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Abstract: The resolution offered by genomic data sets coupled with recently developed spatially 12 

informed analyses are allowing researchers to quantify population structure at increasingly fine 13 

temporal and spatial scales. However, uncertainties regarding data set size and quality thresholds 14 

and the time scale at which barriers to gene flow become detectable have limited both empirical 15 

research and conservation measures. Here, we used restriction site associated DNA sequencing 16 

to generate a large SNP data set for the copperhead snake (Agkistrodon contortrix) and address 17 

the population genomic impacts of recent and widespread landscape modification across an 18 

approximately 1000 km2 region of eastern Kentucky. Nonspatial population-based assignment 19 

and clustering methods supported little to no population structure. However, using individual-20 

based spatial autocorrelation approaches we found evidence for genetic structuring which closely 21 

follows the path of a historic highway which experienced high traffic volumes from ca. 1920 to 22 

1970. We found no similar spatial genomic signatures associated with more recently constructed 23 
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highways or surface mining activity, though a time lag effect may be responsible for the lack of 24 

any emergent spatial genetic patterns. Subsampling of our SNP data set suggested that similar 25 

results could be obtained with as few as 250 SNPs, and thresholds for missing data exhibited 26 

limited impacts on the spatial patterns we detected outside of very strict or permissive extremes. 27 

Our findings highlight the importance of temporal factors in landscape genetics approaches, and 28 

suggest the potential advantages of large genomic data sets and fine-scale, spatially-informed 29 

approaches for quantifying subtle genetic patterns in temporally complex landscapes. 30 

 31 

Key words: copperheads, landscape genomics, road ecology, mountaintop mining, ddRAD 32 
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 3 

Introduction 34 

 Habitat loss and fragmentation resulting from natural resource extraction, agriculture, and 35 

urbanization is setting some populations on new demographic trajectories, with increasing and 36 

persistent genetic diversity loss (Haddad et al. 2015). Understanding the effects of this rapid 37 

landscape change on population structure and genetic diversity is critical for informing science-38 

based conservation and management (Hilty et al. 2012, Keller et al. 2015, Waits et al. 2016). 39 

However, a variety of geographic and ecological factors can affect the amount and rate at which 40 

spatial genetic structuring builds in a given system, creating challenges for the development of 41 

proactive management plans (Epps and Keyghobadi 2015, Balkenhol et al. 2016, Richardson et 42 

al. 2016). Thus, while migration may be limited by contemporary landscape factors, genetic 43 

structure may not be detectable until many generations after a barrier forms, especially if the 44 

power to detect such patterns is limited by the quantity or quality of genetic data available 45 

(Landguth et al. 2010, McCartney-Melstad et al. 2018). 46 

The use of large single nucleotide polymorphism (SNP) data sets has improved the 47 

detection of recent habitat fragmentation in several ways. First, increased genome-wide sampling 48 

reduces the number of individuals needed to quantify differentiation among sampling locations 49 

(Willing et al. 2012, Nazareno et al. 2017). With this lower threshold for per-locale individual 50 

sampling, genomic data can permit sampling schemes encompassing a broader geographic area 51 

and a more hierarchical design, thus allowing for more robust resolution of patterns at multiple 52 

spatial scales (Anderson et al. 2010, Balkenhol and Fortin 2016). Furthermore, while the 53 

relatively high mutation rate of microsatellites is advantageous for detecting recent genetic 54 

change (Epps and Keyghobadi 2015), the greater genome-wide sampling of large SNP data sets 55 

can potentially detect weaker spatial genetic patterns resulting from relatively recent or porous 56 
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barriers to gene flow (Landguth et al. 2012). For example, McCartney-Melstad et al. (2018) 57 

found that with as few as 300-400 SNPs, genetic structure associated with the barrier effects of 58 

roads could be detected in amphibian populations where 12 microsatellite loci had previously 59 

indicated no structure. SNP data sets of this size are now readily available through methods such 60 

as restriction site-associated DNA sequencing (RADseq), allowing for the generation of 61 

thousands of loci from non-model organisms with a range of ecological characteristics that may 62 

make them prone to the genetic effects of recent habitat fragmentation (Epps and Keyghobadi 63 

2015). 64 

While traditional methods of testing for spatial genetic patterns, such as model-based 65 

clustering (e.g., STRUCTURE, Pritchard et al. 2000) or non-parametric exploratory data analyses 66 

(e.g., DAPC, Jombart et al. 2010), have been used to characterize genetic diversity across a given 67 

area (François and Waits 2015), other methods which are able to separate spatial and non-spatial 68 

genetic variation may be better equipped to detect patterns of genetic differentiation in recently 69 

fragmented systems or those with high rates of gene flow (Jombart et al. 2008, Galpern et al. 70 

2014). These methods use spatial autocorrelation to tease apart patterns of inter- versus intra-71 

population genetic variation, improving the identification of population structure at fine 72 

geographic scales (Galpern et al. 2012). When coupled with genomic data, spatially-informed 73 

analyses may also allow for the detection of weak spatial structure related to recent habitat 74 

fragmentation or incomplete barriers to migration (Richardson et al. 2016, Richardson et al. 75 

2017, Combs et al. 2018, Combs et al. 2018a). However, alongside these methodological 76 

improvements, work remains to understand the amount of genomic data necessary to assess 77 

spatial genetic patterns (e.g., McCartney-Melstad et al. 2018), and the effects of genomic data 78 

quality on the resolution of recently evolved population structure. 79 
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 Identifying spatial genetic patterns associated with landscape features is especially 80 

pertinent in regions experiencing rapid and recent landscape change. Few regions have 81 

experienced this change as rapidly as central Appalachia in the eastern United States, chiefly as a 82 

result of the large-scale surface coal mining practices often referred to as ‘mountaintop removal’ 83 

(Wickham et al. 2007, Drummond and Loveland 2010, Pericak et al. 2018, Maigret et al. 2019). 84 

Alongside mining, the wholesale construction of several high-traffic road systems in the 1970s 85 

and 1980s, in part to facilitate the transportation needs of the mining sector, have further 86 

subdivided what was formerly a relatively continuous forest landscape with scant high-traffic 87 

roads (KTC 2018). Despite the scale of these changes, the effects on native biodiversity are not 88 

well understood (Wickham et al. 2013). Given the historically rugged terrain of Appalachia, 89 

topographic homogenization produced by surface mining may facilitate dispersal of terrestrial 90 

fauna not encumbered by the radically altered soils, flora, and thermal regimes of reclaimed 91 

minelands (Wickham et al. 2013), and highways may also facilitate movement in some species 92 

(Trombulak and Fissell 2000). Alternatively, less vagile taxa that rely on sparsely distributed 93 

microhabitats may be more sensitive to the effects of forest fragmentation, especially if they are 94 

susceptible to road mortality.  95 

We sought to understand the impact of recent and major landscape changes on the 96 

population structure of the copperhead (Agkistrodon contortrix), an abundant snake in eastern 97 

Kentucky (Barbour 1962) generally not capable of long-distance (> 1km) individual movements 98 

(Sutton et al. 2017). Copperheads rely on rocky hibernacula located high on steep-sided, south-99 

facing slopes for overwintering (Maigret and Cox 2018), sites disproportionately destroyed by 100 

surface mining (Maigret et al. 2019). Copperheads are also generally intolerant of dense, 101 

invasive vegetation common to many reclaimed surface mines (Carter et al. 2015, Carter et al. 102 
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2017). Additionally, herpetofauna generally, and pit vipers in particular, have been shown to be 103 

especially vulnerable to vehicular traffic (Andrews and Gibbons 2005, Shepard et al. 2008), and 104 

elevated genetic differentiation associated with highways has been detected using microsatellite 105 

markers (Clark et al. 2010, DiLeo et al. 2013). Pertinent to this point, our study area contains 106 

several major highways [> 3,000 Annual Average Daily Traffic (AADT)] constructed between 107 

1970 and 1985 which could be barriers to movement for A. contortrix. Nearly all these highways 108 

were constructed along new paths and do not follow major hydrological or topographic features 109 

for the majority of their route through the study area. From at least 1900 until 1970, however, the 110 

only highway across the study area was KY State Route 476 (formerly old KY State Route 15; 111 

hereafter referred to as KY-476). Prior to 1970, KY-476 was a major thoroughfare through the 112 

region, following the sinuous course of Troublesome Creek, a tributary of the North Fork of the 113 

Kentucky River. This constrained vehicle speed and made the route prone to frequent flood 114 

damage, prompting the development and opening of the new KY-15 c. 1975, leading to 115 

markedly decreased traffic volumes on KY-476 (~500 vehicles/day) and pushing most traffic, 116 

including many coal-industry commercial vehicles to the new KY-15 (~ 5,000 vehicles/day).  117 

Using RADseq data and nonspatial and spatially informed analyses, we investigated the 118 

potential for recently formed population structure across A. contortrix in eastern Kentucky as a 119 

result of this landscape change, with a particular focus on the effects of habitat fragmentation via 120 

surface coal mining and through the network of historic (c. 1920) and more recently-constructed 121 

(c. 1975) high-traffic roads. Specifically, we aimed to: (1) understand the extent and scale of 122 

spatial genomic structuring in copperheads across what was until recently a heavily forested 123 

landscape; (2) test for associations between current landcover classes and patterns of spatial 124 

genomic diversity; (3) identify current or historic linear landscape features which are associated 125 
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with reduced gene flow, and (4) understand how the size and quality of a data set can affect our 126 

ability to detect spatial genomic patterns. More broadly, we aim to shed light on the temporal 127 

scale at which barriers to gene flow are detectable using large SNP data sets, to investigate the 128 

potential role of spatially-informed methods for identifying recent or weak genetic boundaries, 129 

and to provide a starting point for future research into the spatial genetic implications of 130 

increasingly popular methods of surface mining. 131 

 132 

Methods 133 

 134 

2.1 Sampling methods 135 

 We sampled A. contortrix individuals from an approximately 1,000 km2 area of Breathitt, 136 

Knott, and Perry counties in eastern Kentucky, USA (Figure 1). We used a hierarchical sampling 137 

strategy, sampling at arrays of four to six individual capture sites (Figure 1A). Each individual 138 

capture site consisted of a location where a combination of artificial cover and visual encounter 139 

surveys were used to capture snakes. An array was composed of at least four individual capture 140 

sites, separated by 2-3 km, and arranged roughly in a cross or an ‘x’. In turn, each array was 141 

separated by roughly 10-20 km, providing comparisons at multiple spatial scales both within and 142 

between each array (Balkenhol and Fortin 2016). Between May 2014 and September 2016, 143 

individuals were captured at sampling sites, typically under artificial cover (e.g., sheet metal or 144 

other debris). We augmented this design by including individuals captured apart from designated 145 

individual capture sites; typically, these snakes were found alive or dead on roadways within the 146 

study area or were killed and/or donated by area residents who were able to provide precise 147 

locality information for each tissue sample. Live-captured snakes were restrained and two ventral 148 
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scales were removed, placed in 95% ethanol, and subsequently frozen at -80°C (Maigret 2019). 149 

Muscular tissue from the tails of dead snakes was treated similarly. 150 

 151 

2.2. DNA sequencing and SNP calling 152 

We extracted genomic DNA using a Qiagen DNeasy Blood and Tissue Extraction Kit 153 

and prepared double digest RADseq (ddRADseq) libraries based on Peterson et al. (2012). DNA 154 

was quantified using a Qubit 2.0 flourometer (Thermo-Fisher). DNA extractions ≤ 2.0 ng/uL 155 

were amplified using a Qiagen REPLI-g high-fidelity whole genome amplification kit. We 156 

prepared ddRADseq libraries using ~1000 ng of DNA per individual. DNA was digested using 157 

EcoRI and SphI and subsequently cleaned with Agencourt Ampure XP beads (Beckman 158 

Coulter). Adaptor ligation was performed using one of 48 unique 5 bp barcodes in combination 159 

with a universal 6 bp single-index PCR adaptor. Samples were then pooled in groups of 8, bead 160 

cleaned, and size selected (526 bp ± 10%) with a Pippin Prep (Sage Science). Each 8-sample 161 

pool was then Qbit quantified and amplified using Phusion high-fidelity PCR (New England 162 

Biolabs) with a PCR primer with one of three unique barcodes, permitting each individual to be 163 

identified uniquely using a combination of the unique PCR barcode and a unique adaptor index. 164 

After cleaning and quantifying PCR product, we used an Agilent 2100 Bioanalyzer to confirm 165 

target fragment size distributions before 150 bp paired-end sequencing on two lanes of an 166 

Illumina Hi-Seq 2500. Individuals were randomly assigned to a lane with respect to geographic 167 

location to reduce downstream genetic artefacts (Meirmans 2015). 168 

We used Stacks v1.37 (Catchen et al. 2013) to identify orthologous loci across 169 

individuals. No overlap was expected between sequencing reads; therefore, we used a custom 170 

script to stitch together forward and reverse reads. We used process_radtags to demultiplex 171 
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individuals and discard low-quality reads containing uncalled bases or a mean quality score < 10 172 

in a sliding window comprising 15% of the read. After quality filtering, reads were assembled 173 

using denovo_map, with a minimum stack depth of 5 (m = 5), 3 mismatches allowed between 174 

stacks within individuals (M = 3), and 2 mismatches allowed between stacks among individuals 175 

(n = 2). To increase confidence in our SNP calls, we used rxstacks to remove SNPs with a low 176 

log likelihood (--ln_lim = -25) and/or a high proportion of confounded loci (conf_lim = 0.25). 177 

After running rxstacks, cstacks and sstacks were re-run with the filtered loci. We sampled a 178 

single SNP per locus (--write-single-snp), using only SNPs with < 50% missing data, a minor 179 

allele frequency < 0.015, and no evidence of excess heterozygosity. Finally, we removed 180 

individuals with > 50% missing data. 181 

 182 

2.3 Summary statistics and distance-based analyses 183 

We generated a genetic dissimilarity matrix using the program bed2diffs v1 in the EEMS 184 

package (Petkova et al. 2016). This produced a matrix of average individual pairwise genetic 185 

dissimilarity (hereafter referred to as the “GDM”) based on allelic frequencies, similar to the 186 

proportion of shared alleles (Bowcock et al. 1994). We estimated effective population size using 187 

the linkage disequilibrium method in NeEstimator (Do et al. 2014). We estimated heterozygosity 188 

and nucleotide diversity using plink and vcftools, respectively (Purcell et al. 2007, Danecek et al. 189 

2011). We calculated the relationship between geography and the GDM using the ecodist 190 

package in R. Mantel correlograms were generated for multiple geographic distances, including 191 

Euclidean distance, the natural log of distance, stream (hydrological) distance, and the natural 192 

log of stream distance. To quantify stream distances, we used the Origin-Destination Cost Matrix 193 

tool in ArcMap v10.1 (ESRI, Redlands, CA) and a shapefile of USGS stream paths obtained 194 
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from the KY Division of Geographic Information. We chose to use stream paths as a proxy for 195 

potential elevation effects given the rugged terrain of the study area. 196 

 197 

2.4 Nonspatial analyses of population structure 198 

To identify and characterize genetic clusters across our study area, we used both 199 

discriminant analysis of principal components (DAPC) in the adegenet R package (Jombart et al. 200 

2010) and Bayesian clustering via STRUCTURE (Pritchard et al. 2000). For our DAPC analyses, 201 

we first used the find.clusters function, retaining all principal components (PCs) and selecting 202 

the K value with the lowest Bayesian information criterion (BIC). Individuals were then 203 

ordinated in PC space using the dapc function. To reduce the potential for over-fitting, we 204 

selected the number of retained PCs in light of diminishing returns from retaining excess PCs 205 

(Jombart et al. 2010).  206 

For our STRUCTURE analyses, we estimated population assignment of individuals using 207 

an admixture model with cluster numbers ranging from K = 1 to 10. Five replicates were run for 208 

each K, each for 1,000,000 generations after a burn-in of 100,000 generations. We used Structure 209 

Harvester v0.6.9.4 (Earl and von Holt 2012) to generate mean log likelihood values for each K 210 

and identify the optimal number of clusters for our data using ΔK (Evanno et al. 2005). We used 211 

the program CLUMPAK to compute cluster membership coefficients across replicates (Kopelman 212 

et al. 2015). 213 

 214 

2.5 Spatially informed analyses of population structure 215 

To further test for genetic structure across our study system, we used three recently 216 

developed approaches that integrate spatial information into analyses based on genetic 217 
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dissimilarity. First, we used MEMGENE (Galpern et al. 2014), a regression-based analysis based 218 

on the spatial autocorrelation among a given set of georeferenced individuals and a 219 

corresponding GDM. Individual samples are mapped based on geographic location, and 220 

significant eigenvector scores are overlaid to provide a visualization of the geographic nature of 221 

genetic dissimilarity among individuals. 222 

Second, we used the program sPCA (Jombart et al. 2008) implemented in the R package 223 

adegenet. sPCA is broadly similar to MEMGENE (but see Galpern et al. 2014:Appendix S4), but 224 

relies on an ordination approach based on Moran’s I index to identify eigenvectors which 225 

maximize variation in allele frequencies and spatial autocorrelation, and then maps these 226 

eigenvectors on to geographic coordinates. Our analyses used a nearest-neighbor connection 227 

network with k = 40 neighbors to maximize potential connectivity across our large number of 228 

spatially distinct samples. We relied on the eigenvalue variance and spatial components plots to 229 

select the optimal number of global and local axes to retain, and used the recommended 230 

multivariate significance test to identify significant global and local genomic structure. 231 

Third, to take into consideration the impact of landscape features on gene flow, we 232 

estimated a resistance model using the R package ResistanceGA (Peterman 2018). ResistanceGA 233 

uses a genetic algorithm approach to optimize the individual resistance values associated with a 234 

given resistance surface based on genetic dissimilarity data. Model fit of the optimized surfaces 235 

are quantified using AIC values from linear mixed-effects models, both for each surface 236 

individually and for all combinations of individual surfaces. Thus, ResistanceGA bypasses the 237 

often-subjective expert opinion parameterization stage of resistance surface construction (Spear 238 

et al. 2016, Peterman et al. 2018). Our ResistanceGA input landscape surfaces consisted of land 239 

cover classification data obtained from 2011 National Land Cover Data. We reclassified raw 240 
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NLCD raster values into 3 different resistance surfaces of two categories each, including: (1) a 241 

mining surface with two categories, mined and unmined land, (2) a surface representing the route 242 

of current highways, with two categories, highway and non-highway, and (3) a surface 243 

representing the route of KY-476, also with two categories, highway and non-highway (Table 244 

S1). We tested both for effects of each of these three surfaces independently and each possible 245 

combination of the three. We reclassified NLCD raster classes using the Reclassify tool in the 246 

Spatial Analyst extension of ArcMap 10.3.3, producing our three putative resistance surfaces. 247 

We relied on historic road maps publicly available from the KY Transportation Cabinet to 248 

identify current and historic highway patterns in the study area from 1936 to the present, and 249 

historic topographic maps from the US Geological Survey’s Historical Topographic Map 250 

Explorer for information on routes before 1936. Our response data set was our individual 251 

pairwise GDM, which we ran alongside our land cover raster surface using the ‘costDistance’ 252 

function in the R package gdistance (van Etten 2017). This function calculates least cost paths 253 

between each pair of locations, and while lacking the comprehensive approach available with 254 

random walk commute times, least cost paths represent a much more computationally tractable 255 

approach for our spatial and genetic data set (Peterman 2018). 256 

 257 

2.6 Subsampling of our SNP data set 258 

 We aimed to assess the resolving power of two of the spatially informed methods, sPCA 259 

and MEMGENE, based on: (1) the number of loci, and (2) the amount of missing data. To examine 260 

the effect of the number of loci, we randomly subsampled our full 2,140 SNP data set, producing 261 

subsets of 25, 50, 100, 250, 500, and 1,000 loci. For each subset, ten replicates were generated 262 

using plink and analyzed in sPCA and MEMGENE as described above for the full data set. To 263 
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examine the effects of missing data, we re-filtered our raw SNP data set using missing data 264 

thresholds of 0.05 (i.e., retaining only loci present in ≥ 95% of individuals), 0.10, 0.25, 0.40, 0.5, 265 

0.75, 0.90, and 0.95. While these represented our thresholds, our realized data sets typically had 266 

smaller amounts of missing data, in aggregate, than each threshold. Only a single data set could 267 

be produced for each missing data threshold. 268 

Differences in the how sPCA and MEMGENE are designed influenced how we quantified 269 

our subsampling and missing data threshold results. For sPCA, we first detected significant 270 

patterns of structuring, then tabulated the proportion of replicates with unrelated, similar, or 271 

identical spatial genomic patterns as detected in analysis of the full data set. Model outputs for 272 

sPCA include global and local permutation tests of structuring, the p-values of which were 273 

obtained for each level of subsampling and missing data thresholds, which we averaged across 274 

ten replicates for the former. MEMGENE, on the other hand, only analyzes significant spatial 275 

patterns, and nonsignificant patterns are not retained for downstream analyses. Thus, for 276 

MEMGENE, we obtained R2 values only for levels of subsampling and missing data thresholds 277 

where significant spatial patterns were observed, and we quantified spatial patterns which were 278 

unrelated, similar, or identical, in a similar fashion to our sPCA results. We visualized these 279 

results by charting p-values from local and global tests from sPCA alongside R2 values from 280 

MEMGENE for each missing data threshold, and by charting both these statistical values and the 281 

proportion of similar patterns for each subsampling level. While categorizing spatial patterns in 282 

terms of their similarity to those generated using our full data set requires some qualitative 283 

assessment of the results, we chose not to use more substantial quantitative metrics for 284 

comparison (e.g., spatial point pattern analysis) given the limited number of sampling sites. 285 

 286 
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Results 287 

 288 

3.1 Sequencing results 289 

We generated ~239 million 150 bp paired-end reads, with a mean of 1,869,394 reads per 290 

individual. Increasing or decreasing the minimum read depth between 4 and 7 did not affect any 291 

summary statistics, and only marginally affected the number of loci in our data (Table S2). After 292 

filtering, we recovered genotypes for 77 individuals from 34 different locations (Figure 1). This 293 

included a total of 2,140 loci, with an average missing data rate of 23.5% of loci per individual 294 

(min. = 4.4%; max.= 48.9%). 295 

 296 

3.2 Summary of genetic diversity 297 

 Across our study area, we estimated HO = 0.193, HE = 0.24, π = 0.242, and FIS = 0.195. 298 

We estimated an Ne of 635.8 (95% CI: 595.6, 681.6). We identified weak, but sometimes 299 

significant correlations between genetic and different measures of geographic distances, 300 

including Euclidean (p = 0.79, R2 = -0.0003), natural log of Euclidean (p = 0.0006, R2 =0.0037), 301 

hydrological distance (p < 0.0001, R2 = 0.0054), and natural log of hydrological distance (p = 302 

0.003, R2 = 0.0029). Mantel correlograms of correlation by distance class similarly showed 303 

minimal evidence of isolation-by-distance (Figure S1). 304 

 305 

3.3 Non-spatial population structure 306 

 Neither DAPC nor STRUCTURE analyses supported the presence of multiple 307 

geographically distinct genetic clusters. BIC scores in DAPC were lowest for K = 1 (Figure 2a), 308 

and an exploration of cluster assignments using the first PC axis and a K = 2 did not produce 309 
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individual assignments corresponding to sampling localities or geography. STRUCTURE analyses 310 

identified a K = 3 as the best-fit clustering model for our data based on the ΔK statistic (Figure 311 

2b). However, at this level of clustering all individuals were nearly equally assigned to all three 312 

clusters, indicating a lack of population structure; these results were similar at a K = 2. 313 

 314 

3.3 Spatially informed population structure 315 

sPCA analyses identified significant global structure across the study area (p = 0.002). 316 

The first global (positive) sPCA axis identified a population genetic break that closely followed 317 

the path of KY-476 (Figure 3a). Based on a scree plot and a plot of eigenvalues, this first global 318 

axis contained the most information relative to other axes, and support for any of the local 319 

(negative) axes was not of congruent strength (Figure S2a-b). 320 

The first variable identified as significant in the MEMGENE analysis explained a high 321 

proportion of the total variance across three retained axes (0.81). The proportion of overall 322 

genetic variance explained by spatial patterns associated with this first variable was modest (adj. 323 

R2 = 0.061), yet was similar to the proportion explained by other studies at similar spatial scales 324 

(Galpern et al. 2014, Combs et al. 2018a). Visualization of the first and most explanatory MEM 325 

variable similarly identified a genetic break that partitioned populations on either side of KY-476 326 

(Figure 3b). No genetic breaks identified an influence of landcover or current highway paths. 327 

Landscape resistance analyses in ResistanceGA supported a null model of no geographic 328 

structure, followed by a model of isolation by distance (Tale S3). Models that included the three 329 

individual resistance surfaces (landcover, current highways, or historic highways), or any 330 

combination of resistance surfaces, were not strongly supported. 331 

 332 
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3.4 Subsampling of SNP data set 333 

 sPCA analysis of subsampled SNP data sets produced significant detection of global 334 

structure with as few as 25 loci (average global p-value of ten replicates = 0.067, Fig. 4a), 335 

although data sizes ≥ 250 loci were needed to produce identical patterns to those generated with 336 

the full data set (mean global p = 0.0033). At ≥ 500 loci identical patterns were produced in all 337 

replicates. Significant local structure was not supported for any level of subsampling (mean local 338 

p-value = 0.34). MEMGENE analysis of subsampled SNP data sets produced identical patterns in a 339 

majority of replicates when sampling ≥ 100 loci (Fig. 4b). However, identical results were still 340 

detected in 50% of replicates when sampling 50 loci and produced in all replicates when 341 

sampling 1000 loci. 342 

 The performance of sPCA and MEMGENE was not adversely affected by the inclusion of 343 

higher levels of missing data (Fig. 4c). Global p-values from sPCA analysis were significant at ≥ 344 

25% missing data and remained so, even when the data set allowed for as much as 95% missing 345 

data per individual. Missing data levels ≤ 10% resulted in a loss of significant global spatial 346 

structure, and we note the peculiarity that data sets of smaller locus number resulted in 347 

significant detection of global structure in our subsampled data replicates, suggesting the 348 

potential for Type I error with small data sets. Non-zero R2 estimates were produced in 349 

MEMGENE analyses of data sets permitting ≥ 40% missing and increased with higher levels of 350 

missing data, up to 75%. 351 

  352 

Discussion 353 

 354 

Non-spatial vs. spatially informed inference of population structure 355 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/777920doi: bioRxiv preprint 

https://doi.org/10.1101/777920
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

         Here, we present empirical evidence for the ability of some spatially informed methods to 356 

detect weak population structure in study systems where more traditional and non-spatially 357 

informed methods indicate a lack of structure. Patterns in both DAPC and Structure results were 358 

consistent with a K = 1 model, with no evidence for geographically distinct genetic clusters 359 

across the study area. In contrast, the spatially informed methods sPCA and MEMGENE returned 360 

similar results supporting geographic genetic structure with a break coinciding with the path of 361 

KY-476, a historically-important highway that served as a major traffic artery in the region 362 

between c. 1920-1975. The inference of weak population structure and genetic fragmentation on 363 

the landscape of our study system is bolstered by multiple lines of evidence. First, both sPCA 364 

and MEMGENE identified the same geographic genetic break. While these methods both use 365 

spatial autocorrelation in the analysis of genetic data, they operate in very different ways: sPCA 366 

relies on the integration of Moran’s I matrix via a connection network, while MEMGENE uses a 367 

forward selection method to identify significant MEM eigenvectors, and then uses a regression 368 

approach to generate output variables which contain the spatial patterns (Galpern et al. 2014). 369 

The congruence of these results indicates that our result is probably not a spurious pattern driven 370 

by an artefact of one particular analysis. Second, while the magnitude of population structure 371 

detected in our work was generally weak— MEMGENE-based regression analyses attributed ~6% 372 

of total genetic variation to spatial effects—this amount of spatially explained genetic variation 373 

is in the range of that detected with MEMGENE under simulated models of population 374 

fragmentation and higher than that detected for panmictic populations (Galpern et al. 2014). This 375 

level of spatially driven genetic variation is also similar to that detected in other studies of 376 

recently fragmented landscapes (Combs et al. 2018a, Combs et al. 2018b). Our overall 377 

interpretation of these results is that the use of methods that specifically use spatial patterns of 378 
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variation, such as sPCA and MEMGENE, seem to be able to identify patterns of weak population 379 

structure at temporal and spatial scales where more widely used non-spatial methods would fail 380 

to discern geographic population structure (Galpern et al. 2014). 381 

In contrast, our estimates of population structure using optimized landscape resistance 382 

generated using ResistanceGA did not support a link between genetic differentiation and 383 

landscape features. This lack of spatially informed population structure may be related to 384 

methodological aspects of this program, as it does not use the autocorrelation approach that is 385 

built in to sPCA and MEMGENE. In addition, our analyses were limited to only analyzing least 386 

cost paths. ResistanceGA does allow for a more exhaustive exploration of restricted gene flow 387 

across the landscape using a random-walk framework, which may have identified fragmentation 388 

associated with landscape features that were not examined using a least cost path approach. 389 

However, this required a computationally prohibitive set of analyses given our level of locality 390 

sampling and landcover data resolution. Coupled with the relatively weak nature of the spatial 391 

genomic signal associated with the route of KY-476, our ability to detect resistance to gene flow 392 

based on landcover classes may have been comparatively limited.  393 

 394 

Data size and quality in the detection of weak population structure 395 

While our large genomic data set may have also increased our ability to detect subtle 396 

spatial patterns, random subsampling of our data indicated that thousands of SNPs may not be 397 

necessary to detect weak population structure similar to that found with our full data set. In fact, 398 

we found that several hundred SNPs may be sufficient to consistently identify weak spatial 399 

structure. This result is similar to that of a recent study (McCartney-Melstad et al. 2018), which 400 

showed that the use of a more limited set of independent SNPs (~300-400) was sufficient to 401 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/777920doi: bioRxiv preprint 

https://doi.org/10.1101/777920
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

recover fine-scale population structure using the non-spatial method Admixture (Alexander et al. 402 

2009) with results similar to those obtained with a larger, more-complete data set (3095 SNPs). 403 

Our subsampling work extends this finding, indicating that spatially informed methods of 404 

population structure may be equally efficient with relatively modest sized data sets (~250-500 405 

loci). We do note that minimum locus thresholds will vary based on the intensity of the spatial 406 

genetic signal, the number of individuals sampled, and a variety of other factors. However, these 407 

developing empirical findings provide an optimistic outlook on the minimum data size required 408 

for the detection of weak landscape-level fragmentation. 409 

Our exploration of the inclusion of missing data yielded similarly optimistic results, 410 

where, under a wide range of thresholds, missing genotypes did not substantially alter our spatial 411 

landscape genomic findings. Using stringent missing genotype thresholds, which also lowered 412 

the number of SNPs in the data, actually decreased the spatial signal. Conversely, allowing for 413 

more missing data increased the signal of population structure in our data, with a plateau in the 414 

level of significance (sPCA) and amount of spatial variation explained (MEMGENE). The effect of 415 

missing data in population and evolutionary studies has seen mixed results. Simulation-based 416 

results have indicated that missing genotypes in RADseq data can result in substantial biases in a 417 

range of population genetic summary statistics, including FST (Arnold et al. 2013). In contrast, 418 

the use of more liberal missing data thresholds in RADseq-based phylogenetic studies has 419 

provided opportunities to recover phylogenetic patterns not detected using more stringent 420 

thresholds (Wagner et al. 2013, Eaton et al. 2017; but see Leaché et al. 2015). This may be due to 421 

a bias whereby loci with higher mutation rates, but likely to contain population or phylogenetic 422 

information, are eliminated by stringent missing thresholds (Huang and Knowles 2014). The 423 

effect of missing data in landscape genomic studies has yet to be thoroughly explored, and we 424 
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suggest based on our results that some spatially informed analyses may be robust to the recovery 425 

of patterns of weak population structure despite the inclusion of a high level of missing 426 

genotypes, but that parameter estimation at this geographic scale (e.g., migration rates) may be 427 

more strongly influenced. Therefore, when possible, we second the recommendation of others 428 

(Wagner et al. 2013, O’Leary et al. 2018) for researchers to explore the sensitivity of their results 429 

across a range of different missing data thresholds. 430 

  431 

Copperhead landscape genomics and temporal considerations 432 

Our results further emphasize an association between high-traffic roads and genetic 433 

differentiation in pit vipers (Clark et al. 2010, DiLeo et al. 2010, DiLeo et al. 2013, Bushar et al. 434 

2015, Herrmann et al. 2017, but see Weyer et al. 2014). These findings are in addition to field 435 

studies that have suggested the outsized role played by road mortality in snakes, and 436 

herpetofauna more generally (Andrews and Gibbons 2005, Row et al. 2007, Shepard et al. 2008). 437 

Furthermore, our results suggest that the effects of high-traffic roads and associated intense 438 

human activity might persist for decades after traffic volumes decline, in line with predictions 439 

from simulations (Landguth et al. 2010).  440 

We did not find evidence for a strong influence of surface coal mining on genetic 441 

connectivity, which was surprising given the widespread nature of surface mining in the study 442 

area, and the wholesale shifts in vegetation, soils, topography, and fauna that characterize the 443 

mining and mine reclamation process. Surface mining of coal in Appalachia has a high degree of 444 

spatial and temporal variance; portions of mines can exist in various states of reclamation from 445 

barren rock to early successional forest, and mining activity can cease for months to years as a 446 

result of fluctuating coal prices or labor disputes, thus providing opportunities for animals to 447 
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maintain genetic connectivity in these novel landscapes. Regardless, we recommend further 448 

research into this generally understudied area, as the large scale and radical impacts of this 449 

mining practice may well result in detectable impacts in populations of other taxa (Wickham et 450 

al. 2013). This may be especially true for species with shorter generation times, smaller 451 

population sizes, and more exclusive associations with ridgetop forests (Epps and Keyghobadi 452 

2015, Maigret et al. 2019). 453 

We note that the connection between the identified genetic fragmentation and the historic 454 

highway KY-476 is a largely qualitative assessment, and several specific caveats deserve 455 

mention. The route of KY-476 corresponds not only to a highway path, but also to a swath of 456 

comparatively higher historic human population density and also to the route of Troublesome 457 

Creek, either of which could be factors more important than the highway itself. While modeling 458 

relative contributions of population density and road mortality is beyond the scope of our study, 459 

in terms of parallel geomorphology and hydrology, the historic highway path does not 460 

correspond to any major feature which might be expected to seriously reduce movement of 461 

copperheads (Figure S3). Other waterways which divide our sampling locations, including Lost 462 

Creek and Buckhorn Creek, are of similar size to Troublesome Creek. Moreover, copperheads 463 

and other pit vipers regularly cross bodies of water (T. Maigret, unpublished data; Clark et al. 464 

2010), and studies have found that even hydropower reservoirs are ineffective barriers to gene 465 

flow in copperheads and similar species (Oyler-McCance and Parker 2010, Levine et al. 2016). 466 

More generally, a second caveat is that while we intended our sampling to be hierarchical in 467 

design, the broad scales at which genomic patterns exist in our study area means that we are 468 

examining a single functional landscape. When possible, landscape-scale replication would 469 

provide a more robust assessment of the effects of current and historic landscape features on 470 
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gene flow in A. contortrix and similar taxa (Short Bull et al. 2011). Moreover, assuming we have 471 

detected a spatial genomic pattern stemming from historic highway traffic, we have not 472 

determined the traffic threshold which would produce a noticeable spatial genetic pattern or the 473 

precise time lag which must pass before these patterns become detectable. Other research has 474 

suggested that even low amounts of traffic can produce genetic differentiation (Clark et al. 475 

2010), and depending on a variety of demographic characteristics, numerous generations may 476 

need to pass before genetic differentiation becomes apparent (Landguth et al. 2010, Epps and 477 

Keyghobadi 2015). Thus, while we may have detected the effect of a historic roadway, we have 478 

not conclusively ruled out impacts of current roadways, or even low-traffic and unpaved county 479 

roads not included in our analysis. In a similar manner, our findings regarding the spatial genetic 480 

implications of surface mines should also be understood tentatively.  481 

Our study adds to a growing list highlighting the potential for large SNP data sets to 482 

detect weak, recent, or otherwise subtle spatial genomic patterns (Gonzàlez-Serna et al. 2018, 483 

McCartney-Melstad et al. 2018, Murphy et al. 2018, Tan et al. 2018). Considering the problems 484 

time lags present for conservation planning, the use of large (> 250) SNP data sets and spatially 485 

informed analyses of genetic diversity will likely become increasingly important for placing 486 

patterns of population structuring in their proper genomic, temporal, and geographic contexts. 487 

 488 

Data Accessibility 489 

 490 

Sequence data, SNP calls, landcover rasters, and sample catalogs will be accessible upon 491 

acceptance via NCBI’s sequence read archive (SRA) at accession number PRJNA6278371. 492 

 493 
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List of Figures 509 

Figure 1: Map of our study area and sampling localities superimposed over (A) the current and 510 

historic highway network, with sampling arrays (indicated with a-e) to which each sampling site 511 

belongs, and (B) landcover, including surface coal mines, forest, and other non-forest habitat. 512 

 513 

Figure 2: Results of nonspatial population structure analyses, including (a) ΔK and individual 514 

assignment plots from Structure for K = 3 and K = 2, and (b) BIC and individual assignment 515 

plots from DAPC. Letters beneath each individual assignment plot correspond to the 516 

geographically distinct sampling arrays depicted in Figure 1a. 517 

 518 

Figure 3: Results of our spatially informed population structure analyses. (a) Results of sPCA 519 

analyses visualized using interpolated vector scores, showing divergence coinciding with the 520 

historic highway path (designated in this study as KY-476), but not with landcover or current 521 

highway infrastructure. (b) Results of MEMGENE analysis, which suggests similar patterns of 522 

population structure associated with KY-476. Circle color and size represent the association and 523 

genetic similarity, respectively, along the first MEM variable axis. 524 

 525 

Figure 4: Effects of the number of loci and missing data on (a) sPCA and (b) MEMGENE results, 526 

and the effects of missing data levels on both sets of results (c). For (a) and (b), the left y-axis 527 

represents the proportion of results which were identical, partially identical, or unrelated to the 528 

results obtained from the full data set depicted in Figure 3. Visualization results from each 529 

replicate are available in Figure S4. The right y-axis for (a) represents p-values from global and 530 

local tests for structuring. 531 

 532 

Supplementary Material 533 

 534 

Figure S1: Mantel correlograms for individual genetic differentiation versus (a) Euclidean 535 

distance, (b) natural log of Euclidean distance, (c) stream distance, and (d) natural log of stream 536 

distance. Filled circles represent significant values at α = 0.05. 537 

 538 

Figure S2: Eigenvalue plot (a) and scree plot (b) of local and global axes obtained from our 539 

sPCA analyses. The first global axis, in red, was the only axis retained, and displays unique 540 

separation from other potential axes in the scree plot (labeled as λ1). 541 

 542 

Figure S3: Digital elevation model of study area, with sample points corresponding to Figure 1. 543 

 544 

Figure S4: Visualizations of results from each of the ten replicates for each random subset of 545 

loci, and each level of missing data. Includes (a) interpolated vector scores from sPCA, (b) 546 

plotted scores from sPCA, and (c) plotted MEM scores for significant results. 547 

 548 

Table S1: Landcover reclassification scheme for our ResistanceGA resistance surface. 549 

 550 

Table S2: Summary statistics for read depths from m = 4, m = 5, and m = 7. 551 

 552 
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Table S3: Model output from our ResistanceGA least-cost path analyses. A null model of no 553 

geographic structure and a model of isolation-by-distance outperformed all combinations of 554 

resistance surfaces based on historic roads, current roads, and surface mining.  555 
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