
 
 

1 

A decade of epigenetic change in aging twins: genetic and environmental 
contributions to longitudinal DNA methylation 

Chandra A. Reynolds [1]*, Qihua Tan [2], Elizabeth Munoz [1]a, Juulia Jylhävä [3],  Jacob 

Hjelmborg [2], Lene Christiansen [2,4], Sara Hägg [3], and Nancy L. Pedersen [3] 

 

[1] University of California, Riverside, USA 

[2] University of Southern Denmark, Odense, Denmark  

[3] Karolinska Institutet, Stockholm, Sweden  

[4] Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark 

a now at University of Texas at Austin, USA 

 

* Corresponding author: Chandra A. Reynolds, Department of Psychology, University of 

California Riverside, Riverside, CA, 92833 USA; Chandra.Reynolds@ucr.edu 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/778555doi: bioRxiv preprint 

https://doi.org/10.1101/778555


 
 

2 

Summary/Abstract 

Background. Epigenetic changes may result from the interplay of environmental exposures and 

genetic influences and contribute to differences in aging outcomes. However, the etiologies 

contributing to stability and change in DNA methylation have rarely been examined 

longitudinally.  Methods. We considered DNA methylation in whole blood leukocyte DNA 

across a 10-year span in two samples of same-sex aging twins: (a) Swedish Adoption Twin Study 

of Aging (SATSA; N = 53 pairs, 53% female; 62.9 and  72.5 years, SD=7.2 years); (b) Longitudinal 

Study of Aging Danish Twins (LSADT; N = 43 pairs, 72% female, 76.2 and 86.1 years, SD=1.8 

years).  Joint biometrical analyses were conducted on 359,399 methylation probes in common. 

Bivariate twin models were fitted, adjusting for age, sex and country. Results. Overall, results 

suggest genetic contributions to DNA methylation across 359,399 sites tended to be small in 

effect size and lessen across 10 years (broad heritability M=23.8% and 18.1%) but contributed 

to stability across time while person-specific environmental influences explained emergent 

influences across the decade. Aging-specific sites identified from prior EWAS and methylation 

age clocks were more heritable than background sites (1.1 to 2.8-fold higher).   The 5,172 sites 

that showed the greatest heritable/familial influences (p<1E-07) were enriched for immune and 

inflammation pathways and neurotransmitter transporter activity pathways. Conclusions. 

Across time, stability in methylation is primarily due to genetic contributions, while novel 

experiences and exposures contribute to methylation differences. Elevated genetic 

contributions at age-related methylation sites suggest that adaptions to aging and senescence 

may be differentially impacted by genetic background. 
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Key messages 

• Individual differences in late-life methylation are due partly to genetic influences which 

contribute to stability in methylation patterns across late life. 

• Environmental experiences unique to individuals contribute to new influences on 

methylation patterns across late life. 

• Age-related CpG sites show greater heritable influences on methylation consistent with 

genetic regulation of biological aging rates.  
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Introduction 

The functional profiles of genes are not static and vary across time, and indeed across the 

lifespan, in part as a result of different environmental exposures and contexts (1-6). Measurable 

gene-environment dynamics for behavioral traits are possible due to advances in biotechniques 

for global epigenetic profiling at, e.g. specific methylation sites in the human genome. Epigenetic 

changes may be critical to the development of complex diseases, accelerated aging, or steeper 

declines in cognitive and physical functioning with age (1).  Understanding epigenetic changes 

over time in the elderly may identify pathways of decline or plasticity (e.g., maintenance or even 

boosts in functioning) during the aging process and help with elucidating the biology of aging and 

survival.  

Epigenetic modifications resulting in altered gene expression may occur due to a number 

of processes, including direct methylation of DNA (7). DNA methylation results from nongenetic 

(i.e., epigenetic) processes that may arise due to prenatal or early life exposures or at later points 

in development (8, 9). DNA methylation is characteristically produced by the addition of a methyl 

group to the DNA molecule cytosine within cytosine-guanine dinucleotides (CpGs), estimated at 

28 million sites across the human genome (10). Dense regions of CpGs referred to as ‘islands’ and 

represent about 5% of CpGs occurring in the genome (about 20,000 total) and often reside in 

promotor regions (11); in addition, surrounding ‘shores’ and ‘shelves’ to these islands are of 

interest and may be differentially methylated compared to islands (4).  The addition of 

methylation tags to CpG sites alters gene expression, typically by interfering with or silencing 

gene transcription although upregulation of gene expression has been documented (12), and 
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may differentially occur in cells across multiple tissue types including brain, muscle and 

leukocytes (13). Methylation tags can be removed as a consequence of exposures as well, leading 

to dynamics in expression across time (9).  

Although epigenetic variation is largely attributed to environmental factors, there is 

evidence for genetic contributions to variation in methylation across the epigenome (5, 6), with 

an average of 16.5 – 18.0% across sites in the Illumina 450k chip array from whole blood and 

common environmental influence of 3 to 16.7%, with stronger evidence of common environment 

in young adulthood (6). 

Epigenetic changes may accelerate over time and potentiate the development of health 

and aging conditions earlier in life. Indeed, methylation is correlated with age (5, 14), is used to 

define biological clocks that may more closely track biological aging (15), and is associated with 

mortality (16) and a number of physical and neuropsychiatric health traits (1, 9). Longitudinal 

studies of twins represent a valuable approach to evaluate genetic and environmental 

contributions to stability and change in methylation across the methylome (17). Investigations of 

etiological contributions have relied primarily on cross-sectional data (5, 6) and have addressed 

age-related differences (5) but not change.  We evaluate DNA methylation across a 10-year span 

in two Scandinavian samples of same-sex aging twins to evaluate the heritable and 

environmental contributions to stability as well as emergent influences on methylation at 

individual CpG sites across the methylome. Moreover, we examine whether surrounding ‘shores’ 

and ‘shelves’ may be differentially methylated compared to islands, and, whether epigenome-

wide association study (EWAS) sites identified for aging and individual CpG clock sites are 

differentially heritable. 
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Methods 

Sample. We considered DNA methylation across a 10-year span in 96 pairs of same-sex aging 

twins (40 monozygotic, MZ pairs;  56 dizygotic, DZ pairs).   Across the two samples, the average 

age at time 1 was 68.89 years (SD=8.58) and at time 2 was 78.59 years (SD=8.70). Specifically, 

the Swedish Adoption Twin Study of Aging (SATSA) included 53 pairs (22 MZ, and 31 DZ pairs; 

53% female), selected with measurements about 10 years apart (range = 8.00 to 11.82 years) at 

ages  62.9 and 72.5 years at time 1 and time 2 respectively (SD=7.2). The Longitudinal Study of 

Aging Danish Twins (LSADT) included 43 pairs (18 MZ, and 25 DZ pairs; 72% female) at ages 76.2 

and 86.1 years at time 1 and time 2 (SD=1.8).  

Materials. Methylation measurements from the Illumina HumanMethylation450 array 

(Illumina, San Diego, CA, USA) were preprocessed and normalized with adjustments for cell 

counts and batch effects. Processing of the SATSA sample probes has been described previously 

(18, 19)  and in brief included: (a) preprocessing with the R package RnBeads (20) where 

filtering of samples and probes proceeded with a greedy-cut algorithm maximizing false 

positive rate versus sensitivity at a detection p-value of 0.05; (b) removal of sites that overlap 

with a known SNP site or reside on sex chromosomes;  (c) normalization of data using dasen 

(21); (d) applying a Sammon mapping method (22) to remove technical variance; (e) adjustment 

for cell counts (23); (f) correction for batch effects using the ComBat approach in the sva 

package (24).  

Processing of the LSADT data has described previously and in brief included (25): (a) 

preprocessing with the R-package MethylAid (26) where samples below quality requirements 
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were excluded and probes with detection p-value>0.01, no signal, or bead count<3 were 

filtered out;  (b) removal of probes with >5% missing values, removal of sites that reside on sex 

chromosomes or cross-reactive probes; (c) normalization and batch-correction using functional 

normalization(27) with four principal components.  

 Although Beta-values are preferred for interpretation of methylation, Beta-value units  

were translated into M-values via a log2 ratio for improved distributional properties for the 

analysis of individual differences (28). After performing the preprocessing steps, 390,894 

probes remained for SATSA and 452,920 CpG sites remained for LSADT.  

 Altogether 368,391 sites were in common across the Swedish and Danish samples. After 

the described QC pre-processing in SATSA, 49 of 53 pairs had methylation data available for 

both members of each pair at both time points, and 4 pairs of 53 where one cotwin had missing 

methylation data at time 1 (3 cotwins) or time 2 (1 cotwin). After pre-processing, LSADT sample 

had methylation data represented for both cotwins among the 43 pairs. 

 Filtering of sites post- analysis. We conducted additional filtering of probes where 

model-fitting results evidenced means or variances outside of expected values. Specifically, we 

filtered based on the typical range of M-values (c.f., 28), with expected mean values falling 

outside the range -6.25 to 6.25 for time 1 for 1232  sites or time 2 for  632 sites. Likewise, we 

filtered based on expected standard deviations exceeding 1.5 (28) resulting in 5122 exceeding 

the threshold for time 1 and 6190 at time 2. The effective reduction is sites was from 368,391 

to 359,399 after dropping 8992 unique sites from the analysis set. 

 Analysis. Bivariate twin models of M-values were fitted, adjusting for centered age 

(centered at the average age across time = age - 74 years), sex (0=males, 1=females), and 
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country (0=Sweden, 1=Denmark). Bivariate ACE and ADE Cholesky models evaluated the degree 

to which additive genetic (A), dominance or non-additive genetic (D), common environmental 

(C), and unique non-shared environmental influences (E) contributed to variation and 

covariation in M-values within and across time (see Figure 1).The resolution of the genetic and 

environmental effects are  done by comparing the relative similarity of monozygotic (MZ) twins 

who share 100% of their genes in common, including all additive effects and dominance 

deviations, versus  dizygotic (DZ) twins who share on average 50% of segregating genes in 

common leading to expectations of 50% for additive effects and 25% of dominance deviations. 

Both twin types are presumed to have the same contribution of common environmental effects 

that contribute to twin similarity. We fitted ADE and ACE models as dominance (D) and 

common environment (C) could not be simultaneously estimated (see Figure 1).  

 Fit comparison between the ACE and ADE models was done via Akaike Information 

Criterion (AIC; (29)). If the fit of the ADE model was as good or better than the ACE model it was 

retained as ‘best’ fitting, and otherwise the ACE model was retained as best.  We evaluated 

submodels including AE, CE and E models. Differences in nested model deviance statistics [-

2ln(L)] are distributed as chi-square (c2) with the difference in the number of parameters 

between the full and constrained models as the degrees-of-freedom (df). LSADT samples 

tended to show lower variability in methylation at any given probe compared to SATSA, hence 

we allowed for scalar differences at each time-point (k1, k2) in variances between the two 

samples (see Figure 1).  Thus, the relative contributions of A,  C or D, and E were equated across 

LSADT and SATSA, but the scalar allowed for the variance components to differ by a constant at 

each assessment.  
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 In comparing relative heritabilities across sites by location, we fitted random effects 

regression models to age 69 and 79 biometrical estimates using lme (version 1.1-21; 30).  We 

allowed for random effects between and within sites, reflecting consistency of effects by CpG 

sites across age and nonsystematic variation across time.  

  Enrichment analyses were conducted using Great 3.0.0 (31). Selected sites were 

mapped to the Human GRCh37 build and default settings were used for association rules  (i.e., 

basal+extension: 5000 bp upstream, 1000 bp downstream, 1000000 bp max extension, curated 

regulatory domains included).  We present results of both binomial and hypergeometric tests 

where the False Discovery Rate (FDR) achieved p < .05 and where fold enrichment (FE) tests 

exceeded 2.0.   

Results 

Broad-sense heritable contributions (A+D, N=359,399) were on average small at age 69 years 

(M = 0.238*100 = 23.8%, time 1) and decreased across 10 years (M = 0.181*100 = 18.1%, time 

2) (see Table 1).   Across time, heritabilities showed divergence by location [ADE best (A+D):  c2 

(5) = 943.871, p = 8.50E-202; ACE best (A): c2 (5) = 562.25, p = 2.88E-119], where islands and  

shelves showed lower heritabilities by about .01 or 1% than opens seas (p = 4.73E-02 to 9.15E-

96)  and shores were the same or higher than opens seas (see Figure 2, Supplemental Table S1). 

At p<1E-07, 5172 or 1.4% of sites showed broad genetic (A, D) or familial effects (A, C) within or 

across time (df = 6), and 36033 or 10.0% of sites met p<1E-02.  

Among the 368,391 sites, 52% of sites showed the better-fitting model was ADE 

(N=187,937) while 48% showed ACE as the better-fitting (N=171,462) (see Table 1, Figure 3). In 

terms of contributions to stability and change in methylation due to genetic or environmental, 
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across 359,399 sites, 58.5% showed cross-time associations at p < .05 (df = 3, where a12=[d12 or 

c12]=e12=0) indicative of stability due either to genetic and/or environmental mechanisms. As 

shown in Figure 3, the cross-time stability was largely due to genetic effects in both the ADE 

best and ACE best models which was most often perfect in correlation. 

Sites in which E explained all of the variability of M-values (>99%) at both time points included 

8,274 total sites (5,525 ADE best, 2,749 ACE best). In all these cases, we observed that either 

the MZ twin correlations of M-values were negative (< 0), or DZ correlations were sufficiently 

negative (< -.05), or the difference between MZ and DZ correlations at each time point were 

sufficiently negative (< -.1). 

Aging-related sites. We evaluated the best-fitting ADE and ACE results of two published 

CpG sets that were identified in EWAS as related to Aging: (I) 1217 sites from Wang et al. (19); 

(II) 1940 sites from Tan et al. (32).  Multilevel regression models compared heritabilities by 

location from the ADE best or ACE best model, fitted to both age 69 and 79  estimates in set I 

[ADE best (A+D):  c2 (5) = 72.86, p = 2.60e-14; ACE best (A): c2 (5) = 49.56, p = 1.71e-09], with 

Islands showing lower heritabilities by .09-.10 or up to a 10% difference than open seas (both p  

< 2.44e-11; see supplemental Table S1). In set II, age 69 and 79  heritability estimates also 

showed divergence by location [ADE best (A+D):  c2 (5) 28.04, p = 3.57E-05; ACE best (A): c2 (5) 

= 35.65, p = 1.12E-06],  with North and South Shores showing higher heritabilities by about .04 

or 4% than open seas (all p < 1.71E-03; see supplemental Table S1). 

Among the Aging set CpG sites, stronger heritable influences were apparent compared 

to the total set with up to 1.7- to 2.8-fold higher broad heritabilities in set I compared to the 

overall respective ADE or ACE best-fit results, and 1.4 to 2.0-fold higher in set II (see 
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Supplemental Table S2). Higher estimates of common environment (C) were also observed at 

1.3 to 1.5-fold higher in the aging sets than the total. 

Available CpG sites from three epigenetic-clocks were evaluated in similar fashion: (a) 

71 sites Hannum clock (33), (b) 353 sites Horvath clock (34), and (c) 513 sites Levine clock(35). 

Among the 776 CpG sites from the epigenetic-clocks, where ADE fit best for 490 CpGs  and ACE 

for 286 sites. When multilevel regression models were fitted to age 69 and 79  estimates, 

Hannum clock sites tended to show stronger genetic and shared environmental contributions 

from .05 to .07, or 5-7%, than Horvath or Levine clock sites when ACE was the better fitting 

model (p < 9.32E-03), but not for ADE (p = 1.48E-01) (see supplemental Table S3).  The ratio of 

Intercept variability to total variability (r) in heritability estimates was .047 for ADE best models 

and .010 for ACE best suggesting 4.7% and 1% of the variation in heritability, respectively, was 

methylation site specific across time though the clear majority of the variation was  unique to 

site and time.  Heritability estimates were 1.1- and 1.3-fold greater than the respective total set 

ADE best and ACE best estimates, respectively (see Supplemental Table S2).  

Enrichment analysis. A set of 5172 CpGs achieving p<1E-07 when evaluating tests of 

heritability (AD vs E; N = 2117) or familiality (AC vs E; N=3055) across time were submitted to 

GREAT 3.0.0 to identify functions of cis-regulatory regions (31). This represents 1.4% of the 

359,399 sites tested.  Specifically, we report the binomial and hypergeometric tests over 

genomic regions covered by the 5172 CpGs, reporting those that achieved region-based fold 

enrichment (FE) > 2 and both binomial and hypergeometric FDR Q-Values < .05 (see Table 2). 

For full ontology results see Supplemental Tables S4 – S6.  The sites that showed the greatest 
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heritabilities showed enrichment in immune and inflammation pathways and neurotransmitter 

transporter activity pathways. 

 

Discussion 

Overall, results suggest genetic contributions to DNA methylation tended to be small and 

decrease across a decade, however, genetic influence mainly contributed to stability of 

methylation.  Unique person-specific influences not shared by co-twins  were emergent across 

10 years suggesting that non-shared environments become more salient to DNA methylation in 

late life. The sites that showed the greatest heritabilities showed enrichment in immune and 

inflammation pathways and neurotransmitter transporter activity pathways. 

Prior studies report average heritabilities of 16.5 – 18.0% across adulthood (17-79 years) (5, 

6), and common environmental influences of 3.0 – 16.7%, with stronger evidence of common 

environment in young adulthood (6). Our results of weakening heritable influences across age is 

consistent with the Dutch cross-sectional study reporting average heritabilities of 21% and 18% 

at ages 25 and 50 assuming an AE model, whereas our estimates of broad heritability under an 

ADE model are 24% and 18% many decades later at age 69 and 79 years, respectively. Where 

non-additive genetic effects fit best, the average broad heritability was 24% across age.  For 

sites where including common environment fit best (ACE), lower average heritabilities  were 

observed at 7% and common environment contributed 10% to variation in methylation across 

age.  

CpG sites related to aging show a greater impact of heritable influences consistent with 

genetic regulation of the rate of biological aging. Sites associated with aging and longevity 
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generally show higher heritabilities than the total background sites, 1.4 to 2.8-fold higher 

values. CpGs related to aging, as well as the total set of CpGs, varied in magnitude of 

heritabilities by location,  where  ‘islands’, which often reside in promotor regions (11), typically 

showed lower heritability than those sites residing in surrounding ‘shores’ and ‘shelves’, which 

have been shown to be differentially methylated compared to islands (4).   

Moreover, the set of methylation clocks sites are likewise appreciably heritable, with the 

Hannum sites 1.1 to 1.9 times more heritable than Horvath and Levine sites.  We have recently 

reported heritability estimates of methylation clock ages of 52% for the Horvath clock and 36% 

for the Levine clock (36), where, consistent with our current site-specific effects, stability across 

time was mediated primarily by genetic factors, whereas the person-specific environmental 

factors contributed to differences across time. The Horvath clock contains 353 CpG sites 

selected as best predictors of chronological age using multiple tissues (34), the Levine clock 513 

sites were selected based on prediction of chronological age and nine biomarkers of phenotypic 

aging and also trained on multiple tissues (35), whereas the Hannum clock’s 71 selected sites 

best predicted age (adjusted for sex, BMI)  based on methylation observed in whole blood. The 

current findings of moderately higher heritabilities in Hannum versus the other clocks may be in 

part due to our use of blood tissue. 

Enrichment analyses of the 1.4% of sites meeting p<1E-07 suggest immune and 

inflammation pathways and neurotransmitter transporter activity pathways may feature in 

sites with strong heritable or familial components. A related study of German and Danish 

individuals (including an overlapping sample of twins herein) evaluating RNA-sequencing 

expression patterns and longevity identified expression patterns in biological processes 
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contributing to immune system and response pathways (37), and observed high heritabilities 

(30-99%) among  20% of cis-eQTLS.   Immunosenescence describes an age-associated decline in 

elderly individuals’ immune functioning, such as mounting less effective responses to vaccines, 

and lowered resistance to illnesses, with concomitant up-regulation of pro-inflammatory 

cytokines, among several other cellular and physiological changes in the immune system (38). It 

has been proposed that heritable factors may be partly associated with differential immune 

responses (39, 40) and may predict influenza-related susceptibility and mortality (41), for 

example,  and, broadly, successful aging  and longevity (39, 40). Hence, differential adaptions to 

aging processes including immunosenescence reflect gene-environment dynamics with some 

individuals showing better adaptions than others due to genetic influences.  

The current study establishes the extent to which the genetic and environmental influences 

contribute to site-specific methylation across a 10-year span in a longitudinal sample of 

Swedish and Danish twins. While stability of methylation was largely due to genetic influences, 

person-specific environmental influences were emergent across time and explained change.  By 

and large, the dynamics of methylation may be influenced by experiences and exposures, 

suggesting possible mediation of gene expression; however, the most heritable sites may 

participate in  immune and inflammation pathways and neurotransmitter transporter activity 

pathways which suggest that adaptions to aging and senescence may be differentially impacted 

by genetic background. 
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Table 1. Variance components at time 1 (69 years) and time 2 (79 years). 

  A1 D1/C1 E1 A2 D2/C2 E2 
Model N sites M SD M SD M SD M SD M SD M SD 
ADE 359,399 0.111 0.142 0.127 0.160 0.762 0.176 0.092 0.126 0.089 0.131 0.819 0.159 
ADE best 187,937 0.058 0.106 0.218 0.168 0.725 0.182 0.048 0.092 0.152 0.149 0.800 0.169 
ACE 359,399 0.151 0.167 0.057 0.083 0.792 0.164 0.109 0.143 0.054 0.080 0.837 0.148 
ACE best 171,462 0.077 0.122 0.106 0.093 0.817 0.150 0.056 0.103 0.099 0.092 0.846 0.137 

Note.  A = Additive genetic, D = Nonadditive genetic (Dominance), C = Common environment, E = Nonshared environment.
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Table 2. GREAT 3.0.0 annotations using binomial and hypergeometric tests over genomic regions covered by the 5172 CpGs 
showing significant heritability/familiality p<1E-07 
 

Bionomial  Hypergeometric 

Gene Ontology (GO) Rank 
Raw P-
Value 

FDR Q- 
Value 

Fold  
Enrichment 

Observed  
Region 

Hits 
Region Set  
Coverage 

 

Rank 
FDR Q- 
Value 

Fold 
Enrichment 

Observed  
Gene Hits 

Total 
Genes 

Gene Set  
Coverage 

GO Molecular Function              
MHC class II receptor activity 1 6.70E-29 2.47E-25 19.1923 31 0.0060  3 5.66E-03 3.4204 11 12 0.0023 
neurotransmitter transporter 

activity 32 8.84E-08 1.02E-05 3.0793 31 0.0060 
 

8 2.35E-02 2.4876 16 24 0.0033 
neurotransmitter: sodium 

symporter activity 54 1.15E-06 7.83E-05 3.0421 26 0.0050 
 

6 1.66E-02 2.7494 14 19 0.0029 
GO Biological Process              
interferon-gamma-mediated 

signaling pathway 13 5.47E-12 4.39E-09 2.6727 65 0.0126 
 

53 1.11E-03 2.0186 33 61 0.0068 
establishment of protein 

localization to plasma 
membrane 39 7.59E-09 2.03E-06 2.5615 49 0.0095 

 

184 3.25E-02 1.9091 22 43 0.0046 
cellular response to interferon-

gamma 46 2.89E-08 6.56E-06 2.0169 75 0.0145 
 

55 1.17E-03 1.8657 41 82 0.0085 
osteoblast development 101 1.01E-06 1.05E-04 2.3813 40 0.0077  132 1.42E-02 2.5530 13 19 0.0027 
Golgi to plasma membrane 

transport 219 3.71E-05 1.77E-03 2.3871 28 0.0054 
 

138 1.57E-02 2.2962 16 26 0.0033 
lens fiber cell development 220 3.78E-05 1.79E-03 2.5893 24 0.0046  108 6.94E-03 3.1094 10 12 0.0021 
GO Cellular Component              
MHC class II protein complex 1 1.82E-36 2.31E-33 16.9778 42 0.0081  1 8.92E-07 3.5349 18 19 0.0037 
MHC protein complex 2 2.40E-32 1.52E-29 10.9766 47 0.0091  2 2.97E-06 3.0403 22 27 0.0046 
integral to lumenal side of 

endoplasmic reticulum 
membrane 4 5.51E-25 1.74E-22 9.1918 40 0.0077 

 

8 8.05E-03 2.4876 16 24 0.0033 
smooth endoplasmic reticulum 123 1.91E-03 1.97E-02 2.1079 20 0.0039  7 5.01E-03 2.8534 13 17 0.0027 

Note. FDR=False Discovery Rate.  
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Figure 1. Bivariate Cholesky model. Note. ACE and ADE models were separately fitted to M-
values at two waves 10 years apart. 
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Figure 2.  Broad-sense heritability by Location (ADE results, 359,399 CpGs) across 10 years  
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  Figure 3. Best-fitting models: ADE  (52%) or ACE (48%)   
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Figure 4. Aging-related CpG Sets: Broad heritability by CpG Location 
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