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Abstract

Inferring phylogenetic trees for individual homologous gene families is difficult because alignments are

often too short, and thus contain insufficient signal, while substitution models inevitably fail to capture

the complexity of the evolutionary processes. To overcome these challenges species tree-aware methods

also leverage information from a putative species tree. However, only few methods are available that

implement a full likelihood framework or account for horizontal gene transfers. Furthermore, these

methods often require expensive data pre-processing (e.g., computing bootstrap trees), and rely on

approximations and heuristics that limit the degree of tree space exploration. Here we present GeneRax,

the first maximum likelihood species tree-aware phylogenetic inference software. It simultaneously

accounts for substitutions at the sequence level as well as gene level events, such as duplication, transfer,

and loss relying on established maximum likelihood optimization algorithms. GeneRax can infer rooted

phylogenetic trees for multiple gene families, directly from the per-gene sequence alignments and a rooted,

yet undated, species tree. We show that compared to competing tools, on simulated data GeneRax infers

trees that are the closest to the true tree in 90% of the simulations in terms of relative Robinson-Foulds

distance. On empirical datasets, GeneRax is the fastest among all tested methods when starting from

aligned sequences, and it infers trees with the highest likelihood score, based on our model. GeneRax

completed tree inferences and reconciliations for 1099 Cyanobacteria families in eight minutes on 512

CPU cores. Thus, its parallelization scheme enables large-scale analyses. GeneRax is available under

GNU GPL at https://github.com/BenoitMorel/GeneRax.
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Introduction

Reconstructing the evolutionary history of

homologous genes constitutes a fundamental

problem in phylogenetics, as the phylogenetic

trees of gene families (henceforth, gene family

trees) play a prominent role in numerous

biological studies. For instance, gene family

trees (GFTs) are essential to understand genome

dynamics (Touchon et al., 2009), to study specific

traits (Musilova et al., 2019), or to infer the

species tree (Boussau et al., 2012; Mirarab et al.,

2014).

Standard phylogenetic methods infer trees

from multiple sequence alignments (MSAs), for

instance using the maximum likelihood (ML)

criterion (Kozlov et al., 2019; Nguyen et al.,

2015). Under the correct substitution model, ML

methods are statistically consistent (Yang, 1994),

that is, they converge to the true tree when

the sequences are long enough. However, this

condition is often violated for GFTs: typical per-

gene MSAs are short (50 to 1000 sites) and can

comprise a large number of sequences representing

a large number of taxa (hundreds or thousands for

large gene families). As a result, there is typically

insufficient signal in the MSA to reconstruct a well

supported phylogeny. In other words, the tree with

the highest likelihood might not correspond to the

true tree.
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(b) True tree

a1 a2b c

(c) Tree inferred
from the sequences
only

a1 a2 b c

(d) Tree inferred
from the species tree
only

FIG. 1. A gene tree evolving along the species tree, and
several possible inferred trees. (a) The true history. The
gene tree (blue lines) evolves within the species tree (grey
area), and undergoes speciations (S), duplications (D),
losses (L) and HGT (T). (b) The true gene tree. (c) A
gene tree inferred with a sequence-aware method. The
duplication and the speciation between the species a and
b are very close in time, and there is not enough signal
in the sequences to correctly decide which split happened
first. (d) Tree inferred from the species tree only (without
accounting for the sequences), assuming that HGT are less
likely than duplications.

Species-tree-aware (STA) approaches aim to

compensate for this insufficient phylogenetic

signal by relying on a putative species tree.

Indeed, GFTs and the species tree exhibit an

intricate relationship: genes evolve within a

(species) genome and undergo biological processes

such as duplication, horizontal gene transfer

(HGT), loss, or speciation (Fig. 1). Therefore,

although GFTs can be incongruent with the

species tree, their own evolutionary history is, to a

substantial degree, determined by the species tree.

STA methods exploit this relationship between

the GFTs and the species tree to leverage

additional information for GFT inference. In the

following, we denote gene duplication, gene loss,

and HGT events as DTL events.
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A common approach used by STA

methods (Chen et al., 2000; Noutahi et al.,

2016; Scornavacca et al., 2014) consists of

contracting weakly supported GFT branches

into polytomies, which are subsequently resolved

using the species tree. These heuristics limit

the set of GFTs explored to trees that can

be obtained as combinations of alternative

resolutions of the contracted branches. Most

existing implementations (Chen et al., 2000;

Noutahi et al., 2016) are based on parsimony, and

require a priori specification of arbitrary DTL

parsimony costs. This is particularly problematic

if the substitution model is misspecified, or if it

fails fails to adequately capture the complexity

of the data. This is commonly the case for

shorter gene alignments where parameter rich

substitution models are more difficult to use.

In addition, the user must define what a ”low

support value” for branch contraction is, often by

setting an arbitrary threshold. Treerecs (Comte

et al., 2018) addresses this last limitation by

exploring several thresholds, and returning the

GFT that maximizes a likelihood score that is

based on both, the MSAs, and the species tree.

Finally, obtaining branch support values usually

requires a substantial amount of computational

effort (e.g., 1-2 orders of magnitude more than

for a simple ML tree search on the original

MSA, if the classic Felsenstein Bootstrap is

used (Felsenstein, 1985)).

Other STA methods utilize a hierarchical

probabilistic model of sequence level substitutions

and gene level events, such as duplication,

transfer, and loss. This allows the definition of the

joint likelihood as the product of the probability

of observing the alignments given the GFTs

(phylogenetic likelihood) and the probability of

observing the GFTs given the species tree

(reconciliation likelihood):

L(G,S|A)∝
∏
Gi∈G

P (Ai|Gi)P (Gi|S) (1)

where S is the species tree, G is the set of

GFTs, and A the set of corresponding MSAs.

Phyldog (Boussau et al., 2012) co-estimates the

GFTs and the species tree by conducting a tree

search that is based on such a joint likelihood

score. However, Phyldog does not model HGT.

ALE (Szöllősi et al., 2013a) calculates the joint

likelihood using a dynamic programming scheme

that requires the phylogenetic likelihood to be

approximated via conditional clade probabilities

(Larget, 2013). In order to calculate conditional

clade probabilities, ALE requires a sample of

GFTs as input that are typically obtained via

Markov Chain Monte Carlo (MCMC) sampling.

This approach has two shortcomings. First,

the conditional clade probability approximation

inevitably limits the set of GFTs explored to trees

that are comprised of clades observed in an tree

sample, as the phylogenetic likelihood of all other

trees is approximated to be zero (Szöllősi et al.,

2013a). While being less restrictive, conceptually
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this limitation is nonetheless analogous to those

induced by the branch contraction methods

discussed above. It is also similarly sensitive

to model miss-specification and inadequacy.

Secondly, obtaining a tree sample, either via

Bayesian phylogenetic MCMC methods or via

bootstrap methods for a set of gene families is

computationally expensive. For an in depth review

of GFT inference methods, see (El-Mabrouk and

Noutahi, 2019; Szöllősi et al., 2014).

Probabilistic frameworks to model both,

sequence (Felsenstein, 1981), and gene evolution

events (Åkerborg et al., 2009; Sennblad and

Lagergren, 2009; Szöllősi et al., 2013b) can

be found in the literature. However, no ML

tool can cutrrently directly infer GFTs from

MSAs by simultaneously accounting for sequence

substitutions and DTL events. We believe that

such a method can substantially improve the

accuracy of GFT inference. A common argument

against using STA ML approaches is the amount

of time and computational resources required

to conduct such analyses (El-Mabrouk and

Noutahi, 2019). However, a joint (phylogenetic

and reconciliation likelihood) ML approach does

not require expensive pre-processing and can

therefore decrease the overall computational cost

substantially, while increasing accuracy at the

same time. Tree search heuristics are widely

used to infer phylogenies from sequence data

(Kozlov et al., 2019; Nguyen et al., 2015) using

the phylogenetic likelihood. Thus, extending

these methods by joint likelihood calculations

represents a natural way of improving the

accuracy of GFT inference.

Here we introduce GeneRax, our novel software

to infer ML reconciled GFTs based on a joint

reconciliation and phylogenetic likelihood. We

use the term reconciled GFT to designate

both, the GFT topology, and its reconciliation

with the species tree. The input for GeneRax

consists of a rooted, but undated binary (fully

bifurcating) species tree, a set of per-family MSAs

(DNA or amino-acid), and corresponding gene-

to-species leaf name mappings. Several genes

from the same gene family can be mapped

to the same species. In addition, the user

can provide initial GFTs, typically inferred via

standard phylogenetic methods (Kozlov et al.,

2019; Nguyen et al., 2015). GeneRax is easy to use,

models DTL events, and can process gene families

in parallel. Employing a hierarchical probabilistic

model allows it to simultaneously account for

both, the signal from the gene family MSAs, and

from the species tree. It estimates all substitution

and DTL events intensity parameters, and does

not require any ad hoc threshold nor any arbitrary

DTL event parsimony costs.

Nonetheless, one should keep in mind that

incomplete lineage sorting (ILS) constitutes

another important source of discordance between

GFTs and the species tree. A recent study

suggests that ILS can bias reconciliation

inference (Zheng and Zhang, 2014). To this
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end, we also assess the impact of ILS on the

reconstruction accuracy of STA methods and

discuss the limitations of GeneRax in the presence

of ILS.

New Approaches

In this section, we outline the joint likelihood

computation, our tree search algorithm, and our

parallelization scheme.

Reconciliation likelihood

In this subsection, we derive the reconciliation

likelihood for a rooted GFT given an undated, yet

rooted species tree, as implemented in ALE.

The ”undated” DTL model, in contrast to the

continuous time model described in (Szöllősi et al.,

2013b), is a discrete state model, which starts with

a single gene copy on a branch of the species tree.

Subsequently, gene copies evolve independently

until, either all copies are observed at the leaves, or

every gene copy becomes extinct. On an arbitrary

branch of the species tree a gene copy:

• either duplicates and is replaced by two

corresponding gene copies on the same branch

(with probability pD)

• a new copy is transferred to a random branch

that is not ancestral to the donor branch, but

otherwise drawn uniformly at random from the

species tree, while a copy also remains on the

donor branch (with probability pT )

• is lost (with probability pL)

• undergoes a speciation event on internal

branches, in which case it is replaced by a copy

on each descendant branch (with probability

pS =1−pD−pT−pL)

• is observed for terminal branches, that is,

arrives in the present and is observed, thus

terminating the process (again with probability

pS =1−pD−pT−pL)

By δ, λ, and τ we denote the duplication,

loss, and transfer intensity parameters that

parametrize the above event probabilities as

follows:

pD =δ/(1+δ+τ+λ) (2)

pT =τ/(1+δ+τ+λ) (3)

pL =λ/(1+δ+τ+λ) (4)

pS =1/(1+δ+τ+λ). (5)

The probability of observing a rooted GFT G

under the undated DTL model defined above can

be calculated by summing over all possible series

of D, T, L, and S events (henceforth ”scenarios”)

that yield a rooted topology that is congruent

with G. The sum over all possible scenarios is

computed in two steps (Sjöstrand et al., 2013;

Szöllősi et al., 2013b). First, we calculate the

extinction probability of a gene copy that was

initially present on some branch of the species

tree. The extinction probability is the sum over all

scenarios that do not yield descendants. Second,

we sum over all reconciliations of G, where

a reconciliation of G corresponds to a specific

sequence of D, T, S, and gene copy extinction

events, and its probability corresponds to the
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product of the specific sequence of events (cf.

Fig.2a).

To begin, let e be branch of the species tree

S, and let f and g be its descendant branches

(remember that the species tree is rooted). Let

T (e) be the set of species tree branches that can

receive a HGT from e. Because we do not assume

any time information on the species tree other

than the order of descent induced by the rooted

tree topology, we consider that T (e) corresponds

to all nodes that are not ancestors of e. We

allow transfers from e to its descendants, because

a gene could have evolved along an extinct or

unsampled lineage and could subsequently have

been transferred back to a descendant of e

(Szöllősi et al., 2013b).

The extinction probability, that is, the

probability that a gene copy observed on an

internal branch e becomes extinct before being

observed at the tips of the specie tree is:

Ee =pL+pS (EfEg)+pD
(
E2

e

)
+pT

(
EeĒe

)
. (6)

The terms correspond to the i) loss probability, ii)

speciation and subsequent extinction probability

in both descending lineages (this term must be

omitted for terminal branches), iii) duplication

and subsequent extinction probability of both

copies and finally iv) transfer and subsequent

extinction probability of both, the donor copy

on branch e, and the transferred copy on branch

h. For the latter event we have introduced the

notation:

Ēe =
∑

h∈T (e)

Eh

|T (e)|
(7)

In (6), the value of Ee depends on Ēe, and thus

on the extinction probabilities of all species in the

species tree. We iteratively estimate Ēe and Ee

for all nodes e in the species tree, by initializing

[Ee]
0
=0 and computing:

[Ee]
n

=pL+pS [Ef ]
n−1

[Eg]
n−1

+pD([Ee]
n−1

)2

+pT [Ee]
n−1 ∑

h∈T (e)

[Eh]
n−1

/|T (e)| (8)

If the limit of the sequence [Ee]
n

exists, then it

represents the solution of (6). We do not prov the

existence of this limit here.

In simulations, we observed that 5 iterations are

sufficient to estimate Ee, and we have thus set the

number of iterations to 5 in our implementation.

In the special case where τ=0 (no HGT), the

contribution of the term Ēe zero, and we can

directly compute Ee from Ef and Eg.

To calculate the probability of a rooted GFT G,

we have to sum over all reconciliations of G. This

includes D, T, S, and gene extinction events that

may have generated the observed, rooted GFT

along the species tree. The algorithm to calculate

the sum over all reconciliation histories proceeds

from the tips of the rooted species tree and rooted

GFT toward their respective roots. Let v and w

be descendants of u on G, and f as well as g

be descendants of e on the species tree S. For

calculating the recursive sum over reconciliations,

consider Pe,u, as the sum over all reconciliations
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Proot,1 = pS(pSpS) + pD(pS(pSpS)E1) + pD(E1p
S(pSpS)) + pD(pS(pSE2)p

S(pSE3)) + . . .

E1

E2 E3

E1

branch 1

branch 2 branch 3

species A species B

gene a in 

species A

gene b in 

species B

root

species tree gene family tree

S G

pD pD pD

pS pS

pS

pS pS pS pS pS pS

pS pSpSpS

pD(Pv,ePw,e) pD(Pu,eEe) pD(EePu,e)

pS(Pv,fPw,g) pS(Pw,fPv,g) pS(1) pS(Pu,fEg) pS(EfPu,g)

pT (Pv,ePw,h) pT (Pw,ePv,h) pT (EePu,h) pT (Pu,eEh)

FIG. 2. Calculating the probability of G along S. a) The probability that the rooted GFT G is generated along the
rooted species tree S according to the ”undated” DTL process can be calculated by summing over all reconciliations. Here
we show the leading terms in the sum over all reconciliations that start with a single gene copy on branch 1 of S and obtain
a rooted gene tree that is congruent with G. b) More generally, to calculate Pu,e, that is, the sum over all reconciliations
generating the sub-tree below some internal node u of G starting from a single gene present on the internal branch e of

S we must consider the following events i) if e is an internal branch of S, speciation with probability pS such that the
descendants of v on G are observed on f of S and of w on G are observed on g of S, or vice versa. If e is a terminal branch,

with probability pS gene u will be observed at the terminal branch e; ii) if e is an internal branch of S, speciation with

probability pS such that the descendants of u are observed on f of S and the copy on g goes extinct with probability Eg , or

vice versa; iii) duplication with probability pD such that v and w are both observed on e; iv) duplication with probability

pD such that either the first or second copy goes extinct, each with probability Ee and u is observed on e; v) transfer with

probability pT , such that the respective branches v and w correspond to the copy on the donor branch e of S, while the
other copy corresponds to the recipient copy on branch h of S that is not an ancestor of e and finally vi) transfer with

probability pT followed by the extinction of either, the copy in the donor linage e with probability Ee of the extinction of
the copy in the recipient, with probability Eh. These correspond to the terms of Eq.2.

that generate the sub-tree below some internal

node u of G starting from a single gene being

present on the internal branch e of the species tree

S. We calculate Pe,u by enumerating all possible

single D, T, and S events that can result from u

on e. These are shown in Fig.2, and yield:

Pe,u =pS (Pg,vPf,w+Pg,wPf,v)+pS (EfPg,u+Pf,uEg)

+pD (Pe,vPe,w)+pD (2Pe,uEe)

+pT
(
P̄ e

wPe,v +P̄ e
vPe,w

)
+pT

(
P̄e,uEe+ĒePe,u

)
,

(9)

where we have introduced the notation:

P̄e,u =
∑

h∈T (e)

Ph,u

|T (e)|
, (10)

where T (e) denotes the branches of S that are not

ancestors of e.
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Similar to the expression for the extinction

probability, Pe,u depends on itself. We solve this

through fixed point iteration analogously to (6).

Aside of the self dependence, every other term

involves either descendant branches in G (u and

w), descendant branches in S (f and g), or

both. This allows to devise a bottom-up dynamic

programming recursion starting at the leaves, such

that for leaf g of the GFT and leaf s of the species

tree P (g,s)=1, if gene g maps to species s, and

zero otherwise.

Given the above, to calculate the reconciliation

likelihood, let G be a rooted GFT, r its root,

S a rooted species tree, V (S) the set of nodes

of S, and N={δ,τ,λ} the set of DTL intensity

parameters. The reconciliation likelihood can then

be expressed as:

L(S,N |G)=
∑

s∈V (S)

Pr,s/
∑

s∈V (S)

(1−Es), (11)

where we divide by
∑

s∈V (S)(1−Es) to condition

on survival, as extinct gene families cannot be

observed.

Joint likelihood evaluation

GeneRax attempts to maximize the joint

likelihood defined as:

L(G,S,N |A)∝
∏
Gi∈G

L(S,N |Gi)L(Gi|Ai) (12)

where G is the set of GFTs, S is the species tree,

N are the DTL event intensity parameters, and A

is the set of gene feamily MSAs.

GeneRax estimates the reconciliation likelihood

L(S,N |Gi) based on the dynamics programming

recursion described above. It uses the highly

optimized pll-modules library (Darriba et al.,

2019) to compute the phylogenetic likelihood

L(Gi|Ai). Hence, GeneRax offers all substitution

models also supported by RAxML-NG (Kozlov

et al., 2019).

Joint likelihood optimization

Given a set of MSAs and a species tree, GeneRax

searches for the set of rooted GFTs and DTL

intensity parameters that maximizes the joint

likelihood. We illustrate the search procedure in

Fig. 3.

GeneRax either starts from user-specified GFTs

or from random GFTs. Our joint likelihood

search algorithm needs to start from GFTs with

high phylogenetic likelihood, preferably inferred

with phylogenetic ML tools such as RAxML-NG

(Kozlov et al., 2019). We provide a rationale

for this in the Results section. When starting

from random GFTs, GeneRax performs an initial

search (Step 0 in Fig. 3) that solely maximizes

the phylogenetic likelihood, without accounting

for the reconciliation likelihood.

After this optional step, GeneRax starts

optimizing the joint likelihood, by alternating

between optimizing the GFTs and the DTL event

intensity parameters.

When optimizing the GFTs (Step 1 in Fig. 3),

GeneRax processes each family independently,

and applies a tree search heuristic to each of them
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FIG. 3. GeneRax pipeline. In each step, we draw in red the parameters that GeneRax optimizes, and in grey the fixed
parameters that GeneRax uses to compute the likelihoods. GeneRax performs Step 0 only when starting from random
GFTs, to infer ML GFTs from the MSAs. Step 1 optimizes the DTL event rates from the GFTs and the species tree. Step 2
optimizes the GFTs from the MSAs, the species tree and the DTL rates. GeneRax repeats Step 1 and Step 2 with increasing
SPR radius, until it reaches the maximum radius. Then it applies Step 3 to reconcile the GFTs with the species tree.

separately: for a given tree, it tests all possible

Subtree Prune and Regraft (SPR) moves within

a given radius and subsequently applies the SPR

move that yields the tree with the highest joint

likelihood. Then it iterates by again applying SPR

moves to this new tree, until the joint likelihood

can not be further improved. At the end of the

GFT optimization, GeneRax increases the SPR

radius by one until a certain maximum values is

reached (see further below).

GeneRax optimizes the DTL intensity

parameters globally over all gene families (Step

2 in Fig. 3). To this end, we apply the gradient

descent method to find a set of DTL intensity

parameters that maximizes the reconciliation

likelihood over all gene families. We numerically

approximate the gradient via finite differences.

The entire procedure stops when the SPR radius

(starting from 1) exceeds a user-defined value.

When the user does not define this maximum SPR

radius, we set it to 5, as we did not observe any

improvement above this value in our experiments.

GFT and species tree reconciliation

The reconciliation likelihood computation

algorithm conducts a post-order traversal of both,

the species tree, and the GFT, and sums over all

possible scenarios at each step of the traversal.

To infer the ML reconciliation (Step 3 in Fig.3),
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FIG. 4. Reconciled GFT and species tree. Users can easily
visualize reconciliations inferred with GeneRax using the
online tool RecPhyloXML-visu (Duchemin et al., 2018).
This example illustrates one HGT and one duplication
events.

GeneRax keeps track of the maximum likelihood

path during the traversal.

GeneRax can export the reconciled GFTs

into both Notung (Chen et al., 2000) and

RecPhyloXML (Duchemin et al., 2018) formats

(Fig. 4).

Parallelization

Achieving ’good’ parallel efficiency given a large

number of gene families is challenging: the most

straight-forward solution consists in assigning a

subset of gene families to each core (Boussau

et al., 2012). However, gene family MSAs are

highly heterogeneous in terms of size, and are

hence hard to evenly distribute over cores (Morel

et al., 2018) such as to achieve ’good’ load balance.

In particular, large gene family MSAs can easily

generate a parallel performance bottleneck. Our

solution allows to split up individual inferences

on such large gene family MSAs across several

cores. Thus, we parallelize over, but also within

gene families, in analogy to our ParGenes (Morel

et al., 2018) tool. However, unlike ParGenes,

GeneRax parallelizes individual GFT searches

over the possible SPR moves and not over

MSA sites. For a given GFT, we distribute

the SPR moves we intend to apply among the

cores assigned to the reconciliation of the GFT

and apply them simultaneously. We adopted

this parallelization approach for two reasons:

(1) unlike the phylogenetic likelihood, the time

for computing a reconciliation likelihood does

not depend on the number of sites (i.e., a
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Dataset Database Species Families Avg. sites Avg. genes Max. genes

Primates ENSEMBL 13 1523 84 45 349

Cyanobacteria HOGENOM 36 1099 239 37 130

Table 1. Description of the empirical datasets used in our benchmarks. We extracted the Primates dataset from the release
96 of the Ensembl Compara database (Zerbino et al., 2017). The Cyanobacteria dataset was originally used in a previous
study (Szöllősi et al., 2013a) and was extracted from the HOGENOM database (Penel et al., 2009).

Software Method type Input trees STA HGT Ref.

RAxML-NG ML Random No No (Kozlov et al., 2019)

Notung Parsimony Supported ML Yes No (Chen et al., 2000)

Treerecs Parsimony + ML Supported ML Yes No (Comte et al., 2018)

Phyldog ML ML Yes No (Boussau et al., 2012)

EcceTERA Parsimony Supported ML or MCMC samples Yes Yes (Scornavacca et al., 2014)

ALE ML MCMC samples Yes Yes (Szöllősi et al., 2013a)

GeneRax ML Random or ML Yes Yes (this paper)

Table 2. Softwares used in our benchmark, with the type of method (ML, parsimony or both), the nature of the input trees
(random tree, ML tree, tree with bootstrap support values or MCMC sample of trees), whether the method is STA and
whether the method accounts for HGT.

parallelization will not scale with the number of

sites in contrast to the phylogenetic likelihood),

and (2) per-MSA gene sequences are typically

not long enough to efficiently parallelize the

phylogenetic likelihood calculations over the sites.

Experiments

We compared GeneRax to competing GFT

inference methods on both, simulated, and

empirical datasets.

Tested software

This subsection describes the settings we used

for executing the competing tools (summarized in

Table 2) in all of our experiments.

We used ParGenes (Morel et al., 2018) to run

RAxML-NG with 10 random and 10 parsimony

starting trees and 100 bootstrap trees. For

methods requiring starting GFTs, we selected

the tree with the best likelihood found by

RAxML-NG. We used 100 bootstrap trees to

compute GFTs with branch support values as

required for Notung and Treerecs. As Notung

does not provide any explicit recommendation

for setting the bootstrap support threshold, we

used the default value (90%). We executed

Treerecs with its automatic threshold selection

from seven threshold values (seven is the default

value). We executed Phyldog with a fixed species

tree using a maximum SPR radius of 5, as
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in GeneRax, since Phyldog does not have a

recommended setting. To execute ALE, we first

generated posterior tree samples with MrBayes,

using two independent runs, four chains, 1,000,000

generations, a sampling frequency of 1,000 and

a burn-in of 100 trees. We used the undated

ALE model to produce 100 tree samples per gene

family. We used the same MrBayes tree samples to

execute EcceTERA with the amalgamate option,

without transfer from the dead, and with the

dated species tree option.

Note that, Treerecs, Notung, MrBayes,

EcceTERA, and ALE do not provide a

parallelization over gene families for typical

distributed memory compute cluster systems. To

execute them on large datasets, we scheduled

them with a dedicated MPI program, by

dynamically assigning jobs (with one job per gene

family) to the available MPI ranks, starting from

the most expensive jobs with the largest gene

family MSAs. Henceforth, we refer to sequential

runtime as the sum of the time required by each

program, and to parallel runtime as the elapsed

time spent for the entire MPI run. For a given

number of cores, the parallel efficiency is the

sequential runtime divided by the product of the

parallel runtime and the number of cores.

We executed GeneRax with default parameters

and with both, random (GeneRax-random),

and RAxML-NG (GeneRax-raxml) starting trees.

When not stated otherwise, we present GeneRax

results for random starting trees.

When working on simulated datasets that were

not expected to contain HGT, we executed both,

ALE, and GeneRax with a HGT rate set to zero,

and denote these runs as ALE-DL and GeneRax-

DL. When accounting for HGT, we denote them

as ALE-DTL and GeneRax-DTL.

Simulated datasets

We executed all tools listed in Table 2

on the dataset originally used to benchmark

ALE (Szöllősi et al., 2013a). Szöllosi et al. initially

inferred GFTs for 1099 Cyanobacteria gene

families using ALE. Then, they simulated new

sequences under the LG+Γ+I model along these

trees, retaining both, the MSA sizes, and branch

lengths. In our experiments, we inferred GFTs

once under LG+Γ+I (true substitution model)

and once under WAG without rate heterogeneity

(misspecified substitution model).

In addition, we generated additional simulated

datasets to investigate the influence of various

parameters on the methods and their respective

accuracy. The parameters we studied are the

number of sites, the average gene branch lengths,

the species tree size, and the DTL intensity

parameters. We also used putative species trees

that were increasingly different from the true

species tree to quantify the robustness of the

methods with respect to topological errors in

the species tree. We simulated the species tree

and GFTs using GenPhyloData (Sjöstrand et al.,

2013), and the sequences using Seq-Gen (Rambaut

and Grass, 1997), which simulates a continuous
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time birth and death process along a time-like

species tree.

Finally, we executed simulations using

SimPhy (Mallo et al., 2015) with increasing

population sizes to assess the impact of ILS. We

define the ILS discordance of a simulated dataset

as being the average relative Robinson-Foulds

(RF) distance (Robinson and Foulds, 1981)

between the true species tree and the true GFTs

obtained when running the same simulations

without D, T, or L events.

Empirical datasets

We executed all methods in Table 2 on the

empirical datasets listed in Table 1. We measured

both, sequential, and parallel runtimes. We also

used GeneRax to evaluate the joint likelihood of

the trees inferred with each method, to assess the

quality of our tree search algorithm whose goal is

to maximize this likelihood.

Results

In the following, we present the results of our

experiments. For all methods, we report GFT

quality (measured by RF distance to the true trees

on simulated datasets, and joint likelihood on

empirical datasets) and computational efficiency

(measured by sequential runtime and parallel

efficiency). All data and all inferred trees are

available at https://cme.h-its.org/exelixis/

material/generax_data.tar.gz.

RF distances to true trees

FIG. 5. Relative RF distances to true trees, by inferring
gene trees with the true substitution model (LG+Γ+I) and
a misspecified substitution model (WAG).

We show the relative RF distances between the

1099 simulated Cyanobacteria true GTRs and the

respective inferred GTRs in Fig. 5. For methods

that yield more than one potential GFT per gene

family (ALE and RAxML-NG), we average the

distance over all inferred trees.

GeneRax and ALE perform better than all

other methods, except in the case of the

misspecified substitution model where Treerecs

performs equally well. Under the true model, STA

methods that do not account for HGT but use

a joint likelihood score (Phyldog and Treerecs)

perform better than the purely sequence-based

method (RAxML-NG), but worse than methods

accounting for HGT. Although EcceTERA

accounts for transfers, it only performs as good

as Treerecs, presumably because the EcceTERA

algorithm only uses parsimony. We hypothesize

that Notung performs worse than all the other

methods because it rearranges trees based on a

parsimony score and an arbitrary support value

threshold.
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(a) Species taxa number (b) Sites number

(c) Increasingly wrong species tree (d) Average DTL rates

(e) Ratio between duplication and transfers rates (f) Gene tree branch lengths
FIG. 6. Comparison of different GTF correction tools on simulated datasets, in presence of horizontal gene transfers.

We summarize the results of the GenPhyloData

simulations where we vary parameters (DTL

intensity parameters, etc.) in presence of HGT

in Fig. 6, and the results of the simulations in

absence of HGT in the Supplementary Material.

GeneRax finds the best trees in 90% of our
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FIG. 7. RF distance to true trees on simulated datasets
with increasing discordance due to ILS.

simulation scenarios, but ALE finds trees that are

almost as good in most simulations. Treerecs and

Phyldog perform almost as well as GeneRax and

ALE in the absence of HGT, but worse under

HGT. Notung performs significantly worse than

all SPA methods.

All STA methods show an analogous accuracy

pattern when we vary parameters: they perform

better with increasing gene sequence signal

strength (Fig. 6 (b) and (f), and perform worse

with increasing discordance between the species

tree and the GFTs (Fig. 6 (c), (d) and (e)).

We show the results of the SimPhy simulations

over varying ILS discordance scores in Fig.7.

GeneRax outperforms all other STA tools. It

finds better GFTs than the only non-STA method

(RAxML-NG) up to an ILS discordance score of

0.6. Our findings suggest that GeneRax can be

deployed for analyzing datasets that exhibit a

moderate degree of ILS.

FIG. 8. Branch score distance to true trees. We excluded
from the plot methods that do not infer the branch lengths.

Branch score distances to true trees

To compare the quality of the gene branch lengths

in terms of expected number of substitutions

per site, we measured the average branch score

distance (Kuhner and Felsenstein, 1994) between

the inferred trees and the true trees (Fig. (8)

with the phangorn R library (Schliep, 2010).

GeneRax performs better than all competing

tools. In particular, GeneRax shows a better

average branch score distance (1.02) than ALE

(1.48). A possible explanation for this is that ALE

does not infer the branch lengths by optimizing

the phylogenetic likelihood score, as opposed to

GeneRax, Treerecs, and RAxML-NG. When using

ALE, Notung, Phyldog, or EcceTERA, users

interested in branch length accuracy would need

to include an additional tool into their pipeline

(e.g., RAxML-NG).

Joint likelihood
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(a) Primates (b) Cyanobacteria

FIG. 9. Log-likelihoods (the higher the better) evaluated with GeneRax. When evaluating the joint likelihood for Primates,
we set the HGT rate to 0.

FIG. 10. Reconciliation and sequence log-likelihoods during
GeneRax tree search on the Cyanobacteria dataset. The
sequence likelihood decreases while the reconciliation
likelihood increases.

We report the joint maximum likelihood scores

of the GFTs obtained with the different tools

in Fig. 9. As the true tree is generally not

know for empirical data, and given that we

are willing to accept the maximum likelihood

criterion, we must assume that the tree yielding

the best joint maximum likelihood is also the

one that best explains the data. This approach

of benchmarking ML tools on empirical datasets

has been used repeatedly for assessing standard

tree inference tools (Kozlov et al., 2019; Nguyen

et al., 2015). The rationale for this is that standard

tree searches based on the phylogenetic likelihood

are inherently more difficult on empirical than

on smooth and perfect simulated data. That is,

differences between tree search algorithms might

sometimes only be observable on empirical data.

As expected, GeneRax finds the highest joint

likelihood score. ALE is close to GeneRax, because

it strives to approximate the same model. As

the remaining tools implement distinct models,

our comparison might appear as being unfair.

However, we mainly regard this as a means of

verifying that GeneRax properly maximizes the

likelihood under its specific reconciliation model.

Treerecs, Phyldog are also very close to GeneRax

in absence of transfers, because they deploy a

similar joint likelihood model. ALE performs

better than Treerecs and Phyldog in presence

of HGT, because Treerecs and Phyldog only
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account for gene duplication and loss. RAxML-

NG, EcceTERA, and Notung do not implement

a joint reconciliation likelihood model, which

explains their low scores.

In addition, when running GeneRax on the

empirical Cyanobacteria dataset, we recorded

both, the reconciliation likelihood and the

phylogenetic likelihood during the tree search

(Fig. 10). We observe that the joint likelihood

optimization occurs through an increase of the

reconciliation likelihood in conjunction with a

decrease of the phylogenetic likelihood. We

observed this consistently on all simulated and

empirical datasets we experimented with. In

general, we observed that our joint likelihood

tree search heuristic is not efficient in improving

the phylogenetic likelihood score, and thus needs

to start from trees with a high phylogenetic

likelihood. For this reason, when the user does not

provide a starting tree, we initially only optimize

the phylogenetic likelihood, and only subsequently

start the joint likelihood optimization.

FIG. 11. Sequential runtimes and additional overhead from
precomputation steps (bootstrap trees with RAxML-NG
for Notung and Treerecs, MCMC samples with MrBayes
for ALE and EcceTERA, and RAxML-NG starting trees for
GeneRax-raxml). The RAxML-NG column corresponds to
the time spent in one single tree search. We represent times
with a logarithmic scale.

Sequential runtimes

We measured the sequential runtimes of all

tools on the empirical Cyanobacteria dataset.

Comparing runtimes is not straightforward: some

tools are very fast, but require an external pre-

processing step, as described in Table 2. For

instance, Notung is the fastest tool, but it requires

GFTs with support values as input, and obtaining

those can be extremely time-consuming. For a fair

comparison, we plot both the time spent in the

GFT inference tools alone, and the time spent in

their respective pre-processing steps (Fig.11).

When only considering the stand-alone runtimes

of the tools, GeneRax is the slowest method.

However, when including the pre-processing cost,

GeneRax becomes the fastest STA approach. In

addition, using only a single tool for the entire

inference process substantially improves usability

and reproducibility of the analyses.
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Parallel efficiency

We measured the parallel runtimes of GeneRax

for different numbers of cores. For this

experiment, we executed GeneRax on the

empirical Cyanobacteria dataset (1099 families),

starting from RAxML-NG trees. We used 4 up

to 512 cores. Despite the highly heterogeneous

gene family MSA sizes (in terms of both number

of sites and number of taxa, see Supplementary

Material), GeneRax achieves a high parallel

efficiency of 70% on 512 cores. We plot the

speedup as a function of the number of cores in

the supplementary material.

We also measured the parallel efficiency of

running the competing methods as described in

the Experiments section, and plot them in the

supplementary material. GeneRax is the only tool

that achieves good efficiency (70%) because it

parallelizes both, over, and within gene families,

thereby achieving a ’good’ load balance. Despite

a similar two-level parallelization scheme, the

parallel efficiency of RAxML-NG (scheduled with

ParGenes, with one starting tree per family) is

below 20%. The reason for this is that ParGenes

parallelizes individual tree searches over the sites

whereas GeneRax parallelizes them over the SPR

moves. Gene MSAs are often short, and there

is typically not a sufficient number of sites

to allocate several cores per tree search with

RAxML-NG. Other competing tools also fail to

attain good parallel efficiency (40%), because they

do not parallelize individual GFT inferences, and

are thus limited by the longest individual per-

tree inference time. The parallel efficiency of

GeneRax decreases when starting from random

trees, because the initial phylogenetic likelihood

optimization step is based on RAxML-NG code,

which does not implement our aforementioned

two-level parallelization scheme yet.

Discussion

An accurate, robust and fast approach

We present GeneRax, an open source STA GFT

inference software. GeneRax can simultaneously

account for substitution and DTL events. It

performs a tree search to optimize a joint

likelihood, that is, the product of the phylogenetic

likelihood and the reconciliation likelihood. It can

handle multiple gene families in parallel. To the

best of our knowledge, GeneRax is the first STA

tool that does not require any pre-processing of

the MSAs. Also, it does not require any arbitrary

threshold settings or parsimony weights, and it

can account for HGT.

On simulated datasets, we demonstrate that

GeneRax and ALE find trees that are closer

to the true trees than those inferred by

competing tools. We show that GeneRax can

provide more accurate gene family trees even

when the species tree is inaccurate and the

substitution model is misspecified. Using two

empirical datasets (Cyanobacteria and Primates),

we confirm that GeneRax finds the best-scoring

maximum likelihood trees under its specific model

among the tested tools, both, with, and without
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HGT. Finally, we show that GeneRax is not only

faster than the tested competing methods (when

accounting for the computational cost of the pre-

processing steps), but also has a substantially

higher parallel efficiency, making it suitable for

seamless large-scale analyses.

GeneRax is a production-level code. We released

it on BioConda (Grüning et al., 2018) to

facilitate installation, and we kept its interface

as simple as possible. While most competing

STA methods require input GFTs, sometimes,

including additional information (e.g., support

values), GeneRax can directly infer the GFTs

from a set of given MSAs. This simplified analysis

process reduces the number of ad hoc choices that

users have to make: GeneRax does not require

bootstrap-support thresholds, parsimony weights,

MCMC convergence criteria, chain settings,

proposal tuning, or priors. Reducing the number

of arbitrary choices does not only yield the tool

easier to run, but also substantially improves the

reproducibility of the results. One could contest

the parameters we used in our experiments for

the pre-processing steps: Treerecs and Notung

might not need 100 bootstrap trees to obtain

reliable support values. ALE and EcceTERA

might not need as many MrBayes runs, chains,

or generations to correctly approximate the

phylogenetic likelihood. In general, it is possible

to run the pre-processing steps faster than in

our experiments. When running the competing

methods, we tried to use the parameters that favor

result quality/confidence over short runtimes, as

we would have done in a real analysis.

Limitations of GeneRax

GeneRax relies on two important assumptions:

first, that the rooted species tree is known, and

second, that the observed discordance between the

GFTs and the species tree is mainly due to D,

T, and L events. Our experiments suggest that,

when those assumptions are violated, GeneRax

can only improve the quality of the GFTs up

to a certain degree. In particular, users should

be cautious when using GeneRax in the presence

of ILS. Furthermore, GeneRax is not suitable

for improving GFT topologies in the presence

of hybridization. Nonetheless, GeneRax might

be deployed for detecting potential hybridization

events, by identifying species pairs exhibiting an

”abnormally high” number of HGT events.

Future work

Despite the favorable evaluation results, GeneRax

still faces several challenges.

First, the GeneRax reconciliation model does

not take into account the branch lengths, neither

in the species tree, nor in the GFTs. This leads

to information loss, and furthermore allows for

transfers between non-contemporary species. We

believe that further adapting and extending the

reconciliation model could improve the quality of

the results. For instance, one could exploit an

ultrametric dated species tree and use speciation

events to slice the species tree, as done in

(Szöllősi et al., 2012). However, slicing the
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species tree increases the number of inner species

nodes quadratically, and thus incurs a substantial

increase in computational cost.

Second, the GeneRax reconciliation model

assumes that ILS does not occur. Some promising

work (Chan et al., 2017; D Rasmussen and

Kellis, 2012) has been conducted to combine DTL

events and ILS in a single model. We believe

that a computationally efficient software that can

account for ILS, DTL events, and substitutions in

a probabilistic framework would represent a major

breakthrough in phylogenetic inference.

Finally, GeneRax needs a known/given species

tree to estimate the GFTs. To this end, we

plan to extend GeneRax to co-estimate both, the

GFTs, and the species tree, as done in (Boussau

et al., 2012). An approach to solving this challenge

consists in inferring initial GFTs with non-STA

methods, and then inferring an initial species

tree that maximizes the reconciliation likelihood

given these GFTs. Then, in a second step, one

can propose new species tree topologies, optimize

the GFTs and DTL intensity parameters on the

proposed new species tree toplplogy, and update

the species tree if the joint likelihood improves.
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