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ABSTRACT 

The human leukocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the 
intracellular and extracellular protein content to immune cells. Here, we describe the HLA Ligand Atlas, an 
extensive collection of mostly matched HLA-I and -II ligandomes from 225 benign samples (29 tissues, 21 
subjects). The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 89,853 HLA-I- and 140,861 
HLA-II ligands. We observe that the immunopeptidomes differ considerably between tissues and individuals on 
both source protein and HLA-ligand level. 1,407 HLA-I ligands stem from non-canonical genomic regions. We 
highlight the importance of comparatively analyzing both benign and malignant tissues to inform tumor 
association, based on a case study in three glioblastoma patients. The resource provides insights into applied 
and basic immune-associated questions in the context of cancer immunotherapy, infection, transplantation, 
allergy, and autoimmunity. It is publicly available at www.hla-ligand-atlas.org.  
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INTRODUCTION  

In the past two decades, sequencing the human genome 

(genomics) (Lander et al., 2001; Venter et al., 2001), 

transcriptome (transcriptomics) (Melé et al., 2015), and 
proteome (proteomics) (Kim et al., 2014; Uhlén et al., 2015; 

Wilhelm et al., 2014) have been milestones that enable a multi-

dimensional understanding of biological processes. In the 

context of the immune system, a subsequent omics layer can 

be defined as the HLA ligandome or the immunopeptidome, 
comprising the entirety of HLA presented peptides. HLA 

molecules present peptides on the cell surface for recognition 

by T cells. These T cells can distinguish self from foreign 

(Rammensee et al., 1993a, 1993b) peptides, a crucial 
mechanism in adaptive immunity. Despite HLA-I ligands 

originating primarily from intracellular proteins, the correlation 

with their precursors (mRNA transcripts and proteins) is poor 

(Fortier et al., 2008; Schuster et al., 2017; Weinzierl et al., 2007), 

limiting approaches based on in silico HLA-binding predictions 
in combination with transcriptomics and proteomics data alone 

(Boegel et al., 2019; Finotello et al., 2019). 

The importance of investigating HLA ligandomes from human 

healthy and diseased tissues has been well recognized (Caron 

et al., 2017; Faridi et al., 2018; Vizcaíno et al., 2020) to improve 
HLA-binding prediction algorithms (Abelin et al., 2019; Bassani-

Sternberg et al., 2017; Racle et al., 2019; Reynisson et al., 

2020), and immunogenicity prediction analysis (Brown and Holt, 

2018; Calis et al., 2013), but also, to inform precision medicine 
(Freudenmann et al., 2018; Fritsche et al., 2018; Löffler et al., 

2019). Direct evidence of naturally presented HLA ligands is 

required to prove visibility of target peptides to T cells. This is a 

challenge, for example, in the context of cancer immunotherapy 

approaches that aim to identify optimal tumor-specific HLA-
presented antigens (Bassani-Sternberg et al., 2016; Hilf et al., 

2019; Löffler et al., 2019). While their discovery has been made 

possible by proteogenomics approaches, a major impediment 

still resides in the lack of benign tissues as a reference for the 

definition of tumor specificity of target peptides (Chong et al., 
2020; Laumont et al., 2018; Schuster et al., 2017). Due to the 

scarce availability of benign human tissue ligandomes, common 

alternative strategies are based on transcriptomic datasets 

either from the same patient, or from multiple tissues extracted 

from publicly available repositories (Ardlie et al., 2015; Melé et 

al., 2015). Frequently, morphologically normal tissue adjacent to 

the tumor (NATs, normal tissues adjacent to tumor) is used as 
a control in cancer research. However, NATs have been shown 

to pose unique challenges, since they may be affected by 

disease and have been suggested to represent a unique 

intermediate state between healthy and malignant tissues, with 

a pan-cancer-induced inflammatory response (Aran et al., 
2017). Additionally, for some malignancies e.g. of the brain, 

surgical resection of NATs is inadmissible. Even in cancers that 

allow for the extraction of NATs, it is still necessary to investigate 

the presence of potential tumor-associated targets (TAAs) on 
other tissues to anticipate on-target/off-tumor, systemic adverse 

events when administering immunotherapies to patients 

(Cameron et al., 2013; Linette et al., 2013). 

In this study we thus employed tissues originating from research 

autopsies of subjects that have not been diagnosed with any 
malignancy and have deceased for other reasons, an approach 

previously described as a surrogate source of benign tissue 

(Aran et al., 2017; Iacobuzio-Donahue et al., 2019). Although 

these tissues were affected by a range of non-malignant 

diseases, we designate their tissues as benign to emphasize 
morphological normality and absence of malignancy. This 

definition of benign is in agreement with the definition used by 

the Genotype-Tissue Expression Consortium (Ardlie et al., 

2015; Melé et al., 2015), which provides RNA sequencing data 
of benign tissues originating from autopsy specimens. 

We performed a large-scale mass spectrometry (LC-MS/MS)-

based characterization of both HLA-I and -II ligands providing 

data from benign human tissues obtained at autopsy. The HLA 

Ligand Atlas is a first draft of a pan-tissue immunopeptidomics 
reference library from benign tissues comprising for the first time 

225 mostly paired HLA-I (198) and -II (217) ligandomes from 29 

different benign tissue types obtained from 21 human subjects. 

For the data analysis, we employed MHCquant (Bichmann et 

al., 2019), the first open-source customized computational tool 
for immunopeptidomics assays that provides database search, 

false discovery rate (FDR) scoring, label-free quantification and 

binding affinity predictions. In addition, we implemented a user-

friendly, web-based interface to query and access the data at 
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https://hla-ligand-atlas.org. Despite its unprecedented 

comprehensiveness, the HLA Ligand Atlas currently contains 

only a limited number of tissues and individuals. However, it has 

been designed as an open and extensible community resource 
and we strongly encourage the submission of additional data for 

inclusion. Consistent quality control and data processing will 

ensure a high quality of the data.  
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RESULTS 

The HLA Ligand Atlas: content and scope of the data 

resource 

We describe the HLA Ligand Atlas, a dataset of matched HLA-I 
and -II ligandomes of benign tissues. HLA-I and -II ligands were 

isolated via immunoaffinity purification and identified by LC-

MS/MS. HLA-binding prediction algorithms and an assessment 

of peptide length distributions were used to identify high-quality 

samples and only these were integrated into the dataset (Figure 
S1 describes the QC steps employed). Our online resource 

https://hla-ligand-atlas.org provides access to the dataset 

comprising HLA-I and –II ligands (1% local peptide-level FDR), 

their source proteins, tissue and subject of origin, as well as all 
corresponding HLA allotypes classified as strong or weak 

binders through several user friendly views ( Figure 1A, Figure 

S1). We have acquired HLA ligandome data from 29 distinct 

tissues obtained from 21 individuals, surmounting to 1,262 LC-

MS/MS runs from 225 mostly paired HLA-I (198) and -II (217) 
samples (Figure 1C, Figure S1, Table S1). The majority of 

samples was obtained from 14 subjects after autopsy, while 7 

additional subjects contributed 5 thymus and 2 ovary samples 

after surgery. We performed a time series experiment on three 

benign samples, two ovaries and one liver (Figure S2) and 
observed no qualitative or quantitative degradation of the 

immunopeptidome for up to 72 h after tissue removal, 

supporting the feasibility of employing autopsy tissue as input 

material for immunopeptidomics assays (Figure S2). 
Overall, we identified 89,853 HLA-I and 140,861 HLA-II peptides 

with a local peptide-level FDR of 1% and estimated global 

peptide-level FDRs of 4.5% and 3.9% for HLA-I and -II peptides, 

respectively. Identified peptides could be attributed to 51 HLA-I 

and 81 HLA-II allotypes. 

Ultimately, this dataset increases the total number of registered 

HLA ligands from 413,205 to 445,535 for HLA-I and from 77,769 
to 195,507 for HLA-II, as currently encompassed in SysteMHC 

(Shao et al., 2018) and IEDB (Vita et al., 2015) (Figure 1B).  

Moreover, we sought to approximate the worldwide HLA allele 

frequency of subjects included in the HLA Ligand Atlas. For this 

purpose, we computed population coverages using the IEDB 
Analysis Resources (http://tools.iedb.org/population/42) (Table 

S2). When considering at least one HLA allele match per 

individual, we observe an allele frequency of 95.1%, 73.6%, 

93.0%, for HLA-A (n=16), -B (n=21), and -C (n=14) alleles, 
respectively. Within the same constraints we observe allele 

frequencies of 78.8%, 99.5%, 98.2%, 92.3% for HLA-DPB1 

(n=9), -DQA1 (n=11), -DQB1 (n=12), and DRB1 (n=19) alleles, 

respectively (Table S2).  

Source proteins and HLA allotype coverage characteristics 
of HLA ligands 

The HLA Ligands in the dataset were identified based on 15,244 

of the 20,365 proteins in Swiss-Prot, hereinafter referred to as 

source proteins. About half of these source proteins yield both 

HLA-I and -II ligand identifications, 40% yield only HLA-I ligands 
and 8% only HLA-II ligands (Figure 1D). We performed a gene 

ontology enrichment analysis of HLA-I and -II exclusive source 

proteins, which corroborates the expected cellular 

compartments associated with the class-specific antigen 
presentation pathways, with HLA-I presenting primarily 

intracellular- and HLA-II extracellular proteins (Figure 2F).  

When looking at single amino acid residues across all source 

proteins (position-wise), 10% of the single residue positions are 

 

Figure 1: The HLA Ligand Atlas: content and scope of the data resource. 
(A) The high-throughput experimental and computational workflow steps used to analyze thousands of HLA-I and -II peptides isolated from benign tissues. The 

resulting HLA-I and -II immunopeptidomes are comprised in the searchable web resource: hla-ligand-atlas.org. See Figure S1 for details of the quality control 

workflow. See Figure S2 for proof of principle using autopsy tissues. 
(B) HLA-I and -II peptides expand the know immunopeptidome as curated in the public repositories SysteMHC and IEDB. 

(C) Sample matrix: HLA-I (blue triangles) and –II samples (orange triangles) included in the HLA Ligand Atlas cover 29 different tissues obtained from 21 human 
subjects. See Table S1 for patient characteristics. 

(D) Position-wise coverage (%) of identified source proteins by HLA ligands binned into four groups: (1) exclusively covered by HLA-I peptides, (2) exclusively 
covered by HLA-II peptides and (3-4) covered by both and separated into higher position-wise coverage by either HLA-I or -II peptides. 
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covered by HLA ligands, a parameter that ranges from 0.02% to 

1.9% for individual HLA allotypes (Figure S3). The mode of the 

overall peptide length distribution depicts the highest 

abundance of 9mers (60%) for HLA-I and of 15mers (18%) for 
HLA-II ligands (Figure 2A). While 81% of the HLA-I ligands are 

predicted to bind a subject’s HLA allotype, this holds true for only 

53% of the HLA-II ligands. A major shortcoming of HLA-II 

binding prediction models appears to be a negative bias towards 

the tails of the observed peptide length distribution, in particular 
towards short peptides (Figure 2A). The number of identified 

peptides that are predicted to bind against specific allotypes 

varies strongly between allotypes, with HLA-A*02:01, -B*15:01, 

-B*35:01, -C*04:01 and most HLA-DRB1 allotypes being among 
the highly represented ones (Figure 2B, C). 

The inter-individual heterogeneity outweighs similarities 

between tissue types 

An unaddressed question, relevant for the discovery and 

administration of shared TAAs, is if the similarity between 
tissuetypes outweighs that of individuals. We interrogated the 

HLA Ligand Atlas and assessed the similarity of the 

immunopeptidome on both source protein (Figure 2D, E) and 

HLA-ligand level (Figure S4C, D) between samples, as defined 

by subject-tissue combinations. For this purpose, we computed 
pairwise similarities between all samples as measured by the 

Jaccard similarity index and clustered the samples based on 

their similarity. 

We observe that the sample similarity, even on source protein-
level, is dominated by the underlying HLA alleles governing 

peptide presentation in each subject, resulting in clusters largely 

reflecting the subjects rather than the tissues. Contrary to our 

expectations, the five thymus specimens show the same pattern 

of subject individuality without an increase in source protein 

overlap with other tissue types. The high subject individuality as 

indicated by the clustering of subjects rather than tissues holds 
true irrespective of the data level on which the analysis is based 

on.  

The immunopeptidome yield varies consistently across 

tissues 

We further investigated the immunopeptidome diversity and 
variance across all samples for both HLA-I and -II alleles. 

Overall, we observe a strong variance in the immunopeptidome 

yield, defined as the number of identified peptides per sample, 

across all tissues (Figure 3A) and subjects (Figure S4A, B). 
Despite the inter-individual (i.e., inter-allotype) variance, we can 

consistently differentiate between high-yielding and low-yielding 

tissues with respect to both HLA-I and -II peptides (Figure 3, 

Figure S4A, B). The separation of tissues based on the 

immunopeptidome yield is not abrupt, but gradual. Low-yielding 
tissues include skin, aorta, brain, and the gallbladder with a low 

number of both HLA-I and -II presented peptides across all 

subjects. On the other hand, high-yielding tissues include 

thymus, lung, spleen, bone marrow, and kidney (Figure 3A). 

These tissues have well-characterized immune-related 
functions or are central components of the lymphatic system. 

We employed a linear model to systematically evaluate the 

correlation between the median HLA-I/-II immunopeptidome 

yield with RNA expression values (RPKM) of immune-related 
genes identified by targeted RNA sequencing from an external 

dataset (Boegel et al., 2018) (Figure 3B and Figure S5). We 

observe a significant correlation between expression values of  

 

Figure 2: Source proteins and HLA allotype coverage characteristics of HLA ligands. 
(A) Length distribution of identified HLA-I and -II peptides from all samples was analyzed. HLA-II peptide lengths are mirrored on the negative side of the x-axis.  
(B, C) Global overview of HLA-I predicted binders distributed across HLA molecules. HLA binding prediction was performed with NetMHCpan 4.0 (% binding 

rank <2) and SYFPEITHI (Score >50%), while multiple HLA allotypes per peptide were allowed as long as their scores met the aforementioned thresholds. HLA 
binding prediction for HLA-II ligands was performed with NetMHCIIpan 4.0 and MixMHCPred (% binding rank 0.2 for both) See Figure S3 

(D) Pairwise hierarchical clustering of samples based on the Jaccard similarity between HLA-I (blue) and HLA-II (orange) source proteins. The dendrogram 

illustrates the nearest neighbor based on the similarity between tissues and subjects. See Figure S4 C. 
(E) Violin plots illustrate the distribution of the Jaccard similarity index for each pairwise comparison between the same subject - different tissues; different 

subjects - the same tissue, and different subject - different tissues. 
(F) Gene ontology (GO) term enrichment of cellular components was performed for HLA-I and -II source proteins. Top10 enriched genes with respect to their 

log10 p-value (Fisher’s exact test) differentiate between intracellular and extracellular antigen processing pathways.  
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Figure 3: Tissues exhibit a gradual separation based on the immunopeptidome yield. 
(A) The number of identified HLA-I and -II peptides per sample (subject and tissue combinations) was sorted and plotted by median immunopeptidome yield per 
tissue. Boxes span the inner two quantiles of the distribution and whiskers extend by the same length outside the box. Remaining outlier samples are indicated 

as black diamonds. The number of subjects contributing to each tissue is illustrated on the y-axis in parenthesis. 
(B) A linear model was used to correlate the log transformed HLA-I and -II median peptide yields with log transformed median gene expression counts (RPKM) 

of the immunoproteasome and HLA-DRB1 per tissue (Boegel et al., 2018). Corresponding R2, p-value (F-statistic) and spearman rho are indicated in the bottom 
right box. See Figure S5 
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immune-related genes and HLA-I and -II immunopeptidome 

yields (Figure S 5A-D). Among these, genes of the 

immunoproteasome correlate well with the number of HLA-I 

ligand identifications per tissue (R2=0.371, rho=0.669, p=0.002, 
Figure 3B). Independent studies mapping the healthy human 

proteome confirm expression of the immunoproteasome in a 

wide range of tissues, including tissues for which no primary 

immunological function would be expected (Kim et al., 2014; 

Wilhelm et al., 2014).  
HLA-II peptide yields correlate well with the expression of HLA-

DRB1 genes (R2=0.206, rho=0.38, p=0.0297, Figure 3B). HLA-

DR is well characterized due to the invariant α chain, and thus 

reduced complexity in the peptide binding groove. Through the 
high specificity of the L243 antibody for HLA-DR, and the 

presumably varying specificity of the second antibody Tü39 for 

different HLA-II allotypes, we cannot exclude a skewed 

identification in favor of HLA-DRB allotypes. However, higher 

expression values for HLA-DRB1 compared to other HLA-II 
allotypes have been described for example in earlier studies on 

gastric epithelium (Ishii et al., 1992).  

Small subsets of source proteins are tissue-exclusive 

Previous studies characterizing the human transcriptome and 

proteome across tissues have shown varying degrees of tissue-
specificity for transcripts and proteins (Jiang et al., 2019; Wang 

et al., 2019). In this context, we analyzed source proteins of the 

benign immunopeptidome as a whole and grouped all samples 

by tissue of origin. We observe a particularly small number of 
HLA-I (ranging from 5 in mamma to 680 in thymus), and HLA-II 

(ranging from 8 in ovary to 567 in thymus) source proteins 

identified exclusively in one tissue (Figure 4A, B, Table S5). 

Concordantly, only small numbers of tissue-exclusive protein 

identifications have been observed in human tissue-wide 
proteomics studies (Wilhelm et al., 2014). Only recently, the 

systematic, quantitative analysis of the human proteome and 

transcriptome in multiple tissues has revealed that differences 

between tissues are rather quantitative than defined by the 

presence or absence of certain proteins (Jiang et al., 2019; 
Wang et al., 2019). 

Next, we sought to determine whether tissue-specific biology is 

conserved between the transcriptome and immunopeptidome. 

For this purpose, we compared tissue-enriched gene sets from 

the GTEx repository with tissue-exclusive HLA-I and -II source 

proteins (Figure 4A, B, left). We observe that tissue-specific 

biology is represented by HLA-I and -II source proteins through 
an enrichment with upregulated transcripts in the respective 

tissue. Gene set enrichment analysis further reflects functional 

proximity between tissues such as tongue, heart and muscle or 

brain and cerebellum.  

We additionally observed that tissue-specific traits are 
recapitulated by gene ontology (GO) term enrichment of 

biological processes (Figure 4A and B, right). Enriched GO 

terms reveal tissue-specific biological functions such as 

‘adaptive immune response’ in the thymus or ‘behavior’ in the 
brain. However, clear associations between enriched gene sets 

and HLA-I and -II source proteins are less evident in tissues 

such as spleen or testis, despite the disparity of tissue-exclusive 

HLA-I source protein identifications, accounting for only 23 in 

testis while spleen yields 309. 
Overall, tissue-specific traits are more evident for HLA-I than for 

HLA-II source proteins, as supported by a higher significance, 

when assessing the correlation between tissue-exclusive 

source proteins with GTEx-enriched transcripts and function-

specific GO terms. HLA-II source proteins are represented by 
more general GO terms, which still reflect distinct biological 

processes characteristic for the respective tissue. 
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Cryptic peptides are part of the benign immunopeptidome 

Recently, cryptic HLA peptides come into focus as a new 

potential source of tumor-associated antigens (TAAs). Cryptic 

peptides originate from non-coding regions, i.e. 5’- and 3’-UTR, 
non-coding RNAs (ncRNA), intronic and intergenic regions, or 

from shifted reading frames in annotated protein coding regions 

(off-frame). Ribosome profiling and immunopeptidomics studies 

confirm their translation and presentation on HLA-I molecules 

(Chong et al., 2020; Laumont et al., 2018; Ouspenskaia et al., 
2020). So far, cryptic peptides have predominantly been 

characterized in tumors, while their presentation in benign 

tissues remains poorly charted. We analyzed the HLA-I-

restricted LC-MS/MS data of the HLA Ligand Atlas with Peptide-
PRISM (Erhard et al., 2020) (Figure 5A) and identified 1,407 

cryptic peptides, including the peptide SVASPVTLGK that was 

classified as a TAA in lung cancer tissue in a previously 

published study (Figure 5, Table S3) (Laumont et al., 2018). This 

peptide was identified in the HLA Ligand Atlas in five different 
subjects in lung and liver tissues. We find that 47% of cryptic 

peptides were identified in more than one subject (Table S3). 

Both cryptic and conventional peptides share similar 

physicochemical properties. Their predicted chromatographic 

retention time correlates with their experimentally observed 
retention time equally well as for conventional peptides (Figure 

5D) (Chong et al., 2020; Mylonas et al., 2018; Ouspenskaia et 

al., 2020; Rolfs et al., 2019). The identified cryptic HLA-I ligands 

can be classified into following genomic categories with 
decreasing frequency: 5’-UTR (51%), followed by Off-Frame 

(33%), ncRNAs (13%), 3’-UTR (2%), intergenic (1%), and 

intronic regions (0.5%) (Figure 5C). The predominance of 

cryptic peptides from the 5’-UTR is in accordance with previous 

studies (Erhard et al., 2020; Ouspenskaia et al., 2020). Overall, 
HLA allotypes show different presentation propensities of cryptic 

peptides, when related to cryptic and canonical peptides, with 

HLA-A*03:01 covering the largest fraction of all identified cryptic 

peptides, followed by -B*07:02 and -A*68:01, as previously 

observed (Figure 5B) (Erhard et al., 2020). 

We selected 36 top-ranking (1% FDR) cryptic peptides, shared 
among subjects for spectral validation by experimental 

comparison with the corresponding isotopically-labeled 

synthetic peptide (Table S3). We computed a similarity score 

between the spectra obtained from the experimental vs. 

synthetic peptides (Figure 5E, Table S3). A size-matched set of 
randomly selected comparisons was employed to create a 

reference negative distribution of the spectral similarity score. 

We were able to confirm the correct identification of selected 

cryptic HLA-I ligands, not only based on the computed similarity 
score, but also through individual inspection (Figure S6). 

Therefore, we can show that cryptic peptides are not per-se 

tumor-specific, albeit their frequency might be reduced in benign 

tissues (Erhard et al., 2020) 

HLA Ligand Atlas data enables prioritization of tumor-
associated antigens (TAAs) 

A general lack of multi-tissue immunopeptidomics reference 

libraries from benign tissues has been mentioned in previous 

studies aiming to identify TAAs (Chong et al., 2020; Granados 

et al., 2016). Here, we propose the implementation of the HLA 
Ligand Atlas as a reference library of benign multi-tissue 

immunopeptidomes for comparative profiling with tumor 

immunopeptidomes for the discovery of actionable TAAs. As a 

case study, we selected three glioblastoma tumor samples from 
different individuals and analyzed their immunopeptidomes. We 

comparatively profiled the HLA-I and -II ligands of the 

glioblastoma samples against the benign dataset encompassed 

in the HLA Ligand Atlas (Figure 6A and B). The majority of HLA 

ligands is shared between both tumor and benign tissues, with 
5,185 HLA-I TAAs and 3,246 HLA-II TAAs being unique to 

glioblastoma (Table S4). When assessing their presentation

 

Figure 4: Small subsets of source proteins are tissue exclusive. See Table S5. 
(A, B) Gene set enrichment (left) was tested for each tissue by correlating unique HLA-I and –II source proteins per tissue with upregulated genes as annotated 
in GTEx. Heatmaps depict log10 p-values (Fisher’s exact test) for each pairwise comparison. The number of tissue-specific HLA-I and –II source proteins is 

depicted by the bar plot for each tissue at the right-hand side of the heatmaps. In addition, GO term enrichment (right) of biological processes was performed 
using the panther DB webservice for selected tissues with the same set of HLA-I and -II tissue-specific source proteins. Top 5 enriched terms with respect to 

their log10 p-value (Fisher’s exact test) were selected. 
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Figure 5: Cryptic peptides are part of the benign immunopeptidomes. See Table S3, Figure S6. 
(A) Spectra were searched with Peptide-PRISM to identify peptides of cryptic origin. Briefly, de novo sequencing was performed, and top 10 sequences per 
spectra were queried against a database consisting of the 3-frame translated transcriptome (Ensemble 90). Target-Decoy search was performed per database 

stratum, separately for canonical and cryptic peptides. 
(B) The HLA-allotype distribution of cryptic peptides was plotted in relation to cryptic and canonical peptides predicted to bind to the respective HLA allotype 

across all subjects and tissues.  
(C) Distribution of identified cryptic peptides categorized into multiple non-coding genomic regions.  

(D) Linear model correlating measured retention times (RT) of cryptic peptides with their predicted RTs trained on canonical peptide RTs. Corresponding R2, pi 
(width of the prediction interval – red dashed lines), and frac (the number of peptides falling into the prediction interval) are indicated in the bottom right. 

(E) 36 cryptic peptides were selected for spectral validation with synthetic peptides. The similarity between the synthetic and experimental spectrum was 
computed by correlation scores. F) Exemplary spectral comparison of the cryptic peptide SVASPVTLGK and its synthesized heavy isotope-labeled counterpart 

(P+6). Matching b (red) and y ions (blue) are indicated as well as the isotope mass shifted ions (orange stars) of the synthesized peptide. 
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frequency, 691 HLA-I TAAs are found on two glioblastoma 

samples, while 4,495 are patient-individual. In the case of HLA-

II TAAs, 43 are shared between two glioblastoma patients, and 

3,203 are patient-individual. No identified HLA-I or –II ligands 
were common to all three glioblastoma patients.  

Moreover, we investigated the presentation of cancer testis 

antigens (CTAs) by HLA-I and -II molecules on benign tissues. 

CTAs are immunogenic proteins preferentially expressed in 

normal gametogenic tissues and different types of tumors 
(Almeida et al., 2009; Wang et al., 2016). We compiled a list of 

422 published CTAs from the curated CT database (Almeida et 

al., 2009) and a recent publication aiming to identify CTAs from 

transcriptomics datasets (Wang et al., 2016). Of 422 published 
CTAs, 40 CTAs were presented on either HLA-I or -II molecules 

and 10 CTAs on both HLA-I and -II molecules in the HLA Ligand 

Atlas, provided that respective source proteins were identified 

with at least two HLA ligands (Figure 6B, C, Table S3). CTAs, 

such as IMP-3, KIA0100, and CBLN1 were presented in 
numerous benign samples with HLA-I and -II ligands (Figure 6C 

and D, Table S4). Furthermore, the CTA KIA1210 was only 

identified in the benign dataset on testis in accordance to its 

CTA status. Similarly, we queried all glioblastoma source 

proteins against the selected 422 CTAs and found three CTAs 
(two HLA-I and one HLA-II) exclusively presented in 

glioblastoma and not in our benign dataset, indicating promising 

targets against this tumor entity. 

HLA ligands form hotspots in source proteins 
When looking at the position-wise coverage profiles of individual 

source proteins across all HLA allotypes, we observe that HLA 

ligands seem to emerge from spatially clustered hotspot regions 

while other areas of the source protein do not contribute any 

HLA ligands at all (Figure 7, left). It has been shown previously 
that this clustering effect cannot be explained by the occurrence 

of HLA binding motifs as incorporated in epitope prediction tools 

(Müller et al., 2017). The hotspot locations often coincide 

between HLA-I and -II ligands, however, we did not perform a 

large-scale statistical analysis to validate this class linkage 
effect. In the case of HLA-II, the clustering effect has to be 

distinguished from the co-occurrence of HLA-II ligand length 

variants, which leads to a large number of distinct peptides 

covering the same source protein position due to the nature of 

HLA-II antigen processing and binding (Álvaro-Benito et al., 

2018). Many of the observed clusters span ranges of distinct, 

non-overlapping HLA-II ligands (Figure 7, right). Position-wise 
coverage plots for all source proteins are available online at hla-

ligand-atlas.org. 

The HLA Ligand Atlas web interface 

The HLA Ligand Atlas web interface was designed to allow 

users to conveniently access the data we collected. Users can 
formulate queries in the form of filters based on peptide 

sequences, peptide sequence patterns, HLA allotypes, tissues 

and proteins of origin, or combinations thereof. Additionally, 

users can submit files with peptides or uniport IDs, either as 
plain lists or as a FASTA files. The peptide list is then queried 

against the database and the resulting hits can again be freely 

combined with the aforementioned filters. Query results are 

shown as a list of peptides with plots of the corresponding HLA 

allotype and tissue distributions. Additionally, detailed views for 
single peptides and for coverage of proteins are available. Apart 

from the query interface, the web front-end also displays various 
aggregate views of the data stored in the database. 
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Figure 6 HLA Ligand Atlas data enables prioritization of tumor-associated antigens (TAAs). 
A, B) The size-proportional Venn diagram illustrates the overlap between the pooled glioblastoma (GBM) and benign HLA-I and -II immunopeptidomes, 
respectively. The waterfall plots show the number of glioblastoma-associated HLA-I ligands and their frequency among the three glioblastoma (GBM) patients 

analyzed. See Table S4. 

C, D) Published CTAs are presented as HLA-I or -II ligands on benign tissues, including testis but also in glioblastoma tumors. The number of identified samples 
either from the HLA Ligand Atlas or the glioblastoma dataset is depicted on the x-axis, provided that each CTA has been identified with at least two different 

HLA ligands. The CTA KIA1210 was identified exclusively on HLA-I source proteins in testis and is marked with an asterisk. See Table S4. 
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DISCUSSION 

In this study, we create a novel data resource termed the HLA 

Ligand Atlas which is publicly available and easily searchable at 

hla-ligand-atlas.org (Figure 1C). It provides for the first time a 
comprehensive collection of benign human HLA-I and -II 

immunopeptidomes. The large number of different HLA 

allotypes will help to considerably improve HLA-binding 

prediction algorithms, particularly for infrequent HLA alleles. 

HLA-II immunopeptidomes paired with high-resolution HLA-II 
typing are still scarcely available and therefore represent a 

valuable resource for improving HLA-II prediction models. 

We find that HLA allotypes display varying presentation 

propensities towards certain peptide populations, with HLA-
B*15:01 and HLA-DRB1*01:01 presenting the highest number 

of canonical self-peptides, and HLA-A*03:01 and B*07:02 

presenting the highest proportion of cryptic peptides in our 

subject cohort and a previously published study (Erhard et al., 

2020). The increased number of peptides presented on a subset 
of HLA alleles can be attributed to their frequency among the 

analyzed individuals or to their potentially high copy number on 

cells. Further technical biases can influence the 

immunopeptidome yield, such as antibody preferences towards 

certain HLA allotypes, ionization and fragmentation 
characteristics of eluted HLA ligands, but also binding prediction 

algorithms that perform better for frequent, well studied HLA 

allotypes. However, HLA allotypes have evolved to present 

different peptide subsets to T cells (Kaufman, 2018), examples 
ranging from HLA-B*40 being able to stabilize the negative 

charge of phosphorylated peptides (Alpízar et al., 2017), and 

HLA-B*57 conferring a survival advantage in HIV infections 

(Marino, 2018; Vizcaíno et al., 2020). Moreover, we observed 

multiple HLA allele matches per peptide which is indicative of 
binding similarities between HLA allotypes, or promiscuous HLA 

alleles that allow binding of a large repertoire of different 

peptides (Kaufman, 2018).  

One fundamental and so far unanswered question concerns the 

similarity of immunopeptidomes across individuals. Our 
evaluation of the Jaccard similarity index across samples in the 

HLA Ligand Atlas provides evidence that differences between 

individuals exceed differences between tissue types in the same 

individual for both the immunopeptidome and their source 

proteins. On a proteome level, however, samples were 

previously separated by tissue type, rather than individuals 

(Jiang et al., 2019). Nonetheless, HLA-allotype-dependent 
selection and editing throughout the antigen presentation 

pathway shape the immunopeptidome, complicating its 

prediction from genomic, transcriptomic, and proteomic data 

sources. While we analyzed 21 human subjects in this study, a 

larger number would be required to answer this question 
unequivocally. 

The high degree of individuality between immunopeptidomes, 

even when subjects share a subset of HLA allotypes, has major 

repercussions for clinical applications in emerging fields such as 
immuno-oncology. Our findings indicate that the 

immunopeptidome adds an additional layer of complexity to the 

well-described genomic and transcriptomic tumor-

heterogeneity. Successful induction of T cell responses after 

peptide vaccination with neoantigens (Ott et al., 2017; Sahin et 
al., 2017) indicate that precision medicine will evolve to an 

increasingly individualized field, where treatment options will be 

tailored to the immunopeptidomic landscape of the tumor. 

Mapping the tumor HLA ligandome of an individual patient 

therefore needs to be paralleled by a broad and in-depth 
knowledge of its benign counterpart – the HLA Ligand Atlas is a 

first step in this direction. When dissecting the HLA Ligand Atlas 

tissue-wise, we observe a paired immunopeptidome yield 

between HLA-I and -II ligands that could be indicative of an 
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increased infiltration of immune cells in high-yielding tissues. 

Alternatively, expression of HLA-II molecules on cells other than 

APCs could explain this observation. By analyzing bulk tissue, 

a definite statement whether peptide presentation occurred on 

tissue or tissue-infiltrating immune cells cannot be made. The 
immunopeptidome yields per tissue correlate positively with 

RNA expression profiles of genes related to antigen processing 

and presentation. Yet, the identified source proteins appear to 

be barely specific for the tissue of origin. The weak correlation 

between immunopeptidome yield and RNA expression values 
has been observed previously (Fortier et al., 2008; Schuster et 

al., 2017). Although abundant HLA ligands stem from highly 

expressed transcripts, most HLA ligands span a wider dynamic 

range of gene expression (Wang et al., 2019). Furthermore, it 
was recently shown that the immunopeptidome is better 

captured by the translatome as identified by ribosome profiling 

than by the transcriptome (Chong et al., 2020; Ouspenskaia et 

al., 2020).  

Low-yielding samples barely display any tissue-specific 
proteins. However, tissue-specific source proteins often reflect 

tissue-specific traits when correlated to enriched gene sets of 

GTEx transcriptomes from the respective tissues. Therefore, 

tissue-specific function is represented in the immunopeptidome, 

but differences between tissues cannot be imputed from the 

immunopeptidome alone. Studies mapping the whole proteome 
in multiple human tissues report few proteins with tissue-specific 

expression (Wang et al., 2019; Wilhelm et al., 2014) and 

suggest that differences between tissues might be quantitative, 

and less dominated by the presence or absence of protein 

species (Jiang et al., 2019; Wang et al., 2019). 
Recent studies have focused on HLA-presented peptides 

derived from non-coding regions. Ribosome profiling, RNA 

sequencing, and immunopeptidomics studies have confirmed 

that cryptic HLA-I peptides expand the known HLA-I 
immunopeptidome by up to 15% (Erhard et al., 2020), up to 

3.3% (Ouspenskaia et al., 2020), and about 10% (Laumont et 

al., 2018). These studies have mainly focused on tumors and 

tumor cell lines, PBMCs and mTEC cell lines, in most cases 

treated and expanded in vitro. We employed Peptide-PRISM 
and identified 1,407 cryptic HLA-I ligands from benign, primary, 
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Figure 7: HLA ligands form hotspots in source proteins. 
The position-wise HLA ligand coverage profiles as available in the HLA Ligand Atlas web interface for two exemplary proteins (left), the fibrinogen alpha chain 

(Uniprot ID P02671, length 866 aa, top) and the basement membrane-specific heparan sulfate proteoglycan core protein (Uniprot ID P98160, length 4,391 aa, 
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alignment of the identified peptides (right). 
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human samples. Corroborating other studies, we find that a 

large proportion (41%) are also shared between multiple 

subjects (Chong et al., 2020; Ouspenskaia et al., 2020).  

An essential application of the HLA Ligand Atlas is the selection 
of candidates for immunotherapy approaches. We propose a 

workflow to prioritize the large candidate pool of non-mutated 

tumor-associated targets by comparatively profiling 

immunopeptidomes of primary tumors and benign tissues, as 

comprised in the HLA Ligand Atlas. This approach would 
complement current strategies based on transcriptomes of 

benign tissues as comprised in GTEx. The HLA Ligand Atlas 

represents a first draft of a tissue-wide immunopeptidomics map 

covering both HLA-I and -II canonical peptides, but also HLA-I 
non-canonical peptides, that can be employed as an orthogonal 

level of quality control when defining TAAs. Furthermore, 

anecdotal observations of position-wise coverage of source 

proteins confirm a previously stated hypothesis, that 

immunopeptidomes cluster into hotspots of antigen presentation 
(Bilich et al., 2019; Müller et al., 2017). We envision that different 

types of TAAs such as mutated, non-mutated, post-

translationally modified, of cryptic or proteasomally spliced 

origin might cluster as well within these hotspots. Future studies 

that aim to enhance our understanding of such mechanistic 
patterns of peptide presentation will benefit greatly from the data 

the HLA Ligand Atlas comprises.  

A series of systematic technical limitations in LC-MS/MS-based 

studies influences the identification depth in each sample. Such 

aspects include the still limited sensitivity and dynamic range of 

detection, the insufficient coverage of amino acids in peptide 
mass spectra, but also shortcomings in peptide identification 

algorithms. Advances in LC-MS/MS technology, data 

acquisition methods and computational tools are constantly 

improving the depth of investigation in immunopeptidomics 

experiments. Therefore, we encourage the reanalysis of the raw 
LC-MS/MS dataset with novel hypotheses and upcoming 

computational methods that will lead to additional insight. 

Overall, we anticipate that the number of charted human 

immunopeptidomes will increase, similarly as the human 
genome and transcriptome were mapped across multiple 

individuals. By generating larger datasets from many human 

individuals, population-wide conclusions can be drawn, and 

immunopeptidome-wide studies will provide insight into 

disease-associated HLA alleles and peptides (Vizcaíno et al., 
2020). The HLA Ligand Atlas strives to advance our 

understanding of fundamental aspects of immunology relating 

to autoimmunity, infection, transplantation, cancer 

immunotherapy and might provide a foundation for vaccine 

design. We hope that together with the scientific community we 
can expand the benign immunopeptidome to encompass more 

human subjects, tissues and HLA alleles.
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METHODS 

Experimental model and subject details 

Human tissue samples were obtained post-mortem during 

autopsy performed for medical reasons at the University 
Hospital Zürich. The study was approved by the Cantonal Ethics 

Committee Zürich (KEK) (BASEC-Nr. Req-2016-00604). For 

none of the included patients a refusal of post-mortem 

contribution to medical research was documented and study 

procedures are in accordance with applicable Swiss law for 
research on humans (Bundesgesetz über die Forschung am 

Menschen, Art. 38). In addition, the study protocol was reviewed 

by the ethics committee at the University of Tübingen and 

received a favorable assessment without any objections to the 
study conduct (Project Nr. 364/2017BO2). 

None of the subjects included in this study was diagnosed with 

any malignant disease. Tissue samples were collected during 

autopsy, which was performed within 72 hours after death. 

Tissue annotation was performed by a board-certified 
pathologist. Tissue samples were immediately snap-frozen in 

liquid nitrogen. 

Thymus samples were obtained from the University Children' s 

Hospital Zürich/ Switzerland. Thymus tissue was removed 

during heart surgery or for other medical reasons. Tissue 
samples from residual material not required for diagnostic or 

other medical purposes were obtained after informed consent 

from the parents of the respective children, in accordance with 

the principles of the Declaration of Helsinki. The study was 
approved by the Cantonal Ethics Committee Zürich (KEK) (EC-

Nr. 2014-0699, PB_2017-00631) on February 27th 2015. 

Furthermore, two benign ovarian tissue samples were collected 

for the project (OVA-DN278 and OVA-DN281). Both patients 

were postmenopausal and had a bilateral ovarectomy for 
cystadenofibromas, which were diagnosed by histopathologic 

examination of the specimen. The samples were obtained from 

a normal part of the ovary. The study was approved by the 

ethical committee of the University of Tübingen (354/2011BO2). 

Finally, we included three primary glioblastoma tumor samples 
to illustrate a selection strategy for tumor associated antigens. 

The primary glioblastoma tumor was removed for patients 

GBM616 and GBM654, whereas, a recurrent tumor was 

analyzed for GBM753. The study was approved by the Cantonal 

Ethics Committee Zürich (KEK) (EC-Nr. 2014-0699, PB_2017-

00631). 

HLA typing 
Multiple HLA typing approaches were performed for the different 

sources of patient material.  

Autopsy subject AUT-DN08, AUT-DN16, and two benign ovary 

samples (OVA-DN278 and OVA-DN281) were typed at the 

Department of Transfusion Medicine of the University Hospital 
of Tübingen. High-resolution HLA typing was performed by next-

generation sequencing on a GS Junior Sequencer using the GS 

GType HLA Primer Sets (both Roche, Basel, Switzerland). HLA 

typing was successful for HLA-A, -B, and -C alleles. However, 
HLA-II typing was only reliable for the HLA-DR locus, and 

incomplete for the HLA-DP and -DQ loci. 

Therefore, we performed exome sequencing of lung tissue for 

remaining autopsy subjects. Exome sequencing data was 

processed and OptiType (Szolek et al., 2014) was employed to 
identify HLA I and -II alleles.  

Finally, sequence-based typing was performed for the five 

thymus samples and the three glioblastoma samples, by 

sequencing exons 1-8 for HLA-I alleles and exons 2-6 for HLA-

II alleles (Histogenetics, Ossining, NY).  
The subject characteristics are summarized in Supplemental 

Table S1 encompassing information on sex, age, the number of 

collected tissues and HLA-I and II alleles. 

HLA immunoaffinity purification 
HLA-I and -II molecules were isolated from snap-frozen tissue 

using standard immunoaffinity chromatography. The antibodies 

employed were the pan-HLA-I-specific antibody W6/32 

(Barnstable et al., 1978), and the HLA-DR-specific antibody 

L243 (Goldman et al., 1982), produced in house (University of 
Tübingen, Department of Immunology) from HB-95, and HB-55 

cells (ATCC, Manassas, VA) respectively. Furthermore, the 

pan-HLA-II-specific antibody Tü39 was employed and produced 

in house from a hybridoma clone as previously described 

(Pawelec et al., 1985). The antibodies were cross-linked to 
CNBr-activated sepharose (Sigma-Aldrich, St. Louis, MO) at a 

ratio of 40 mg sepharose to 1 mg antibody for 1 g tissue with 0.5 
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M NaCl, 0.1 M NaHCO3 at pH 8.3. Free activated CNBr reaction 

sites were blocked with 0.2 M glycine. 

For the purification of HLA-peptide complexes, tissue was 

minced with a scalpel and further homogenized with the Potter-
Elvehjem instrument (VWR, Darmstadt, Germany). The amount 

of tissue employed for each purification is documented in 

Supplemental Table S1. This information is not available for 

seven tissues, annotated as n.d. in said table. Tissue 

homogenization was performed in lysis buffer consisting of 
CHAPS (Panreac AppliChem, Darmstadt, Germany), and one 

cOmpleteTM protease inhibitor cocktail tablet (Roche) in PBS. 

Thereafter, the lysate was sonicated and cleared by 

centrifugation for 45 min at 4,000 rpm, interspaced by 1 h 
incubation periods on a shaker at 4°C. Lysates were further 

cleared by sterile filtration employing a 5 µm filter unit (Merck 

Millipore, Darmstadt, Germany). The first column contained 1 

mg of W6/32 antibody coupled to sepharose, whereas the 

second column contained equal amounts of Tü39 and L243 
antibody coupled to sepharose. Finally, the lysates were passed 

through two columns cyclically overnight at 4°C. Affinity columns 

were then washed for 30 minutes with PBS and for 1 h with 

water. Elution of peptides was achieved by incubating four times 

successively with 100 – 200 µl 0.2% TFA on a shaker. All eluted 
fractions were subsequently pooled. Peptides were separated 

from the HLA molecule remnants by ultrafiltration employing 3 

kDa and 10 kDa Amicon filter units (Merck Millipore) for HLA-I 

and HLA-II, respectively. The eluate volume was then reduced 
to approximately 50 µl by lyophilization or vacuum 

centrifugation. Finally, the reduced peptide solution was purified 

five times using ZipTip Pipette Tips with C18 resin and 0.6 µl 

bed volume (Merck,) and eluted in 32.5% ACN/0.2% TFA. The 

purified peptide solution was concentrated by vacuum 
centrifugation and supplemented with 1% ACN/0.05% TFA and 

stored at -80°C until LC-MS/MS analysis. 

Time series experiments 

We performed time series experiments to assess the suitability 

of tissues obtained from autopsies as a source of human tissues 
for the characterization of the benign immunopeptidome. We 

evaluated the degradation profile of the immunopeptidome, 

when tissues were stored at 4°C for up to 72 h after tissue 

removal, to mimic the conditions at autopsy. The time series 

experiment was repeated in three benign tissues from different 

individuals: one benign liver obtained at autopsy (AUT-DN16 

Liver), and two benign ovaries removed surgically (OVA-DN278 
and OVA-DN281). The tissues were extracted and incubated at 

4°C until a certain time point and flash-frozen in liquid nitrogen 

until HLA ligand extraction. As more tissue was available form 

AUT-DN16 Liver, tissue samples were frozen after 8 h, 16 h, 24 

h, 48 h, and 72 h. Due to the limited sample amount obtained 
from OVA-DN278 and OVA-DN281, only three time points could 

be accounted for: 0 h, 24 h, and 72 h. The HLA immunoaffinity 

purification was performed as mentioned, with the exception 

that mass to volume ratio in ovary samples was adjusted to the 
lowest mass across all time points before loading onto 

sepharose columns. 

Mass spectrometric data acquisition 

HLA ligand characterization was performed on an Orbitrap 

Fusion Lumos mass spectrometer (Thermo Fisher Scientific, 
San Jose, CA) equipped with a Nanospray FlexTM Ion Source 

(Thermo Fisher Scientific) coupled to an Ultimate 3000 RSLC 

Nano UHPLC System (Thermo Fisher Scientific). Peptide 

samples were loaded with 1% ACN/ 0.05% TFA on a 75 µm x 2 

cm Acclaim™ PepMap™ 100 C18 Nanotrap column (Thermo 
Fisher Scientific) at a flow rate of 4 µl/min for 10 minutes. 

Separation was performed on a 50 µm x 25 cm PepMap RSLC 

C18 (Thermo Fisher Scientific) column, with a particle size of 2 

µm. Samples were eluted with a linear gradient from 3% to 40% 
solvent B (80% / 0.15% FA in water) at a flow rate of 0.3 µl/min 

over 90 minutes. The column was subsequently washed by 

increasing to 95% B within 1 minute, and maintaining the 

gradient for 5 minutes, followed by reduction to 3% B and 

equilibration for 23 minutes. 
Data acquisition was performed as technical triplicates in data-

dependent mode, with customized top speed (3 s) methods for 

HLA-I- and HLA-II-eluted peptides. HLA-I peptides have a 

length of 8 - 12 amino acids (Rammensee, 1995; Stern et al., 

1994), therefore, the scan range was restricted to 400 - 650 m/z 
and charge states of 2 - 3. MS1 and MS2 spectra were detected 

in the Orbitrap with a resolution of 120,000 and 30,000 

respectively. Furthermore, we set the automatic gain control 
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(AGC) targets to 1.5*105 and 7.0*104 and the maximum injection 

time to 50 ms and 150 ms for MS1 and MS2, respectively. The 

dynamic exclusion was set to 7 s. Peptides were fragmented 

with collision-induced dissociation (CID) while the collision 
energy was set to 35%. 

HLA-II peptides have a length of 8 - 25 amino acids (Lippolis et 

al., 2002; Stern et al., 1994), thus the scan range was set to 400 

-1,000 m/z and the charge states were restricted to 2 - 5. 

Readout for both MS1 and MS2 were performed in the Orbitrap 
with the same resolution and maximum injection times as for 

HLA-I peptides. The dynamic exclusion was set to 10 s and AGC 

values employed were 5.0*105 and 7.0*104 for MS1 and MS2, 

respectively. Higher-energy collisional dissociation (HCD) 
fragmentation with 30% collision energy was employed for HLA-

II peptides. 

Database search with MHCquant 

MS data obtained from HLA ligand extracts was analyzed using 

the nf-core (Ewels et al., 2020) containerized, computational 
pipeline MHCquant (Bichmann et al., 2019) (release 1.5.1 - 

https://www.openms.de/mhcquant/) with default settings. The 

workflow comprises tools to analyze LC-MS/MS data of the 

open-source software library OpenMS (2.5) (Röst et al., 2016). 

Identification and post-scoring were performed using the 
OpenMS adapters to Comet 2016.01 rev. 3 (Eng et al., 2015) 

and Percolator 3.4 (The et al., 2016) at a local peptide-level false 

discovery rate (FDR) threshold of 1% among the technical 

replicates per sample. Subsequently, we estimated the global 
peptide-level FDR by dividing the sum of expected false positive 

identifications from each sample (1% peptide level FDR) by the 

total number of identified peptides in the entire dataset (HLA-I: 

4.5% FDR, HLA-II: 3.9% FDR) (Reiter et al., 2009; Savitski et 

al., 2015). The human reference proteome (Swiss-Prot, 
Proteome ID UP000005640, 20,365 protein sequences) was 

used as a database reference. Database search was performed 

without enzymatic restriction, with methionine oxidation as the 

only variable modification. MHCquant settings for high-

resolution instruments involving a precursor mass tolerance of 
5 ppm and a fragment bin tolerance of 0.02 Da were applied. 

The peptide length restriction, digest mass and charge state 

range were set to 8-12 amino acids, 800-2500 Da and 2-3 for 

HLA-I and 8-25 amino acids, 800-5000 Da and 2-5 for HLA-II, 

respectively. 

HLA binding prediction 

Peptide binding predictions were computed based on the 
subject's HLA alleles. For HLA-I ligand extracts, we employed 

SYFPEITHI (Rammensee et al., 1999) and NetMHCpan-4.0 

(Jurtz et al., 2017) in ligand mode (default). The SYFPEITHI 

score !SYF was computed by dividing the sum of amino acid-

specific values for each position in the tested peptide by the 
maximally attainable score for the respective HLA allotype (Di 

Marco et al., 2017). 

HLA-II ligand extracts were annotated with NetMHCIIpan-4.0 

(Reynisson et al., 2020) and MixMHC2pred (Racle et al., 2019) 
using the default settings. 

Peptides were categorized as strong binders against a given 

HLA allotype if either netMHCpan-4.0, netMHCIIpan-4.0 or 

MixMHC2pred reported a percentile rank score !rank ≤ 0.5. 

Peptides were reported as weak binders if any of the tools 
reported !rank ≤ 2.0 or in case of SYFPEITHI !SYF ≥ 0.5. All 

peptide-HLA allotype associations within these limits were 

included in the dataset, i.e., a single peptide sequence can be 

reported as a binder against multiple allotypes of the same 

donor. Unless allele associations are specified, all peptides 
including classified non-binders against any subject’s allotype 

were included in the analysis. 

Binding prediction and length distribution-based quality 

control 
We defined the fraction of predicted binders of a sample as the 

ratio of predicted binders divided by the total number of peptide 

identifications. Technical replicates with a fraction of predicted 

binders lower than 50% for HLA-I and lower than 10% for HLA-

II ligand extracts were excluded from the dataset. Furthermore, 
individual replicates were removed from the dataset if the mode 

of the length distribution differed from 9 amino acids for HLA-I 

and was not in the interval [12, 18] for HLA-II (see Figure S1). 

Quantitative time series analysis 

Database search of LC-MS/MS data from the three time series 
experiments was performed with MHCquant 1.5.1 as previously 

described (Bichmann et al., 2019). Identifications were matched 
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between runs (Tyanova et al., 2016) based on retention time 

alignment and targeted feature extraction (Weisser and 

Choudhary, 2017) to integrate respective MS1 areas for all time 

points and technical replicates.  
MS1 areas / were normalized to z-scores (standard scores) 0 

per MS run by subtracting the mean and dividing by the standard 

deviation: 

	0 = 	
(/ − 5)

7
 

The trajectory of scaled MS1 areas was clustered by k-means 

unsupervised clustering with 6 seeds using the tslearn (v.0.3.1) 

python package. All trajectories are related to the first time point 

by subtracting its median z-score from all other timepoints in the 

respective analysis. 

Comparison of the HLA-Ligand-Atlas database with IEDB 

and SysteMHC 

All peptides contained in the HLA Ligand Atlas database were 

compared with peptides listed in the IEDB and SysteMHC 

databases for HLA-I and HLA-II ligands separately. The list of 
peptides stored in the IEDB was obtained by downloading the 

file “epitope_full_v3.zip” from the “Database Export” page. The 

obtained table was subsequently filtered for positive MS assays, 

linear peptides and human origin. Peptides with modifications 
were removed. Peptides stored in the SysteMHC database were 

obtained by downloading the file “180409_master_final.tgz" 

from “Builds_for_download” page. The obtained table was 

subsequently filtered for human as organism. 

Gene ontology (GO)-term enrichment 
GO term enrichment analyses were performed with the Panther 

15.0 database (Released 2020-02-21) with the integrated 

“statistical overrepresentation test” (Release 2019-07-11). 

Gene identifiers of source proteins presented exclusively by 

either HLA-I or -II allotypes were queried against the “GO 
cellular component complete” database using the default “Homo 

sapiens genes” reference list. GO terms were sorted by Fisher’s 

exact raw p-value, and top 10 scoring terms reported as 

overrepresented and their corresponding p-values were 
selected for illustration.  

Tissue-specific source proteins were defined as HLA-I or -II 

source proteins identified exclusively in one tissue across all 

subjects (Table S5). Gene identifiers of tissue-specific HLA-I 

and -II source proteins were queried against the “GO biological 

process complete” database, with the only difference that only 

the top 5 scoring terms reported as overrepresented were 
selected for illustration. 

Tissue-specific gene set enrichment 

Analogously to the GO-term enrichment, tissue-specific HLA-I 

and -II source proteins were separately queried against the 

GTEx database for gene set enrichment analysis. Gene sets 
with upregulated gene expression profiles per tissue 

“GTEx_Tissue_Sample_Gene_Expression_Profiles_up” were 

retrieved using the gseapy implementation (v.0.9.15, 2019-08-

07) through the enrichr API. All tissues covered in the HLA 
Ligand Atlas were matched and compared against all tissues in 

the GTEx database that co-occur in the HLA Ligand Atlas. 

Fisher’s exact raw p-values for the enrichment were computed 

for each pairwise comparison. 

HLA-I and –II peptide yield correlation to expression of 
immune-related genes 

We computed a linear model to compare the median HLA-I 

peptide yields per tissue with gene expression values (RPKM) 

of the following genes involved in the HLA-I presentation 

pathway: HLA-A, HLA-B, HLA-C, immunoproteasome, 
constitutive proteasome, TAP1, and TAP2. Median HLA-II 

peptide yields per tissue were correlated to genes involved in 

the HLA-II presentation pathway: HLA-DRB1, HLA-DRA, HLA-

DQB1, HLA-DQA1, HLA-DPB1, HLA-DPA1. The corresponding 
gene expression values were taken from a previously published 

study (Boegel et al., 2018). 

An ordinary least squares linear model correlating gene 

expression and log;< median HLA-I and -II peptide yields was 

computed using R (v.3.5) and the corresponding stats (v.3.5) 
package reporting R2, F-statistic p-value, and spearman rho. 

The cross correlation between all immune related genes and 

their individual linear models (Figure 3, Figure S5) was 

computed using R (v.3.5) and the corresponding packages 

corrplot (v. 0.84) and ggplot2 (v.3.2.1). As the expression levels 
of the investigated genes are highly covariant (Figure S5A, 

S5C), the regression would be overfitting when correlating 
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peptide yields to multiple genes involved in the antigen 

presentation pathway, thus the analysis was limited to a single 

gene at a time. 

Computation of Jaccard coefficients between samples 
We investigated the similarity of immunopeptidomes between 

tissues and subjects by pairwise comparison of all samples in 

the HLA Ligand Atlas. Comparisons were performed both on 

HLA-I and -II level as well as on peptide and source protein 

level. The Jaccard index was calculated by dividing the set 
intersection by the set union for all pairwise comparisons: 

= =
>	 ∩ 	@

>	 ∪ 	@
 

Identification of cryptic peptides with Peptide-PRISM 
Identification of cryptic HLA-I peptides from HLA-I LC-MS/MS 

data was performed as recently described in detail (Erhard et 

al., 2020). Briefly, de novo peptide sequencing was performed 

with PEAKS Studio X (Tran et al., 2019; Zhang et al., 2012) 

(Bioinformatics Solutions Inc., Canada). Top10 sequence 
candidates were exported for each fragment ion spectrum. 

Database matching of all sequence candidates and stratified 

FDR-filtering was performed with Peptide-PRISM using the 6-

frame translation of the human genome (HG38) and the 3-frame 

translation of the human transcriptome (Ensembl 90). Matched 
peptides were filtered to 10% FDR and peptides were predicted 

as binder to the corresponding HLA alleles by NetMHCpan-4.0 

(Jurtz et al., 2017). 

Retention time model for cryptic peptide validation 
Retention time predictions were carried out using the OpenMS 

(2.5.0) RTModel based on oligo-kernel ν-support vector 

regression (ν=0.5, p=0.1, c=1, degree=1, border_length=22, 

kmer_length=1, Σ=5) (Pfeifer et al., 2007). The model was 

trained on all peptide identifications of canonical peptides 
identified with MHCquant and applied to all cryptic peptide 

identifications resulting from Peptide-PRISM. Predictions were 

evaluated by applying a linear least square fit to compute the 

99% prediction interval around the predicted versus measured 

retention times using the statsmodels (v.0.11) function 
wls_prediction_std. 

Synthesis of isotope-labeled peptides 

Peptides were synthesized using the Liberty Blue Automated 

Peptide Synthesizer (CEM) following the standard 9-

fluorenylmethyl-oxycarbonyl/tert-butyl strategy. After removal 
from the resin by treatment with trifluoroacetic 

acid/triisopropylsilane/water (95/2.5/2.5 by vol.) for 1 h, peptides 

were precipitated from diethyl ether, washed three times with 

diethyl ether and resuspended in water prior to lyophilization. 

Purity and identity of the synthesis products were determined by 
C18-HPLC (Thermo Fisher Scientific, Darmstadt, Germany) and 

LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific), 

respectively.  

Spectrum validation 
We selected 36 cryptic peptides, identified with 1% FDR for 

spectral validation with isotope-labeled synthetic peptides. 

Selected peptides were strong binders to the corresponding 

HLA alleles of the respective subject, with a netMHCpan-4.0 

binding rank <0.5. 
Isotope-labeled synthetic peptides were spiked into a sample 

matrix of native HLA eluted peptides from a JY cell line at a 

concentration of 20 fmol/µl, with the purpose of showing 

spectrum identity between the native and synthetic peptides.  

The spectral similarity B was computed analogous to the 
normalized spectral contrast angle (Toprak et al., 2014) 

between eluted peptide spectra and synthetic isotope labeled 

peptide spectra: 

B(C;, CE) = 1 −	
2 cosI;(C; ∙ SE)

K
,	

where the spectra were encoded as intensity vectors (C; and CE) 

based on their theoretical b and y fragment ions by using the 

mzR (v2.16.2), msdata (v0.20.0) and protViz (v0.4) R packages. 
Intensities of matching y- and b-ion pairs as encoded in the 

intensity vectors were compared, thereby avoiding the necessity 

to correct for the mass shift caused by the isotope label. Peaks 

present in at least one of the spectra were considered for the 

cross product (C; ∙ CE). Intensities of missing peaks in the one 
spectrum compared to the other were set to zero. 

Data storage and web interface 

Data was stored and managed using the biomedical data-

management platform qPortal (Mohr et al., 2018). HLA-I and -II 
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peptides were complemented with their tissue and HLA allotype 

association and stored in an SQL database. A public web server 

was implemented that allows users to formulate queries against 

the database, visualize results and allows data export for further 
analysis. The web front-end was implemented in HTML, CSS 

and JavaScript based on the front-end framework Bootstrap 4. 

The table plugin DataTables was used to provide rapid browsing 

and filtering for tabular data. Interactive plots were designed 

using Bokeh and ApexCharts. 

Data availability 

The LC-MS/MS immunopeptidomics data comprised in the HLA 

Ligand Atlas has been deposited to the ProteomeXchange 

Consortium via the PRIDE (Perez-Riverol et al., 2019) partner 

repository with the dataset identifier PXD019643 and the project 

DOI 10.6019/PXD019643. LC-MS/MS runs and sample not 

adhering to the implemented quality control thresholds are 
deposited as well. 

The LC-MS/MS immunopeptiodmics data from the three 

glioblastoma patients can be accessed with the PXD020186, 

and the project DOI 10.6019/PXD020186. 

Additional resource 
The HLA Ligand Atlas: https://hla-ligand-atlas.org/ 
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