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Extended data Fig. 7 | TRIM28 interaction network. 
a, A375 cells were transduced with pBABE-BioID2-TRIM28 or pBABE-BioID2 followed by selection with 1 
µg/ml puromycin. Expression of BioID2 and BioID2-TRIM28 in cell lysates was verified with immunoblotting 
using an anti-Myc antibody. b, A375 cells were transduced with pBABE-BioID2-TRIM28 or pBABE-BioID2 
followed by selection with 1 µg/ml puromycin. Transduced cells were then cultured in the presence of 50 µM 
Biotin (Sigma Aldrich) for 20 hours prior to lysis and then bound to Dynabeads MyOne Streptavidin C1 
(Thermo Fisher Scientific) magnetic beads overnight. After enrichment of biotinylated proteins, they were 
detected using streptavidin-HRP. c, Protein-protein interaction network based on identified TRIM28 interactors 
was analyzed by Ingenuity Pathway Analysis (IPA). Displayed interactors are based on experimentally 
validated direct and indirect interactors. KRAB-ZFN proteins (>50) are not displayed for increased clarity. d, 
ChIP-seq data from HCT-116 cells were analyzed for genome wide co-occupancy of TRIM28, CDK9 and 
HEXIM1 at transcription start sites (TSS) (GSE72622). 
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Extended data Fig. 8 | Gene expression after expression of FOSL1. 
a, Expression of YAP1 target genes in A375 cells after transduction with pBABE-FOSL1 or pBABE-
E.V. (empty vector). Results are expressed as mean ±s.e.m. from three independent experiments (n=3). 
Two-sided unpaired t-tests were used for statistical test between the groups. b, Expression of CXCL8 and 
CXCL2 in A375 cells after transduction with pBABE-FOSL1 or pBABE-E.V. (empty vector). Results 
are expressed as mean ±s.e.m. from three independent experiments (n=3). Two-sided unpaired t-tests 
were used for statistical test between the groups.  
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Extended data Fig. 9 | JUNB mediates the effects of TRIM28 knockdown 
a, Quantitative RT-PCR to determine knockdown efficiency of JUNB in A375 cells previously 
transduced with shT28-1. Results are expressed as mean ±s.e.m. from three independent experiments 
(n=3). Two-sided unpaired t-tests were used for statistical test between the groups. b, A375 cells, 
previously transduced with shT28-1, were transfected with siRNA pools of either siJUNB or siNTC. 
Expression was determined by quantitative RT-PCR. Results are expressed as mean ±s.e.m. from three 
independent experiments (n=3). Two-sided unpaired t-tests were used for statistical test between the 
groups. c,  ChIP-seq analysis of co-occupancy of JUNB and TEAD4 at promoters of canonical YAP1 
signature genes in A549 cells. d, ChIP-seq analysis of JUNB occupancy at promoters of the canonical 
KRAS signature genes CXCL2 and CXCL8 in A549 cells. e, Genome-wide overlap of ChIP-seq peaks for 
JUNB and TEAD4 in A549 cells. ChIP-seq data in (c-e) are from GSE32465 and GSE92807. 
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Extended data Fig. 10 | JUNB controls the expression of MITF and N-cadherin in melanoma cells 
a, Images displaying the morphology of A375 cells transduced with dCas9-KRAB lentiviruses expressing a control 
gRNA (gEGFP) or a gRNA targeting JUNB (gJUNB-1). b, Expression of MITF after transduction of A375 cells with 
dCas9-KRAB lentiviruses expressing gRNA targeting JUNB (gJUNB-1 or gJUNB-2) or a control gRNA (gEGFP).  
Expression was determined by quantitative RT-PCR. Results are expressed as mean ± s.e.m. from three independent 
experiments (n=3). One-way ANOVA and Dunnett’s multiple comparison test were used for statistical testing of 
differences to gEGFP. c, Immunoblotting against JUNB and MITF on protein lysates from A375 cells after 
transduction with dCas9-KRAB lentiviruses expressing gRNA targeting JUNB (gJUNB-1 or gJUNB-2) or a control 
gRNA (gEGFP). d, Expression of the MITF target gene TYR after CRISPRi against JUNB. Expression was determined 
by quantitative RT-PCR. Results are expressed as mean ± s.e.m. from three independent experiments (n=3). One-way 
ANOVA and Dunnett’s multiple comparison test were used for statistical testing of differences compared to gEGFP. e, 
Expression of N-cadherin (CDH2) after transduction of A375 cells with dCas9-KRAB expressing gRNAs targeting 
JUNB (gJUNB-1 and gJUNB-2) or a control gRNA (gEGFP). Expression was determined by quantitative RT-PCR. 
Results are expressed as mean ±s.e.m. from three independent experiments (n=3). One-way ANOVA and Dunnett’s 
multiple comparison test were used for statistical testing of differences compared to gEGFP. f, Expression levels of 
JUNB and MITF indicated for patient derived metastatic tumors (n=367) and displayed in a principal component 
analysis plot. Results are based on RNA-seq data from TCGA. g, Expression of MITF after transduction of A375 cells 
with shSCR, shT28-1 or shT28-2. Expression was determined by quantitative RT-PCR.  
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