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ABSTRACT 

INTRODUCTION: This study applies a novel algorithm to longitudinal amyloid positron emission 

tomography (PET) imaging to identify age-heterogeneous amyloid trajectory groups, estimate the age 

and duration (chronicity) of amyloid positivity, and investigate chronicity in relation to cognitive decline 

and tau burden. 

METHODS: Cognitively unimpaired participants (n=257) underwent 1-4 amyloid PET scans. Group-based 

trajectory modeling was applied to participants with longitudinal scans (n=171) to identify and model 

amyloid trajectory groups, which were combined with Bayes’ theorem to estimate age and chronicity of 

amyloid positivity. Relationships between chronicity, cognition, clinical progression and tau PET (MK-

6240) were investigated using regression models. 

RESULTS: Chronicity explained more heterogeneity in amyloid binding than age and binary amyloid 

status. Chronicity was associated with faster cognitive decline, increased risk of abnormal cognition, and 

higher entorhinal tau. 

DISCUSSION: Amyloid chronicity provides unique information about cognitive decline and neurofibrillary 

tangle development and may be useful to investigate preclinical AD. 

 

KEYWORDS: beta-amyloid, group-based trajectory modeling, positron emission tomography, 

Alzheimer’s disease, chronicity, tau, Alzheimer’s, trajectory modeling, biomarker 
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ABBREVIATIONS 

AD = Alzheimer’s disease 

PET = positron emission tomography 

A+/- = amyloid positive/negative 

GBTM = group-based trajectory modeling 

WRAP = Wisconsin Registry for Alzheimer’s Prevention 

PIB = Pittsburgh Compound B 

PIB(+/-) = Pittsburgh Compound B positive/negative 

PACC-3 = three-test preclinical Alzheimer cognitive composite 

RAVLT = Rey Auditory Verbal Learning 

MR = magnetic resonance 

DVR = distribution volume ratio 

BIC = Bayesian Information Criteria 

WRAT3 = Wide Range Achievement Test 3 

AICc = Akaike Information Criteria 

sd = standard deviation 

APOE4 = apolipoprotein ε4 

LME = linear mixed effects 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is characterized by beta-amyloid plaques and neurofibrillary tau tangles 

that accrue over time, leading to neurodegeneration and progressive cognitive and functional decline. 

Positron emission tomography (PET) biomarkers enable in vivo detection of pathophysiologic beta-

amyloid and tau, and as hypothesized by Jack and colleagues1,2, these AD biomarkers follow nonlinear 

longitudinal patterns where detectable pathologic beta-amyloid accrues first3,4, perhaps twenty or more 

years prior to clinically detectable cognitive impairment5,6. The 2018 Research Framework for AD7 

proposes that amyloid PET may be used to ascertain amyloid status (i.e. amyloid positive or negative; 

A+/-). This dichotomization is heuristically useful and multiple studies have shown that A+ cognitively 

unimpaired individuals exhibit greater cognitive decline over time than A-8–10, with greater cognitive 

decline for people who exhibit both elevated pathologic amyloid and tau11,12. However, among 

individuals who are accumulating amyloid, there is considerable heterogeneity in the magnitude and 

age of onset of amyloid accumulation with respect to age13–15. A method for elucidating such 

heterogeneity in amyloid accumulating cases may improve prediction models of the temporal biomarker 

cascade and cognitive decline.  

As observed by Jack and colleagues in their seminal paper1, there is little known about inter-individual 

differences in middle-age beta-amyloid accumulation when individuals are transitioning from 

undetectable (A-) to detectable (A+) amounts of beta-amyloid. The theoretical sigmoidal model of beta-

amyloid accumulation1 suggests that individuals have relatively slow accumulation initially, followed by 

faster accumulation as the disease progresses. Several approaches have examined ways to empirically 

assess the trajectory of beta-amyloid biomarkers in AD6,13,16,17. These approaches often attempt to align 

persons within a disease state to mitigate the biomarker heterogeneity with respect to age. A method 

that combines beta-amyloid magnitude and amyloid measurement age to estimate the age of biomarker 

onset (i.e. A+) could be useful in such scenarios since it would allow realignment of the time axis to 
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describe the duration, or chronicity, of A+ relative to that person’s age at any given procedure. Group-

based trajectory modeling (GBTM) is used to describe the developmental course(s) a phenomenon 

might follow over time18,19, and is well-suited for characterizing potential sub-distributions of PET 

measured beta-amyloid pathology accumulation patterns with respect to age. Modeling these sub-

distributions in a sample containing amyloid convertors across the age spectrum may allow for more 

accurate estimation of the age at which persons become A+.  

 Using data from the Wisconsin Registry for Alzheimer’s Prevention (WRAP) study we 

investigated the following aims. First, we used longitudinal Pittsburgh compound B (PiB) to identify and 

characterize beta-amyloid trajectory groups of non-demented healthy middle-aged participants. Second, 

we examined whether trajectory group membership could be reliably obtained from only one PiB scan. 

We next utilized this trajectory group information to estimate the age of A+ (i.e., PiB positivity, [PIB(+)]) 

onset, and thereby the chronicity of A+ (i.e., time between estimated A+ onset and age at a given 

assessment). Third, we characterized mathematically the shape of the amyloid accumulation curve 

observed in this sample. Fourth, we investigated whether A+ chronicity was associated with cognitive 

decline and with tau tangles.  Tau tangles were assessed using [18F]MK-6240, a novel PET radioligand 

with a high affinity for neurofibrillary tangles and minimal off-target binding in the brain 20,21.  

  

2. METHODS  

2.1 Sample: The sample included 257 WRAP participants who were cognitively unimpaired at baseline 

and completed at least one PiB PET  scan as of June, 2019 (Table 1).  WRAP is a longitudinal 

observational cohort study of late middle-aged and older adults, enriched for risk of AD by oversampling 

participants with a parental history of AD (73% parental AD history; see Johnson et al.,20). All study 
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procedures were approved by the University of Wisconsin-Madison Institutional Review Board and are 

in concordance with the Helsinki declaration. 

2.2 Cognitive Assessment: WRAP participants complete cognitive assessments at baseline, and 

approximately every two years thereafter. Longitudinal cognitive performance was assessed using a 

preclinical Alzheimer cognitive composite score (PACC-3)10,21, derived from Rey Auditory Verbal Learning 

(RAVLT; Trials 1-5)22, Logical Memory II23, and Digit Symbol Substitution24. 

2.3 Neuroimaging: All participants underwent T1-weighted magnetic resonance (MR) imaging, and 

[11C]PIB ([11C]6-OH-BTA-1)25. Amyloid burden was assessed as a global cortical average PIB distribution 

volume ratio (DVR)26 and a threshold of DVR ≥ 1.227 to ascertain PIB(+); 198 also underwent [F-18]MK-

6240 (6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)isoquinolin-5-amine)) PET imaging28. Radioligand 

synthesis, and PET and MRI acquisition, processing, and analysis methods are described previously 29,30 

and in supplemental materials.  

2.4 Statistical Methods: Statistical analyses were conducted in SAS and R. Sample characteristics were 

compared across groups of interest (e.g., PiB trajectory groups) using tests appropriate for the 

distribution of the data. 

2.4.1 Aim 1: We used GBTM on the 171 participants with 2-4 PIB scans to identify PiB trajectory groups. 

GBTM is a special case of pattern mixture modeling in which individuals are classified into groups on the 

basis of longitudinal data18,31,32. Models are fit iteratively by adding and removing groups based on the 

Bayesian Information Criteria (BIC) fit statistics18,31. We modeled trajectories using up to a cubic 

polynomial, selecting the best parameterization based on BIC fit and reasonableness of the results. For 

example, if two functions had similar BIC for a group, the model that was more biologically probable was 

selected (i.e. accumulating groups were not allowed to estimate PiB DVR values less than the non-

accumulating group).  
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2.4.2 Aim 2: Using the GBTM functions and Bayes’ theorem (equation 1, Table 2) to estimate the 

probability of group membership in group “j” for each participant’s most recent scan; two re-weightings 

of the Bayes’ probabilities were applied to up-weight the probability of Group 1 or 2 for low Global PiB 

DVR values in age ranges where the trajectory functions were parallel and close (additional details 

described in supplement). Trajectory group membership was assigned as the group with maximum 

probability. Agreement between GBTM and Bayes’ theorem derived trajectory group assignments was 

examined using Kappa statisics33. 

2.4.3 Aim 3: After observing strong agreement between PiB trajectory group assignment methods, the 

Bayes’ theorem approach was applied to all 257 participants to ascertain the probability of group 

membership and group assignment based on their Global PIB DVR at their most recent scan. A+ age was 

then estimated for each participant using a probability weighted average of the A+ ages of the trajectory 

groups (Table 2, equation 2). Amyloid chronicity was then calculated for each PET scan as the age at scan 

minus the estimated A+ age (Table 2, equation 3). By this convention, positive chronicity indicates the 

estimated duration of PIB(+) whereas negative chronicity indicates the person was PIB(-) at the time of 

the scan. Global PiB DVR was then modeled as a function of amyloid chronicity (including linear and 

quadratic chronicity terms). This function was used to estimate the time duration from the 10th and 90th 

PiB DVR centiles of the accumulating groups to the PiB(+) threshold to enable comparisons of 

amyloidosis duration with this method and sample to other studies. 

2.4.4 Aim 4: We used linear mixed effects (LME) models to examine whether amyloid chronicity at 

baseline PACC-3 modified longitudinal PACC-3 scores (random intercept and age-related slope; 

unstructured covariance; n=254 after excluding one participant with multiple sclerosis and two missing 

PACC-3 scores). Fits of the base model (covariates of sex, WRAT3, practice, age, age2) were compared 

with a model that included amyloid chronicity and its interaction with age and age2. After observing 

better model fit (lower corrected Akaike Information Criteria (AICc) statistics 34) for the latter model and 
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significant interactions, we depicted the effects of amyloid chronicity on cognitive trajectories by 

plotting age trajectories for amyloid chronicity values that represented mean chronicity at PACC-3 

baseline in each of the four PiB trajectory groups.  

In secondary analyses, we used logistic regression to examine whether concurrent amyloid 

chronicity and age were associated with increased risk of abnormal cognition at most recent visit using 

three definitions of abnormal (progression to clinical impairment, abnormal relative to internal cross-

sectional norms, and abnormal relative to longitudinal norms; see supplemental materials).  

We used regression to compare age and amyloid chronicity at MK-6240 scan, PIB(+/-) status, 

and PIB DVR as predictors of entorhinal cortex MK-6240 SUVR. In separate models for each continuous 

predictor (age and amyloid chronicity), we began with cubic polynomial terms with the plan of 

sequentially removing non-significant highest order terms. To estimate how the PiB trajectory groups 

differed in terms of increase in MK-6240 per year of amyloid chronicity, we also used output from a 

model including a PiB trajectory group*chronicity interaction. 

Sensitivity analyses were performed for all outcomes, substituting PiB(+/-) status and PIB DVR 

for amyloid chronicity and comparing AICc model fit statistics across otherwise identical models and 

consider |ΔAICc| values <2 to represent comparable models34.   

3. RESULTS 

3.1 Aim 1.  In the subset used for GBTM (n=171), mean(sd) age at first scan was 61.1(6.1) [range 46.9 – 

78.9] with mean(sd)=5.8(2.0) years between first and last scan. Thirty-seven(21.6%) were PIB(+) for at 

least one scan, 114(66.7%) were female, 162(94.7%) non-Hispanic Caucasian, 70(40.9%) APOE4 carriers, 

and 124(72.5%) had a parental history of AD-dementia.  

GBTM identified four age-defined PIB trajectory groups. Mean and median probabilities of 

group membership exceeded 70% in each group (indicating support for the four group solution). GBTM 
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assigned 125(73.1%) to a non-accumulating group (Group 1), 21(12.3%) to a latest accumulating group 

(Group 2), 14(8.2%) to the middle accumulating group (Group 3), and 11(6.4%) to the earliest 

accumulating group (functions defining Groups 1-4 are Equations 4-7, respectively, in Table 2).  Group 

functions and observed data are shown in Figure 1a. 

Solving equations 5-7 yielded estimated ages of PiB(+) of 71.3, 61.6, and 50.6 years for groups 2-

4, respectively. Group 1 indicated an intercept only model that was below the PIB(+) threshold. 

Therefore, we estimated age of PiB(+) as age at PET scan plus life expectancy from a gender-specific life 

expectancy table (https://www.dhs.wisconsin.gov/stats/life-expectancy.htm; accessed 7/23/2019); this 

resulted in mean(sd) estimated age PiB(+) for group 1=88.0(2.2).  

3.2 Aim 2. We observed strong agreement between PiB trajectory group assignment using GBTM 

(longitudinal scans) vs using trajectory group functions and Bayes’ theorem (only most recent scan in the 

GBTM set). Specifically, 160/171 group assignments agreed (93.6% agreement; Simple Kappa 

statistic=0.86, 95% CI=0.78-0.94) with perfect agreement in groups 3 and 4. GBTM and Bayes’ theorem 

derived group membership probabilities were highly correlated (Spearman, 0.87 for 160 concordant 

cases, 0.87 including 11 discrepancies; see supplement for details of discrepant cases). For all 

subsequent analyses, group membership based on Bayes’ theorem and most recent PIB scan is used.  

3.3 Aim 3. Using the Bayes’ theorem approach we obtained group membership probabilities for all 257 

participants, including 86 not included in GBTM modeling, which was used to assign PIB trajectory group 

membership (sample characteristics in Table 1). Equations 2 and 3 (Table 2) were then used to estimate 

amyloid chronicity for all participants based on their last PIB scan.  

The four trajectory groups did not differ in terms of baseline PACC-3 performance, WRAT-III reading, 

years of education, race, or sex, but did differ in amyloid chronicity at most recent scan, parental history 

of AD and APOE4 carriage. Follow-up pairwise comparisons among trajectory groups showed more 
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APOE4 carriage in each of the accumulating groups compared to group 1 and more parental history of 

AD in group 4 (the earliest accumulating group) compared to group 1. 

Plots depicting PiB DVR vs chronicity and chronological age are shown in Figure 1 (1b 

longitudinal plots for the GBTM subset; 1c and 1d plotted cross-sectionally using most recent PIB). 

Chronicity and most recent PIB DVR were highly correlated (Pearson r=0.895) with a quadratic model 

indicating a good fit for chronicity predicting PIB DVR (R2=0.945 for all 257 participants, R2=0.931 

including only groups 2-4, Table 2 equations 8 and 9, respectively). Using equation 9, we estimated it 

would take 10.0 years to go from PiB DVR=1.12 (10th centile of accumulating groups) to PiB(+), and 

another 17.7 years to reach PIB DVR=1.71 (90th centile of accumulating groups).  

3.4 Aim 4. 

3.4.1 Cognition: LME models of longitudinal PACC-3 showed better fit after adding the amyloid 

chronicity terms to the model including covariates and age terms (ΔAICc decrease =-25.2). Interaction 

effects are depicted in Figure 2 for values representing mean amyloid chronicity at baseline PACC-3 in 

each of the PiB trajectory groups. In sensitivity analyses, substituting PiB(+/-) status for amyloid 

chronicity also resulted in better fit (ΔAICc =-12.8) relative to base model, but not as good a fit as using 

chronicity (ΔAICc =-12.5 model with amyloid chronicity AICc minus model with PiB(+) AICc). 

 Logistic regression showed a consistent pattern of statistically significant risk of abnormal 

cognitive status associated with amyloid chronicity but not age where abnormal cognitive status was 

defined relative to clinical criteria and internal norms35. Odds ratios and CIs for age and amyloid 

chronicity are shown in Figure 3 for each of these outcomes.  Compared to those who did not progress 

to MCI/AD (n=238), those who progressed (n=16) were on average 4.8(6.2) years older at their most 

recent cognitive assessment, but were estimated to be amyloid positive for 15.5(12.5) years longer. 

Similarly, age and amyloid chronicity were 0.93(6.2) and 11.2(12.6) years higher in those below (n=27) vs 
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above (n=218) the cross-sectional internal norms cut-off; and age and PiB chronicity were 2.8(6.2) and 

11.2(12.6) years higher in those below (n=28) vs above (n=217) the longitudinal internal norm cut-off. 

Sensitivity analyses substituting PIB(+/-) status for chronicity indicated worse fit statistics for all 

cognitive outcomes (ΔAICc range = -6.2 to -8.4) compared to chronicity. Substituting last PIB DVR for 

chronicity indicated chronicity was a better fit for predicting MCI/AD and abnormal cross-sectional 

norms (ΔAICc’s= -3.1 and -3.3, respectively) but not for abnormal longitudinal norms (ΔAICc=2.8).  

3.4.2 Entorhinal Tau: One-hundred ninety-eight participants (77%) also underwent MK-6240 PET scans 

(mean(sd) of 0.10(0.32) years between last PiB and MK-6240 scans; mean(sd) age at MK-6240 

scan=67.6(6.4)). Amyloid chronicity at time of MK-6240 differed between all PiB trajectory groups in a 

stepwise manner (Table 1). Mean entorhinal MK-6240 SUVR was near one for groups 1 and 2, increased 

stepwise for groups 3 and 4, and indicated significant group differences (p = 0.0004; groups 1&2 differed 

from groups 3&4). Only the linear age term was a significant predictor of entorhinal cortex MK-6240 

SUVR; in a separate model, all terms in the cubic amyloid chronicity polynomial model were significant 

predictors of entorhinal cortex MK-6240 SUVR (Figure 4; ΔAICc chronicity – age models = -120.7). 

Including the trajectory group term and its interaction with chronicity in the model indicated that MK-

6240 SUVR values were 1.1, 3, and 10.6 times higher for the amyloid accumulating groups (i.e. groups 2-

4, respectively) compared to the non-accumulating group (i.e. group 1; interaction p-value <.0001; ΔAICc 

chronicity polynomial – group*chronicity interaction model = -6.5).  

Sensitivity analyses replacing chronicity with PiB(+/-) status indicated PiB(+/-) status was also a 

significant predictor of MK-6240 entorhinal cortex SUVR, although it was a weaker predictor than 

chronicity (Figure 4; ΔAICc chronicity – PiB(+) models=-81.5). Replacing amyloid chronicity with Global 

PiB DVR yielded models with similar fit (ΔAICc chronicity – Global PiB DVR models = -1.3).  

4. DISCUSSION 
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This work demonstrates a novel application of group-based trajectory modeling and Bayes’ theorem 

to identify amyloid trajectory groups with respect to chronological age and to estimate the age of 

amyloid positivity within groups and individuals, and thereby the time duration of exposure to 

pathologic beta-amyloid (i.e., amyloid chronicity). This methodology was applied to investigate 

differences between trajectory groups, and relationships between amyloid duration, chronological age, 

PET measured neurofibrillary tangles, and cognitive trajectories of initially cognitively unimpaired 

persons. Among the key findings was that the estimated duration of amyloid positivity (i.e. amyloid 

chronicity) maintained information about dichotomous amyloid status while simultaneously preserving 

information about the severity of amyloidosis. In addition, this approach provided insights regarding the 

heterogeneity of amyloid accumulation trajectories with respect to age that become homogeneous 

when reordering the time-axis to reflect the estimated duration of amyloidosis. 

4.1 Beta-amyloid modeling and rates of accumulation 

Previous studies have used several different approaches and cohorts to model amyloid trajectories with 

respect to age and amyloid biomarker levels1,14,16,36,37. These studies suggest that individuals in the AD 

continuum begin accumulating beta-amyloid at different ages, but experience similar rates of amyloid 

accumulation for a given level of amyloidosis. In agreement with these studies the GBTM results suggest 

there exist subgroups of amyloid accumulators that differ in the age of PET detectable amyloidosis 

onset, but the rates of amyloid accumulation with respect to time of amyloid onset are similar across 

individuals. This was demonstrated in this study by plotting the longitudinal amyloid data along the time 

axis realigned for duration of amyloid positivity and observing the similarity in slopes across subjects 

with similar durations of estimated amyloid positivity. The shape of this data was also consistent with 

the early portion of the beta-amyloid biomarker model of Jack and colleagues (Jack 2013). However, we 

did not observe evidence of a slowing of the accumulation rate, which was potentially due to the sample 

being younger and primarily asymptomatic and therefore earlier in the Alzheimer’s disease continuum 
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compared to other studies. Further work adding new longitudinal cases will be needed to examine to 

what extent the homogeneity in this curve is maintained in the presence of new longitudinal scans not 

used to fit the initial trajectory functions. 

4.2 Chronology of beta-amyloid relative to tau and cognitive decline  

Understanding the chronology of AD biomarkers and their prognostic value is important for 

contextualizing studies relating AD biomarkers to symptomology and other disease outcomes, and for 

clinical trial design. Previous studies have proposed different methods for obtaining metrics reflective of 

disease state1,3,16,36–38. In contrast to those methods, the approach in this study uses fewer model 

parameters and less complex model functions. Further, the relative timing between chronological 

events is not affected by the positivity threshold, the output (time duration) is easily interpretable, and 

estimates can be obtained from a single cross-sectional PET scan once the group model is trained. A 

criticism of this approach is that amyloid chronicity is highly correlated with DVR estimates (r=0.90). 

However, by recasting the magnitude of amyloid elevation along the time dimension, a number of 

important questions become contextualized and more readily addressable, including determining the 

effect of putative risk/resilience factors (e.g. hypertension, physical activity) on the onset of AD 

amyloidosis and or AD-associated cognitive decline. 

As initial proof-of-concept, the relationships between the estimated amyloid chronicity (i.e. 

duration of amyloid positivity) and markers of tau pathophysiology and cognition were investigated in a 

late middle-aged, mostly asymptomatic sample. These analyses suggested that those who were amyloid 

positive for a greater length of time at cognitive baseline exhibited faster rates of cognitive decline 

during the 7.2 years of cognitive follow-up, and that persons who developed clinical levels of cognitive 

impairment were estimated to have been A+ for a mean of 15 years longer than those who did not 
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convert to clinical impairment. These intuitive results may partly explain why some studies demonstrate 

a relationship between A+ status and cognition during the preclinical stage, whereas others do not.8,39–41  

Similar to relationships with cognition, models including chronicity to explain entorhinal tau 

tangles improved model fits compared to models with age alone or dichotomous amyloid status. 

Further, these results suggested a time-lapsed relationship wherein tangles were detectable several 

years after the pathologic beta-amyloid. In agreement with previous studies, these results support the 

hypotheses that the level of amyloid tracer binding is reflective of the cumulative process of 

amyloidosis, and that markers of AD pathophysiology and cognition follow a temporal hierarchy. In 

addition, these results support previous findings that suggest age is a risk factor for pathophysiology and 

cognitive decline in AD, but age itself is not a robust predictor of amyloidosis, entorhinal tangles and 

thereby Alzheimer’s disease state.  

The major contribution of this “proof of concept” study is that the trajectory of amyloid 

accumulation, age of amyloid positivity, and its chronicity can be estimated and used to describe the 

disease course of amyloidosis. Study limitations include the following. WRAP is a volunteer cohort with 

over-sampling of participants with a parental history of AD; this results in higher AD-risk characteristics 

than in the general population. Additionally, the sample is younger and more cognitively intact 

compared to other longitudinal studies of amyloid accumulation; thus, it is unlikely that our exact 

equations and parameters will generalize to other radiotracers and study samples. As such, replication 

of this method in different cohorts is needed to determine to what extent this approach is generalizable. 

If replicable, estimates of amyloid onset and chronicity, such as described here, should be examined in 

other research contexts to better understand the impact of treatments, preventative measures, and 

resilience factors during the preclinical phase of AD.    
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TABLES 

Table 1 – Sample characteristics, overall and by PiB Trajectory Group 

 

Table 2 – Equations.  

 

(Tables are in a separate file) 
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FIGURE CAPTIONS 

Figure 1. For all panels, gray indicates Group 1 (non-accumulators), red=Group 2, green=Group 3, 
blue=Group 4. Horizontal line indicates PiB(+) threshold (Global PiB DVR=1.2). a) Spaghetti plot of 
individual trajectories in set of 171 used in GBTM (thin lines) with 4 group functions identified by GBTM 
superimposed on the figure (thick lines; equations 4-7 in Table 2). b) Spaghetti plot of individual 
trajectories in set of 171 realigned vs amyloid chronicity. c) Scatter plot of most recent Global PiB DVR vs 
chronological age in expanded set (171 original = circles, 86 new people = dots; colors indicate trajectory 
group). d) Scatter plot of most recent Global PiB DVR vs amyloid chronicity in expanded set (coding same 
as above). 

 

Figure 2. Interaction plot from LME of PACC-3. Lines depict age trajectories for PiB chronicities of -28, -
11, -1 and 8 (these values are the mean PiB chronicity at baseline PACC-3 of Groups 1-4, respectively).  
Dots indicate observed PACC-3 values. Predicted PACC-3 ≈ -0.3658 + -0.4304*Male + 
0.0291*c100_WRAT3 + 0.1142*Practice +-0.09149*c65_age + -0.00182*PiB chronicity + -
0.00305*c65_age2 + -0.00156*c65_age*PiB chronicity + -0.00010* age2*PiB chronicity  (and random 
person-level intercepts and age slopes); c100_WRAT3 indicates WRAT3 reading standard score, 
centered at value of 100 and c65_age indicates age centered at 65. 

 

Figure 3. Forest plots of OR’s with various outcomes indicating abnormal at last cognitive assessment. 
The top pair of variables indicates odds ratios (OR’s) and their 95% CI’s for predicting progression from 
Cognitively Unimpaired to MCI or Dementia (cognitive statuses determined by consensus conference as 
described in20). The middle pair of variables show OR’s and CI’s for predicting an abnormal PACC-3 score 
at the most recent cognitive assessment according to internal demographically-adjusted cross-sectional 
norms (i.e., <= 7th centile, or ~1.5 SD or more below expected). The bottom pair of variables show OR’s 
and CI’s for predicting an abnormal change in PACC-3 score at the most recent cognitive assessment 
according internal longitudinal norms (i.e., <= 7th longitudinal centile). 

 

Figure 4. Entorhinal cortex SUVR: 4a) chronological age vs MK SUVR (model reduced sequentially from 
cubic polynomial to model including only linear age term);  4b) PiB chronicity vs MK SUVR (all three time 
terms in cubic polynomial were significant). Colors indicate PiB trajectory group (gray=non-
accumulators, red=Group 2, green=Group 3, blue=Group 4). 
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Table 1 – Sample characteristics: Overall and by PiB Trajectory Group 

 Overall Group 1 Group 2 Group 3 Group 4   

 n n(%) n(%) n(%) n(%) p-value* differing pairs 

 257 178(69.3) 39(15.2) 21(8.2) 19(7.4)   
PACC3 Baseline age, mean(sd)†       59.1(6.2) 58.3(6.6) 61.3(5.3) 60.8(4.6) 59.1(4.5) 0.025 1 vs 2 
PACC3 follow-up years, mean(sd)† 7.2(2.3) 7.2(2.1) 6.4(2.8) 8.0(2.0) 7.4(2.5) 0.064  
PACC3 Baseline performance, mean(sd)† 0.055(0.75) 0.08(.75) -0.10(0.79) 0.04(0.73) 0.13(0.66) 0.55  
WRAT-3 Reading, mean(sd) 107.0(9.1) 106.8(9.5) 107.6(8.1) 105.5(9.2) 108.6(7.5) 0.71  
Years of Education, median [Q1-Q3] 16 [14-18] 16 [14-18] 17 [14-18] 17 [16-17] 17 [14-18] 0.68  
Female, n(%) 175(68.1) 125(70.2) 22(56.4) 13(61.9) 15(79.0) 0.25  
Parental history of AD, n(%) 181(70.7) 118(66.7) 30(76.9) 15(71.4) 18(94.7) 0.044 1 vs 4 
APOE ɛ4 carrier, n(%) 103(40.2) 55(31.2) 19(48.7) 16(76.2) 13(68.4) <.0001 1 vs 2-4 
non-Hispanic Caucasian, n(%) 241(93.8) 167(93.8) 36(92.3) 21(100.0) 17(89.5) 0.52  

        
PiB age first scan, mean(sd) 62.1(6.6) 61.4(6.9) 64.2(6.2) 64.1(4.7) 62.7(5.5) 0.050 1 v 2 
PiB age at most recent scan, mean(sd) 66.4(6.7) 65.6(7.1) 68.3(5.9) 69.1(4.9) 66.9(4.8) 0.028 1 vs 2-3 
PiB Chronicity at most recent scan, 
mean(sd) -12.9(13.1) -20.2(4.8) -4.4(7.6) 7.2(5.4) 15.9(5.0) <0.0001 all pairs 

PiB(+)‡, n(%) 55(21.4) 1(0.6) 16(41.0) 20(95.2) 19(100.0) <0.0001 
1 vs 2-4; 2 vs 3-

4  

        
MK-6240 PET subset (n=198) 198 136(68.7) 30(15.2) 16(8.1) 16(8.1)   
Age at MK-6240 scan, mean(sd) years 67.6(6.4) 66.7(6.8) 70.0(4.7) 70.1(4.8) 67.4(5.1) 0.025 1 vs 2-3 
Time between PiB and MK, mean(sd) 
years 0.099(0.32) 0.089(0.32) 0.17(0.38) 0.089(0.34) 0.055(0.15) 0.58  
PiB Chronicity at MK-6240 scan, 
mean(sd) -11.8(13.3) -19.6(4.5) -2.5(6.4) 8.3(5.1) 16.5(5.3) <.0001 all pairs 

Entorhinal Cortex SUVR, median [Q1-Q3] 
1.01 [0.92 - 

1.12] 
0.99 [0.91-

1.09] 
1.02 [0.92 - 

1.12] 
1.21 [0.96 - 

1.51] 
1.47 [1.00 - 

2.02] 0.0004 1-2 vs 3-4 

*Statistical tests: Chi-square or Fisher's exact for categorical; ANOVA for continuous where mean(sd) reported; Kruskal-Wallis for continuous where median 
[Q1-Q3] reported. Post-hoc pairwise group differences at unadjusted p<.05 noted in right-hand column. For example 1 vs 2, 3 indicates group 1 differed from 
group 2 and group 3 in separate pairwise comparisons. 

† PACC3 n=254 
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‡ PiB(+) defined as Global PiB DVR maximum of any scans >=1.2. The Group 1 PiB(+) participant was PiB negative as of his/her most recent scan with Global 
PiB DVR's of 1.20, 1.17, and 1.13 at ages 66, 68, and 72, respectively.  
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Table 2 – Equations 

Equation # Equation 
1 Pr(Membership in Group J) = Pr(Group J|Observed PiB) = Pr(Group J)*Pr(Observed PiB|Group J)/Pr(Observed PiB) 

  

2 
age PiB(+) ≈ Pr(Membership in Group 1) *Group 1 Age + Pr(Membership in Group 2)*71.3 + Pr(Membership in Group 
3)*61.6 + Pr(Membership in Group 4)*50.6  

  
3 PiB chronicity (at time of PiB scan) ≈ Age at PiB scan - age PiB(+) 

  
4 Group 1 Global PiB DVR ("PiB") ≈ 1.0571 

  
5 Group 2 PiB ≈ 1.1219 + 0.00941*c65_age + 0.00049*c65_age2 

  
6 Group 3 PiB ≈ 1.2835 + 0.02572*c65_age + 0.00012*c65_age2 + -0.00005*c65_age3 

  
7 Group 4 PiB ≈ 1.6370 + 0.03789*c65_age + 0.00052*c65_age2 

  
8 Global PiB DVR ≈ 1.233 + 0.0186*PiB Chronicity + 0.000444*PiB Chronicity2 

  
9 Global PiB DVR ≈ 1.225 + 0.0166*PiB Chronicity + 0.000612*PiB Chronicity2 

Equation 1 notes: Pr(Group J) = proportion assigned to each group via GBTM ( for j=groups 1-4, respectively). Pr(Observed PiB|Group J) was 
obtained by getting the mean(sd) residual for all scans of people assigned to group J and using these values to convert residuals for group J to z-
scores. We then used the normal distribution to obtain the probability of observing a residual as or more extreme than that one relative to 
Group J. Similarly, Pr(Observed PiB) was calculated as the probability of observing a Global PiB DVR as or more extreme than the observed PiB. 
Post-Bayes' theorem re-weightings for two conditions are described in supplemental materials. 

Equation 2 notes: "Group 1 Age" is the estimated life expectancy given participant's sex and current age.  

Equation 3 note: In general, PiB chronicity at any assessment of interest = Age at the assessment of interest minus estimated age PiB(+) 
Equations 4-7 notes: "c65_age" indicates age centered at age 65. 
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PiB Trajectory Group
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Figure 1
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Figure 2
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Figure 3
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Figure 4

4a 4b

PiB Trajectory Group
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