is given
by ϵPAM =

∑
ϵib, where ϵib is the specific binding en-

ergy of a base of type b=(T,C,G,A) at location i=(1..6).
In this case the relative PAM binding energy between
two targets (∆ϵPAM = ϵ′PAM − ϵPAM ) is related to the
relative growth rate λ(PAM) under SK condition ac-
cording to λ(PAM ′)/λ(PAM) = e−∆ϵPAM .

By using an initial set of values for each ϵib extracted
from the PAM specific growth rates (see supplemen-
tary methods for details), we compare the accuracy
of the model prediction with measured occupancies
(Fig. 3F). Surprisingly, the Pearson correlation be-
tween the predicted and measured growth rate values
using only the baseline value for all e−βϵib is fairly high
at 0.911. The model was then optimized for 1,000
additional steps to minimize the measured-predicted
mean square error and its final predictions agree very
well with the measured attachment efficiencies (Pear-
son correlation=0.920). The optimized energetic con-
tribution ϵib of each base b located at position i is
shown in Fig. 3G. Hence, to ensure that the DNA tar-
get with the most efficient PAM site is selected when
designing and optimizing a crRNA sequence for DNA
binding or other gene editing application, we strongly
recommend that the relative performance of each PAM
sequence is evaluated on a sequence-specific manner
using the base-dependent binding energies provided
in Fig. 3G.
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Off-target FnCas12a binding depends additively on
mismatch energy

To better understand the impact of crRNA-DNA mis-
matches on dCas12 binding, we next examined how a
mismatch affects the effective activation energy (Fig.
1B) that is required for FnCas12a to form a stable
ternary complex. Indeed, even though a PAM site is
present and dCas12 attaches itself to DNA, the addi-
tional energy associated with a crRNA-DNA mismatch
can prevent DNA unzipping if insufficient homology is
found. According to our model, the reconfiguration
step occurs at a rate ν = e−β

∑
i ∆ϵ∗i , where ∆ϵ∗i is the

base-dependent energy cost associated with a single
mismatche at location i. Thus, the location-specific
energy costs associated with individual mismatches
should in theory be directly obtained by measuring the
reconfiguration rate ν of crRNA-DNA sequences that
possess the same PAM sequence but with a crRNA
that differs from the target DNA by one or more bases.

To test this, we used two different crRNA pools
(Fig, 4A) to the mismatch-dependent reconfiguration
rate ν. Each oligo pool consists of 4,096 different
primer sequences generated by specifying degener-
ate DNA codes in the primer sequence (e.g. W = A
or T, S = G or C), allowing us to test multiple mis-
match combinations in a single experiment. Using
the degenerate DNA codes S and W ensures that
all crRNA sequences maintained the same GC con-
tent. In Fig. 4B, we tested the impact of “truncated”
(i.e. a crRNA whose distal sequence is noncomple-
mentary to its target DNA) and “gapped” (i.e. a cr-
RNA whose seed sequence is noncomplementary to
its target DNA) crRNAs . Consistent with other work
performed in Cas12a [26, 27], our results show that
optimal reconfiguration rates occur for truncated cr-
RNAs that possess more than 15 bases of homology.
Furthermore, no significant binding was detected for
gapped crRNAs whose sequences that contain more
than 2 mismatches.

Next, we measured the reconfiguration rate for cr-
RNA containing a single mismatch (Fig. 4C). The
presence of a single mismatch can decrease the con-
figuration rate by up to 82% when the mismatch oc-
curs in the first 17 bases of the crRNA. Consistent
with prior observations by Kim et al. [19], the energy
cost of a single mismatch does not increase mono-
tonically with distance from the PAM site, suggesting
that other contextual determinants besides position
affects the reconfiguration rate ν. Furthermore, the
presence of mismatches located in the last 3 bases of
the crRNA does not impede DNA binding, confirming
other works performed using in vivo indel measure-
ments [26, 27] which demonstrated that crRNA-DNA
mismatches negatively impact FnCas12a binding, but
only in the seed and the beginning of the trunk region.

Next, we analyzed how the presence of two mis-
matches impacts the reconfiguration rate. Since in
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FIG. 4. A) Sequence of the single target mismatch libraries.
Reconfiguration rates for B) truncated and gapped crRNAs
and for C) single mismatch crRNAs. Error bars = LOESS
fit of the mean/variance relationship between experimental
replicates of the fold change. D) Experimental and E) pre-
dicted reconfiguration rates for crRNA with 2 mismatches. F)
Fitted values for the location-dependent binding energies for
single mismatches.

our model the energetic contributions ∆ϵ∗i of single
mismatches at location i are additive, we anticipated
that the 2 mismatch reconfiguration rate is related to
the single mismatch energies according to ϵ2MM =∑

i ∆ϵ∗i . To test this, we developed a predictive model
that uses the single-base mismatch energies to pre-
dict ν2MM . Fig. 4D shows the experimentally mea-
sured, location-dependent reconfiguration rate ν2MM .
Using an approach similar to the one used to pre-
dict PAM attachment efficiencies, we derived base-
line values for the location-dependent binding energy.
While the initial Pearson correlation between the pre-
dicted and baseline energy values was initially fairly
low (P=0.769), the predicted values for the two mis-
match reconfiguration rate ν2MM agree very well with
the measured rates after the 1,000 optimization steps
(P=0.869, Fig. 4E). Our results confirm that the en-
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ergetic impacts of individual mismatches are additive,
and location-dependent binding energy costs reported
in Fig. 4F should be incorporated to models that aim
to predict off-target binding.

High throughput cross-talk assays reveal position- and
nucleotide-specific energy costs

We next asked how both crRNA and DNA variations
in the first six bases of the PAM-proximal seed region
affected the reconfiguration rate ν. We performed mul-
tiplexed CRISPRi assays using two oligo pools, each
containing 128 different sequences, to test the pair-
ing between all possible crRNA-DNA sequences of
the form SWSWSW or WSWSWS in a single step.
Once again, those pairings were chosen to main-
tain all crRNA-DNA sequences at a fixed GC content.
This approach covers a large combinatorial space be-
tween the spacer-target sequences and produces a
comprehensive cross-talk map between 16,384 pos-
sible crRNA-DNA combinations (Fig. 5A). While we
also performed the same analysis on the crRNA-DNA
“trunk” region (Fig. S6), only the SW quadrant of the
seed region is shown in Fig. 5B (see Figs. S4-S6 for
the full cross-talk maps).

The cross-talk maps show that fully matching
crRNA-DNA sequences (i.e. those along the main
diagonal of Fig. 5B and in the first column in Fig.
5C) have the highest ν. Interestingly, the reconfigu-
ration rate ν for all fully-matched crRNA-DNA targets
fall within a very narrow range of 1.00 ± 0.06 (mean
± std.dev.), suggesting that the specific base compo-

sition of the seed region does not have a large im-
pact on DNA binding. This contrasts with in vivo multi-
plexed DNA cleavage assays for Cas12a variants that
do show significant sequence dependence on cleav-
age activity [15, 19, 20]. In addition, while SpCas9
binding and cleavage activity has different sequence
specificities [12–14], we do not observe any signif-
icant discrepancies between the binding and cleav-
age assays performed using catalytically-active Fn-
Cas12a nuclease (Fig. S7). Hence, we believe our
approach may provide a more accurate representa-
tion of dCas12a’s binding energy landscape because
our approach excludes any source of variation caused
by unknown cellular physiological factor by only inves-
tigating a small but comprehensive portion of all pos-
sible crRNA-target DNA sequences that possess the
same GC content.

To further understand how single mismatches af-
fect the reconfiguration rate, we considered how ν
varies as a function of the number and location of mis-
matches present. First, we show in Fig. 5D that no
significant binding observed for sequences contain-
ing more than 4 mismatches in the seed region. Our
analysis, however, reveals that formation of a stable
ternary complex does occur in the presence of 1, 2 or
3 mismatches (P = 1 x 10-232, 8 x 10-94, and 1 x 10-15,
respectively; null-hypothesis=no binding will occur for
1, 2, of 3 mismatches). It is important to note that
by performing aggregate measurement across thou-
sands of crRNA and DNA sequences, our results con-
fers a much stronger statistical predictive power than
other assays that only test a limited number of crRNA-
DNA partners. In addition, we also show in Fig. 5E
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that mismatches have the greatest impact when lo-
cated within the first 6 bases of the seed region. Sen-
sitivity to a mismatch decreases with distance from the
PAM site, and mismatches located in the trunk region
(bases 6-12) only minimally impact DNA binding.

We next considered whether the type of mismatch
affects ν in Fig. 5F. Surprisingly, we find that single
crRNA-DNA mismatches of the form dC:rC decrease
ν by an additional 26% on average. In contrast, dT:rU
and dG:rG mismatches are tolerated and increase the
reconfiguration rate by 9.5% and 24% compared to all
types of single-base mismatch, respectively. This ef-
fect can be visualized in Fig. 5B, where off-diagonal
elements that correspond to a single mismatch in
the sixth location are more prominent in the lower
right quadrant than those in the upper left quadrant
(the upper left quadrant corresponds to a dC:rC mis-
match while the lower right corresponds to dG:rG mis-
matches). Insensitivity to wobble-transition mismatch
has been previously reported in SpCas9 [21, 46] and
AsCas12a [19], but other work in AsCas12a found no
significant effect due to a transversion mismatch [19],
suggesting tolerance to transversion mismatches may
be unique to FnCas12a.

DISCUSSION

We have established that massively parallel
CRISPRi assays, with their ability to rapidly measure
thousands of different crRNA-target DNA variants in
parallel, are a viable method to assess dCas12 bind-
ing efficiencies. Our results reveal the fundamental
relationship between crRNA-DNA interactions and the
underlying energy landscape that dictates binding be-
havior of dCas12. One major outcome of this study is
that binding of DNA by CRISPR-Cas12a endonucle-
ase does not strongly depend on the specific crRNA
sequence used (at least within the set of tested se-
quences which were kept at 50% GC content). Rather,
variance in DNA binding affinities depends on the PAM
sequence, the presence of mismatches, and the type
of mismatch present. Indeed, the propensity of iden-
tical DNA targets to be recognized by a CRISPR-Cas
nuclease matching crRNA may be significantly differ-
ent depending on their respective 6-base PAM se-
quence. Similarly, the absolute number of mismatches
in the seed region of a crRNA-DNA hybrid is more im-
portant than their specific location, and mismatches
that occur in the distal region of a crRNA (i.e. after
base 17) do not significantly affect binding affinity. Our
results also show that dT:rU and dG:rG mismatches
are tolerated at a higher level than dA:rA and dC:rC
mismatch.

Beyond that, the power of our approach also re-
sides in our ability to use a parameter-free statistical
mechanics framework to extract thermodynamic de-
terminants of dCas12a binding. Importantly, our re-

sults are not specific to nuclease-dead CRISPR-Cas
endonucleases –we confirm in Fig. S7 that the same
behavior is observed for catalytically-active Cas12a
nuclease– and our approach should foster the devel-
opment of predictive, parameter-free biophysical mod-
els of on- and off-target binding affinities and DNA
cleavage activities. In addition, because CRISPR-Cas
systems are very common amongst prokaryotes [1],
there is a need for the rapid and efficient characteri-
zation of newly-sequenced CRISPR-Cas systems that
may display enhanced target differentiation capabili-
ties or alternative PAM site compositions. We antic-
ipate that this method will also provide a mechanis-
tic understanding of the thermodynamic determinants
of DNA target recognition and binding affinities in un-
characterized CRISPR-Cas endonucleases and other
nucleic-acid binding enzymes.

Because our method is applicable to both the cat-
alytically active and dead versions of the nuclease,
it should also lead to improvements in a vast range
of CRISPR applications, including in vivo gene edit-
ing, programmable repression, and nucleic acid de-
tection. Our multiplexed approach is particularly ap-
plicable to the advancement of dCas-based gene cir-
cuit elements, which can be been used to create com-
plex circuits that behave orthogonally, operating in-
dependently without crosstalk [47–51]. Furthermore,
our approach can expedite the rational design of en-
hanced CRISPR nucleases and facilitate the develop-
ment of CRISPR-Cas variants with greater specificity,
improved proofreading capabilities, or increased activ-
ities [52–57].
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