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Abstract

Alzheimer’s disease (AD) is extremely complex for both causal mechanism and clinical manifestation, requiring efforts to

uncover its diversity and the corresponding mechanisms. Here, we applied a modelling analysis to investigate the regulation

divergence among a large-scale cohort of AD patients. We found that transcription regulation tended to get degenerated

in AD patients, which contributed to disease development and the detrimental clinical outcomes, mainly by disrupting

protein degradation, neuroinflammation, mitochondrial and synaptic functions. To measure the accumulated effects, we

came up with a new concept, regulation loss burden, which better correlated with AD related clinical manifestations and

the ageing process. The epigenetic studies to multiple active regulation marks also supported a tendency of regulation

loss in AD patients. Our finding can lead to a unified model as AD causal mechanism, where AD and its diversity are

contributed by accumulated degeneration of transcriptional regulation.

The significance of this study is that: (1) it is the first system biology investigation to transcription regulation divergence

among AD patients; (2) we observed an accumulated degeneration of transcription regulation, which well correlates with

detrimental clinical outcomes; (3) transcriptional degeneration also contributes to the ageing process, where its correlation

with ages is up to 0.78.

1 Introduction

Alzheimer’s disease (AD) is a complex chronic neurodegenerative disease that has been intensively studied for decades. How-

ever, its causal mechanismd remain elusive [1]. More attentions have been focused on the visible neuropathological features,

especially the amyloid plaques and neurofibrillary tangles. Amyloid plaques are composed of depositions of insoluble and

densely packed amyloid beta (A𝛽) protein whereas neurofibrillary tangles are composed of aggregations of hyperphosphory-

lated tau protein [2]. Early-onset AD studies in rare families led to the discovery of three genes, amyloid precursor protein,

presenilin 1, and presenilin 2 that demonstrated the causal effects of A𝛽 in the AD progression [3]. However, this is challenged
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by the observation that some patients with substantial accumulations of plaques have no cognitive impairment [4] and that

drugs targeting A𝛽 all failed in clinical studies [5]. Although neurofibrillary tangles have a stronger correlation with the

decline of cognitive ability and have drawn more attentions recently [6, 7], strong or direct evidence linking neurofibrillary

tangles to AD is still lacking [8].

Integrated systematic approaches, especially coexpression regulatory network analysis, have advanced our understanding

of AD in different ways [9, 10, 11]. In such studies, biological networks are constructed using gene-expression data to identify

the gene modules related to AD genesis and development by integrating quantitative evaluation into both AD neuropathology

and cognitive ability decline. In our previous work, we studied transcriptional dysregulation between AD patients and control

subjects, and identified a core network [12]. Combining computational prediction with experimental perturbation allows the

discovery of causal pathways and regulators, which can be used for therapeutic targets. Compared to studies performed at

the single gene level, network-based analysis provides a more comprehensive insight into AD.

The commonly used algorithms for network analysis, such as WGCNA [13], MEGENA [14] and SpeakEasy [15], apply

coexpression approaches to identify gene modules with common regulations or biological involvements. Originally, network

analysis was often limited by the cohort size and/or less realization to the complexity of diseases. Therefore, the existing tools

usually take less consideration to patients’ diversity and assume all the subjects under the same regulation patterns. Recent

edivdences suggest that AD patients have great diversity at both neuropathologic burden and disease development, mainly

contributed by the divergent involvement of AD genesis mechanisms [16]. With the advancement of the scientific community

for AD studies (e.g. the AMP-AD project), large cohorts have been collected for integrated analysis. Such advancements

persuade us to rethink about the complex dysregulation mechanisms among the AD patients.

Recently, epigenetic studies of AD patients have enhanced our understanding of the dysregulation occuring during AD

genesis [17, 18, 19, 20]. Investigation of DNA methylation marks and maintenance factors reported decrements of DNA

methylation in AD patients [21]. Genome-wide studies of CpG islands identified altered DNA methylation and suggested

their impacts on the AD risk genes [22]. Histone modification studies to active epigenetic marks, such as H4K16ac, H3K9ac

and H3K27ac, suggested that abnormal epigenetic regulation affects the regulation of AD genes [23, 24]. Additionally, recent

studies reported that large-scale changes in H3K27ac could be driven by tau pathology in human brains [19] and that HDAC3

inhibition could reverse AD-related pathologies in the animal model of AD [25]. These finding suggests that there is a close

cross-talk between gene regulation and AD genesis. However, there are still gaps in our understanding between abnormal

epigenetic regulation and the causal mechanisms of AD. Many efforts were put on the known AD genes, such as APP, MAPT

and GSK3B [26]. Similar to genome-wide association studies, it is easy to identify factors associated with AD genesis but

difficult to elucidate the complex causal mechanisms in an integrated framework or to predict disease clinical outcomes of

AD patients.

In this work, we performed a two-stage study to reveal the divergence of transcriptional regulation among AD patients. In

the first stage, we utilized a computational method to study transcription factor (TF)-mediated regulation in a large cohort

of subjects, including both AD patients and normal individuals at different clinical stages. We found that transcriptional

regulation tended to get weakened or missed in AD patients, and some of these regulation loss were closely associated with

clinical features. Interestingly, regulation loss almost indicated detrimental clinical outcomes. Functional annotations further

confirmed that regulation loss disrupted the AD-related biological processes, such as protein degradation, neuroinflammation,

mitochondrial dysfunction, and neuronal/synaptic function. To measure its effects, we came up with a new measurement,

regulation loss burden (RLB), to describe the accumulated degree of regulation loss and found that RLB better indicated

detrimental clinical outcomes than the existing methods. In the second stage, we performed genome-wide studies to active
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Figure 1: Accumulated degeneration of transcription regulation contributes to AD development and detrimental clinical
outcomes. Our results suggest that transcriptional regulation tends to get lost in AD patients, which disrupts the normal
cellular function of brain, e.g. protein degradation, neuroinflammation, mitochondrial, neuronal/synaptic function, and
contributes to the detrimental clinical outcomes. This finding may lead to a unified model to elaborate the causal mechanisms
of AD, where brain transcriptional regulation degenerates from an organized system in normal individuals into a deficient
system in the AD patients.

epigenetic marks, including histone modification marks, open chromatin accessibility and three TF binding sites. A strong

tendency of active mark loss was observed in AD patients, which was consistent with our computational results. Overall,

our results suggest critical roles of accumulated transcriptional regulation loss in AD development and clinical outcomes. It

could lead to a unified model to elaborate the complex causal mechanisms of AD and the diversity among AD patients (see

Figure 1).

2 Results

2.1 Weakened and missed regulation widely exists in AD patients

We explored the divergence of transcriptional regulation among AD patients. Therefore, we developed a bi-clustering al-

gorithm to study TF-mediated regulation in patients at different clinical stages. The design of this algorithm is based on

two assumptions: (1) that we can find a set of biomarker genes to indicate the TF regulatory activity; and (2) that AD

patients can be clustered into groups with different TF regulation status. As shown in Figure 2(a,b), this algorithm takes only

expression data as the input and then output a subset of patients that is regulated by a specific TF. Active TF regulation

is identified if it satisfies following three criteria: (1) TF-gene co-expression correlation |𝑟| is greater than 0.8, which is a

strict cutoff to identify biomarker genes indicating TF regulatory activity; (2) the selected patient subset has more than 50

patients; (3) TF strictly regulates least 30 genes. In case if no TF satisfies the cutoff of |𝑟| > 0.8 in any subset of patients,

the TFs will be assigned with a type of “non-dominant regulation” (NR). NR regulators are not considered to have no clear

regulatory role. The regulatory types of other TFs are determined by their regulation strengths in the remaining patients.

For example, “DR” is assigned if the |𝑟| of remaining patients satisfies 𝑟 > 0.6, which indicates that such a TF has a dominant

regulatory role in all patients. “WR” and “MR” indicate a weakened or missed regulation in the remaining patients when

|𝑟| is above or below 0.3. The patients with weakened or missed regulation are supposed to have regulation loss.

Before application, we performed four evaluations on its reliability, including the following (1) the ability to identify the

subset of patients with different TF regulations; (2) false positive ratio of bi-clustering prediction; (3) the impacts of different

correlation cutoffs on the analysis results; and (4) evaluation using independent normal brain tissues. Our evaluations
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Figure 2: Transcription factor-mediated regulation loss widely exists in AD patients. (a) A computational method to discover
the missed and weakened regulation. In this process, a bi-clustering algorithm is applied to cluster the patients into two
groups with or without TF regulation. Based on the strength of regulation loss, TFs are assigned with types of no dominant
regulation (NR), dominant regulation (DR), weakened regulation (WR) or missed regulation(MR); (b) the dynamic curve
of gene and subject number during the bi-clustering analysis, reflecting the regulatory activity of studied TFs; (c) the
distribution of predicted regulation types, where MR and WR are most observed; (d) TFs tends to have regulation loss in
only portion of subjects (about 25-40% of studied subjects); (e) TF-gene correlation distribution of 6 exemplary regulators,
where TFs take dominantly regulatory roles in some subjects (red line) while their regulations are weakened or missed in
other patients (blue line), indicating existence of regulation loss among the patients.
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suggested that the predicted regulation loss was not due to technical biases of strict cutoffs and that bi-clustering analysis

could recover the true regulation loss of AD patients (see details in Supplementary Results). Meanwhile, we also found that

|𝑟| > 0.8 was a reasonable cutoff to achieve a good analysis power for the data used in this work.

We analyzed the RNA-seq expression data for 945 autopsied samples from 364 subjects in four brain regions: frontal

pole (BA10), superior temporal gyrus (BA22), parahippocampal gyrus (BA36), and frontal cortex (BA44). These subjects

had diverse clinical manifestations, e.g. cognitive score and braak stages. Among them, approximately 61% were diagnosed

as having pathological AD or probable AD (see Figure S1 for detailed clinical information) [27] . Specifically, 869 brain-

expressed TFs were selected to study their regulatory status among these subjects (see Methods for detail). Bi-clustering

analysis identified only nine TFs, including STAT3, ST18, CSRNP3, LMO4, CNOT7, SLC30A9, PEG3, SUB1 and MEF2C,

taking strict regulation in all the subjects at a cutoff of |𝑟| > 0.8. To reduce the false negative discovery of DR TFs due

to an excessively strict cutoff, we gradually loosed the correlation cutoff to the 75% quartile of |𝑟|, 𝑄75%(|𝑟|) = 0.6 or the

minimum number of co-regulated genes to 5. More regulators were identified and they were assigned with regulatory types

of “DR”. For other TFs, the bi-clustering algorithm was optimized to select the maximum number of genes that satisfied a

cutoff of 𝑟 > 0.8. By calculating the coexpression correlation in the remaining subjects, we found that approximately 40% of

TF had weakened regulatory roles in the remaining subjects (0.3 < 𝑄75%(|𝑟|) < 0.6) (see Figure 2(c)). Therefore, these TFs

were assigned with the regulatory types of “WR”. Meanwhile, another 40% of TFs were assigned with the regulatory type of

“MR”, where 𝑄75%(|𝑟|) was less than 0.3 in the remaining subjects. As shown in Figure 2(d), we found that more than half

of the subjects were under the TF regulation when the minimum TF-regulated genes were greater than 30. We also checked

the regulatory relationship between predicted TFs and subjects. We found that the regulation loss was not specific to any

subset of subjects but widely existed in all subjects. Meanwhile, any subject could be under missed or weakened regulation

of multiple TFs (See Figure S2). Figure 2(e) showed the regulatory status of some exemplary TFs, where subjects were

clustered into two subsets under different TF regulations, e.g. DR, WR and MR. We also performed TF over-representation

analysis to check if the TF target genes were enriched with TF-binding motifs. Using the annotation of RcisTarget [28], we

selected 487 TFs for evaluation and found that 31% of them were enriched with corresponding TF binding motifs (see Table

S1), which was comparable to our previous findings [29, 30]. This result suggested that TF-gene regulation identified by

bi-clustering analysis was more likely be bound by predicted TFs.

We speculated that the decreased gene expression of TF genes contributed to the regulation loss. Hence, we evaluated

the differential expression statuses of WR and MR regulators and found that only about 10%-15% of TF genes displayed

significant expression differences between subjects with or without regulation loss at a cutoff of 𝑝 < 0.01 (see Table S2),

suggesting that most of regulation loss was not related to decreased expression of TF genes. We further explored the

transcript isoform usage of undifferentially expressed regulators using RNA-seq data [31]. However, we failed to find a strong

switch in isoform usage, especially for the abundantly expressed isoforms. Overall, it seems that regulation loss is beyond

expression changes of regulator genes. We also investigated the impacts of neuronal loss based on brain-specific marker genes

and did not find any evidence for the existence of neuronal loss (see Supplementary Results).

2.2 Regulation loss almost indicates detrimental clinical outcomes

Next, we investigated if the regulation loss was associated with AD related clinical features. Based on predicted regulatory

statuses, the subjects were automatically clustered into two non-overlapping groups: the subjects under TF regulation and

the ones with regulation loss. Three clinical traits, including the cognitive score (CDR), Braak score (braak) and amyloid

plaque mean size (plaque) were checked for clinical feature differences between the two groups using Kolmogorov–Smirnov
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Figure 3: Regulation loss almost indicates detrimental clinical outcomes. (a) WR and MR TFs predicted with clinical
association in four brain regions. Three clinical traits are used, including cognitive score (CDR), braak score (braak) and
amyloid plaque mean size (plaque). Four brain regions are studied: frontal pole (BA10), superior temporal gyrus (BA22),
parahippocampal gyrus (BA36) and frontal cortex (BA44). (b) The clinical association of exemplary TFs. We observed that
subjects with regulation loss usually had worse clinical outcomes. (c) Regulation loss is always associated with detrimental
clinical outcomes. In this study, we identified about 250 TFs in each brain region to have association with at least one AD-
related clinical trait; fold change analysis indicated that regulation loss of those TFs almost indicated detrimental clinical
outcomes. Here, lower fold changes (< 1) indicate changes to the more detrimental clinical outcomes.
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(K-S) tests. To control for false prediction, we estimated the false discovery ratio (FDR) by randomly shuffling clinical trait

values. At a cutoff of 𝑝 < 0.01 and FDR < 0.05, 291, 277, 335 and 159 TFs were predicted to have association with at

least one of three clinical traits, accounting for about 38%, 36%, 47%, and 22% of MR/WR TFs in BA10, BA22, BA36

and BA44 regions, respectively (see Figure 3(a) and Table S3). To further evaluate the validaity of these observations, we

performed another round of simulation evaluation by repeating the same analysis using random sample combinations. Under

this setting, the maximum number of clinical associated TFs was less than 10 for all three clinical traits and the possibility for

our observation was nearly impossible (𝑝 = 0), which suggested a good confidence to trust the association between regulation

loss and clinical traits. Even though three clinical traits were studied, we found that there was always more association with

CDR and plaque scores than braak (see Figure 3(a)), which is consistent with published reports [10]. We also noticed that

WR regulators were more associated with clinical outcomes than MR regulators (see Figure S3).

Figure 3(b) shows representative TFs and their clinical associations. Many of them have been reported for their involve-

ment in AD or brain function. For example, OLIG2 (Oligodendrocyte transcription factor) locating on chromosome 21 in

a region contributing to the cognitive defects of Down syndrome [32]. Evidences suggest that OLIG2 participates in fate

switch of neurons in AD patients [33]. In our result, OLIG2 was an MR regulator and was significantly associated with both

CDR (𝑝 = 6.86𝑒− 7) and Plague (𝑝 = 7.19𝑒− 9) in three brain regions, including BA10, BA22 and BA44. THRA (Thyroid

Hormone Receptor, Alpha) is a MR regulator associated with CDR (𝑝 = 2.02𝑒− 8) and Plague (𝑝 = 1.04𝑒− 6) in two brain

regions. It is essential for normal neural development and regeneration [34]. THRA has been reported to have a weak genetic

link with AD [35]. ATF4 has been widely reported for the increased expression in AD patients and transcriptional mediator

roles in neuron degeneration, metabolism and memory formation [36]. FOXO3 has been reported in genetics meta-analysis

[37] and participating in neuronal mitophagy [38] and insulin-like growth factor I signaling pathway [39]. CREM has been

reported to have increased gene and protein levels in AD [40]. NUCKS1 is a risk gene for Parkinson’s disease [41].

Using these exemplary TFs (see Figure 3(b)), we observed consistent clinical associations, where TF regulation loss was

observed more often in the patients with a worse diagnosis. We further extended our analysis to other AD associated TFs

by checking the fold change of clinical traits. As shown in Figure 3(c), nearly all tested TFs tended to be associated with

detrimental clinical outcomes, such as declined cognitive ability, increased Braak stage and increased amyloid plaque size.

The similar tendency was consistently observed in four brain regions. Among the three clinical traits, CDR and plague always

indicated more clinical association, e.g. more associated TFs or larger fold changes. Considering that the bi-cluster analysis

was blind to clinical annotations, it seems that TF regulation loss, except for very few TFs, always had a consistent impact

on the clinical outcomes of patients. We also investigated the few TFs with inconsistent clinical association and found that

they usually displayed less significance for clinical association (see Table S3). Overall, these findings suggests that regulation

loss is closely associated with detrimental clinical outcomes of AD patients.

2.3 Transcriptional regulation loss disturbs the AD-related processes

Our algorithm predicted 6300 biomarker genes to be regulated by at least one WR or MR TF in any of four brain regions.

Among them, 43% of genes were regulated by only one TF and 80% were regulated by less than 5 TFs (see Figure S4). It

seems that most of the selected genes were dominantly regulated by only one or a few TFs, which is consistent with the

assumption for biomarker genes. Therefore, it is feasible to study the functional involvement of TFs by enrichment analysis

of their regulated genes. Figure 4(a,b) highlights the key pathways and biological processes associated with regulation loss.

Even though the four brain regions were investigated independently, they indicated similar functions.

Among them, protein degradation, especially the ubiquitin-proteasome system (UPS), was the most affected biological
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process (see Figure S5). Its enrichment was observed in more than 50% of TFs in all four brain regions. The abnormal

accumulation and misfolding of A𝛽 and tau are two features of AD patients as the extracellular amyloid plaques and

intraneuronal neurofibrillary tangles [42]. Growing evidences support a tight link between the impairment of the UPS and

it is speculated that the age-dependent impairment of UPS the could affect the degradation of A𝛽, which leads to abnormal

accumulation and aggregation in the brain; A𝛽 can also inhibit the UPS activity [43]. We found that more than half of the

TFs annotated with ubiquitin-dependent proteasome function were also associated with plaque and braak scores (𝑝 < 0.005)

(see Figure 4(c)), suggesting that amyloid plaque and neurofibrillary tangles are closely associated with dysregulated protein

degradation. Additionally, autophagy, another protein degradation system [44], was enriched in the downstream genes of

more than 60 TFs, among which some have been reported for their regulatory roles in autophagy, such as CEBPG, E2F1,

HLTF, HSF2, KDM1A, NFE2L1, NR1D1 and TRIM28.

Neuroinflammation was the second most enriched biological process. Terms, such as “NIK/NF-kappaB signaling”, “innate

immune response activating cell surface receptor signaling pathway” and “antigen processing and presentation of exogenous

antigen” are enriched with about 40% of TFs in all four brain regions. This finding is consistent with the reports that activation

of inflammatory system contributes to AD pathogenesis [45, 46]. Mitochondria related function, such as “electron transport

chain” and “oxidative phosphorylation”, were enriched in about 40% of TFs. Extensive literature and evidence support the

role of mitochondrial dysfunction and oxidative damage in the genesis of AD [47]. Additionally, mitochondria dysfunction

is also related to other AD-related processes. For example, age-dependent oxidative stress induces the accumulation of A𝛽

and the deposition of neurofibrillary tangles [48]. The cell cycle G2/M phase transition was enriched in about 40% of TFs.

Neurons suffering from synaptic dysfunction, oxidative stress or other stress factors may enter cell cycle and this is linked

to tau hyper-phosphorylation and A𝛽 [49]. Most the reports on the cell cycle are related to the G0 phase and it is still not

clear why only G2/M phase transition terms are enriched in our analysis. Neuronal and synaptic function related processes

were enriched with about 20% of TFs. Neuronal and synaptic losses occur in the entrie phase of AD and they are correlated

with severity cognitive declines [50]. Synaptic function is closely associated with proteasomal processes. For example, the

ubiquitination of synaptic receptors and kinases has crucial roles in synaptic transmission and plasticity [51]. Oligomeric A𝛽

has toxic effects on synaptic function. Other enriched processes include Wnt signalling pathway, rRNA processing, histone

modification and other processes.

Overall, our functional studies of WR/MR TFs successfully re-discovers the key processes and pathways related to

AD genesis and development. Correspondingly, these findings suggest that regulation loss is involved in AD genesis and

development by affecting AD-related processes, especially protein degradation.

2.4 Regulation loss burden better correlates with AD clinical outcomes

We next investigated if regulation loss could be used as a molecular marker to predict clinical outcomes of AD patients. Thus,

we introduce a new measurement, regulation loss burden (RLB), which describes the accumulated degree of transcriptional

regulation loss in AD patients (see Methods section). Unlike other measurements, it reflects overall transcription regulatory

activities in one patient.

In the first analysis, we used all the WR, MR and DR TFs as input to calculate the RLB and found that RLB had strong

correlations with all three clinical traits, especially CDR and Plague (see Figure S6). Spearman’s correlations with CDR

were calculated to 0.39 in BA10 and BA36. Other clinical traits also reached significant correlations (𝑝 < 0.01). Considering

that many TFs are not related to AD, we further restricted TFs to the these associated with AD. We observed that the

association was greatly improved for all three clinical traits (see Figure 5(a)). In BA10 and BA36, the RLB had the best
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correlation with CDR, where Spearman’s correlation was 𝑟 = 0.5. In BA10, RLB had the best correlation with braak score

at 𝑟 = 0.48. In other brain regions, RLB also achieved good correlations with CDR and Plaque, too. As an evaluation, we

also investigated the relevance with other covariates, such as age and sex. As shown in Figure 5(b), RLB only exhibited a

strong correlation with AD-related clinical traits.

Transcriptomic features have been previously explored for their associations with clinical features [11]. However, most of

these studies failed to identify genes or modules with strong correlations to AD clinical traits. We compared RLB with these

measurements (see Figure 5(c) and Figure S7). At the single gene level, no gene displayed a better association than RLB,

e.g. 𝑟 > 0.5. The maximum correlation was observed with Plaque score for HMBOX1 at 𝑟 = 0.44. For CDR and Braak

score, the maximum correlation was with ETV1 at 𝑟 = 0.43 and with VGF at 𝑟 = 0.40, respectively. Among the TF genes,

except ETV1, no other TF gene had a correlation value greater than 0.4. Next, we performed WGCNA network analysis in

each brain region and the predicted modules were evaluated for all clinical traits. Without including the grey module, the

maximum correlation value (𝑟 = 0.34) was observed between CDR and a module predicted in the BA36 region, which was

lower than that of RLB. Overall, our evaluation suggests that RLB better correlates with AD clinical outcomes than the

measurement using single gene or gene modules.

2.5 Regulation loss in independent datasets

We repeated the same analysis using five other set of expression data collected from the published studies. They included

ROSMAP expression data using microarray [9] and RNA-seq [10], HBTRC microarray study [9], Mayo’s RNAseq study for

cerebellum (CBE) and temporal cortex (TCX) [52]. The dataset from Mayo and HBTRC had no extra clinical annotations

and only a binary disease status was available. Thus, the RLB values were checked between the AD patients and control
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subjects. As shown in Figure 6(a-c), AD patients displayed more regulation loss burden than control subjects. Among them,

the HBTRC dataset had more subjects (463 subjects), which allowed a more reliable prediction of regulation loss. Specifically,

196 TFs were identified to be associated with AD disease status, and statistical test suggested a significant regulation loss

in AD patients (𝑝 = 3.8𝑒 − 54). The ROSMAP dataset included both microarray and RNA-seq data. The analysis results

using the microarray data indicated a positive correlation between an increased RLB value and detrimental clinical outcome

(see Figure 6(d, e)). However, using the ROSMAP RNA-seq data, the RLB values did not indicate a consistent tendency. As

shown in Figure 6(f), a positive correlation was observed when Braak score was less 3 and a negatively correlated tendency

was observed when Braak was greater than 3. It seems that the ROSMAP RNA-seq dataset only supports the hypothesized

relationship between RLB and clinical outcomes at an early stage of AD. We evaluated the ROSMAP RNA-seq data but did

not find any clue for inconsistency. Considering the analysis results using microarray, we still believe regulation loss to be

associated with AD clinical outcomes.

Overall, five independent datasets partially or completely support the same conclusion that regulation loss correlates with

the detrimental clinical outcomes of AD patients.

2.6 Loss of active epigenetic regulation marks in AD patients

We evaluated the transcriptional regulation status of AD patients by genome-wide screening to the active regulation marks,

including histone modification, open chromatin accessible regions, transcription factor binding sites. In this study, we used

two strategies to study their statuses. The first option is to do differential peaking analysis to study the peak intensity

between AD and normal samples. Another one is to count absolute number of peaks among the AD patients and normal

samples.

H3K27ac is an active regulation mark and is locatd at both proximal and distal regions of transcription start site (TSS)

[53]. H3K27ac has been observed to display differential enrichment in AD patients, especially in the regulatory regions of

AD risk genes [24]. We performed peak calling analysis on H3K27ac ChIP-seq data and found fewer peaks in AD patients

compared to that of controls, suggesting an active regulation loss in AD patients (see Figure 7(a)). Applying a modified

analysis pipeline origninally introduced in [24], we re-evaluated H3K27ac enriched regions and observed a strong tendency

of H3K27ac mark loss in AD patients, where the ratio of loss against gain was 1 : 0.37 (see Figure 7(b)). Then, we checked

if the H3K27ac loss was associated with dysregulated gene expression. Using the downstream target genes of the top 10

dysregulated TFs (see Table S3), a significant overlap was observed between dysregulated genes and the genes with H3K27ac

loss in the promoter regions (𝑝 = 5.08𝑒− 32 by Fisher’s exact test) (see Figure 7(c). Similar but weak results were observed

with H4K16ac, which is another active regulation mark [23] (see Figure S8).

Active promoters and enhancers are usually associated with open chromatin regions. We performed the assay for

transposase-accessible chromatin using sequencing (ATAC-seq) to identify active regulatory regions. At a cutoff of 𝑞-value

< 0.05, we found 207,765 open chromatin regions in 12 subjects. Both AD patients and control subjects displayed diversity

in ATAC-seq peaks and there was only a weak tendency of open chromatin region loss in AD patients (𝑝 = 0.3) (see Figure

7(d)). We performed differential peaking analysis and found a significant tendency of open chromatin region weakening in

AD patients, where the ratio of loss again gain is 1 : 0.46 (see Figure 7(e)), which supported a open chromatin region loss in

AD patients. We then evaluated their association with dysregulated gene expression. Using the genes mentioned above, we

observed a significant overlap (𝑝 = 8.05𝑒 − 9)(see Figure 7(f)), indicating that lost open chromatin accessible regions were

significantly related to dysregulated gene expression.

We also performed ChIP-seq analysis to identify the binding sites of three TFs, including ATF4, OLIG2 and THRA that
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were predicted to be significantly associated with AD in our analysis. In Figure 7(g), we showed the result of differential peak

analysis to Olig2 binding sites and found a weak binding gain in AD patients, where the ratio of binding site gain against

loss is 1.19 : 1, which did not support regulation loss. Then, we did the peak calling analysis for each sample and observed

more Olig2 binding sites missing in AD patients. As shown in Figure 7(h),7539 peaks were missed in AD patients while only

874 peaks were gained. This result suggested that Olig2 binding sites were significantly lost in AD patients. We performed

the same analysis to ATF4 and THRA. Unlike Olig2, we only observed a weak ATF4 binding peak missing in AD patients.

However, a stronger tendency of binding intensity weakening was observed in differential peaking analysis for both TFs,

especially for THRA (see Figure 7(i-l)). We also analysed the overlaps between lost TF binding sites and the corresponding

dysregulated genes. We mapped ChIP-seq TF peaks to their nearby genes (see Figure S9). We observed significant overlaps

with the lost binding sites of ATF4 (𝑝 = 0.01) and THRA (𝑝 = 0.001) (see Figure S10), which supports the contribution of

lost TF binding sites.

Overall, our results indicate a tendency of active regulation loss in epigenetic regulation and TF binding sites, supporting

the existence of regulation loss.

2.7 Ageing may contribute to the regulation loss in AD

To evaluate the impact of age on regulation loss in AD patients, we investigated if the predicted regulators displayed age-

dependent expression or DNA methylation patterns. We checked predicted TFs with reported ageing-related genes [54]. But

no significant enrichment was observed (𝑝 = 0.15), which indicated that the TFs with regulation loss were not necessarily

ageing-related genes. Next, enrichment analysis was performed on the downstream target genes that were dominantly

regulated by WR/MR regulators. We found that 48.8%, 52.3%, 42.3%, and 67.9% of regulation-lost regulators from four

brain regions were significantly enriched with ageing-related genes (see Table S3). It seems that about half of the regulation

lost TFs have regulatory roles to the ageing-related genes, which suggested a close relationship between AD and the ageing

process.

We performed regulation loss study with respect to the ageing process using a set microarray expression data from human

brain prefrontal cortex. This dataset included 229 AD-free participants with a broad age range from 0 to 70 years old [55].

Using the same analysis parameter, 447 regulators were predicted to be associated with ages. Like that of AD, the ageing

process was accompanied with increased RLB, where Spearman’s correlation between RLB and ages is 0.779 (see Figure 8(a)),

which indicated important roles of regulation loss in the ageing process. We analyzed the overlap of regulation-lost regulators

from AD and ageing and found that 262 TFs were shared (see Figure 8(b)). However, this overlap was not statistically

significant (𝑝 = 0.18). This result suggests that the regulation loss in AD patients is not the exact same regulation loss that

occurs during the ageing process.

We investigated the impact of ageing on AD via two manners. First, we compared the transcriptional regulatory relation-

ships from WR and MR TFs in the ageing process to those of TFs in AD. After filtering the regulations without age correlated

expression patterns, 5 regulators were identified, including three age-positive correlated TFs FOS, JUN and TFAP4, and

two age-negative correlated TFs RFX2 and POU6F1. Figure 8(c) shows the relationships of these transcriptional regulators.

In this network, only 16 regulators were included. However, nearly all of them were associated with AD or neuron related

functions based on text-mining analysis. Another analysis was by identifying the shared WR and MR regulations by both AD

and the ageing process. After filtering genes without age-dependent expression patterns, we proposed 10 regulators. In Figure

8(d), we showed the regulators and their relationship to AD regulators. By checking their expression pattern in the ageing

process, we found that most of them (82%) had negative age-correlated expression profiles. It seems that age-dependent

14

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2019. ; https://doi.org/10.1101/779249doi: bioRxiv preprint 

https://doi.org/10.1101/779249
http://creativecommons.org/licenses/by-nd/4.0/


●●
●

●● ●
●

● ●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ● ● ●●● ● ● ●● ●● ●● ● ●● ● ●●● ●● ●●●● ●● ● ●●● ●

●

● ●●● ●●● ●● ●●● ● ●● ●● ●●● ● ● ●● ●●● ●● ●●● ●● ●● ● ● ●●●●● ● ●●● ● ●●

●

● ●● ●● ●● ●● ● ●● ● ●●● ●● ●● ●●● ● ●●●●● ● ●●● ●● ●● ● ●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ● ●●● ● ●●
●● ●●● ● ●●● ●●●● ●● ● ●● ●●● ● ●● ●●● ● ●

1 2 3 4 5

0
20

40
60

80

RLB

ag
e

r = 0.779

185

41

41

66

3113

1250

37

11

25

35 31

32

7

9

9532

9

10

13

25

25

1013

2
7

5

15

6

aging

BA10

BA22

BA36

BA44

FOS

RFX2

POU6F1

JUN

TFAP4

BTG2

IRF1NR4A1

SOX21

NR2E1

RFX4

MYPOP

GLIS1

ZBTB16

ZNF367
POU3F1

PLAGL2

POU3F1

NFYC

TFAP4

TRERF1

USF2

IRF7

PLAGL2

ZNF367

（a）

（c）

（b）

（d）

Figure 8: The ageing process may contribute to regulation loss in AD. (a) Regulation loss burden is well correlated with
ages, indicating that regulation loss contributes to the ageing process. (b) TF overlaps among the ageing process and AD in
four brain regions, which suggests the close relationship between AD and the ageing process. (c) and (d) show the regulatory
network predicted from regulation loss studies, where the green nodes are regulation-lost TFs in the ageing process while
brown nodes indicate TFs of AD.

down-regulation contributes to regulation loss in AD. However, only a limited portion of AD regulation loss can be explained

by this interpretation.

Overall, we found a close relationship between the ageing process and the AD process. However, it is still unclear how

the ageing process affects the AD development. One hypothesis is that the regulation loss during the ageing process triggers

AD genesis.

3 Discussion

In this work, we performed the first investigation to the diversity of AD patients in both regulation statuses and clinical

manifestations. We found that accumulated degeneration of transcription regulation widely existed in AD patients and

contributed to the disease development, the detrimental clinical outcomes and the ageing process. This conclusion is drawn

based on results using computational modelling analysis to large-scale RNA-seq data and genome-wide studies to epigenetic

marks of active regulation, where we found that (1) transcriptional regulation tends to get lost in AD patients; (2) transcription
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regulation loss almost indicated detrimental clinical outcomes;(3) regulation loss burden was better correlated with the clinical

outcomes than the existing methods; and (4) regulation loss mainly disrupts the AD-related biological processes, especially

protein degradation, neuroinflammation, mitochondrial function and synaptic function.

Recently, a growing number of epigenetic studies of AD have been described. Studies using HDAC inhibitors exert

protective roles by improving dendristic spine density and by facilitating learning and memory formation [25, 56]. H3K27ac

has been studied using genome-wide ChIP-seq studies. Differential peaking analysis has suggested that there is more peak

loss in AD patients [24]. H4K16ac, another aging-related active transcription marks also indicated a tendency of H4K16ac

mark loss [23]. Tau protein burden is reported to have a broad effect on the epigenome [19]. These findings suggests that

epigenetic alterations are involved in the AD genesis and development.

Many biological processes and pathways are associated with AD, such as the presence of amyloid deposition, neurofibril-

lary tangles, synaptic dysfunction, neuroinflammation, neuronal cell death and oxidative stress [57]. However, the specific

mechanisms underlying these AD-related dysfunctions are still not completely understood. Our present study may explain

these observations as a consequence of degeneration of transcriptional regulation. We found that the participant genes of

many AD-related biological processes and pathways were under dysregulation of predicted TFs. TF-mediated regulation loss

can lead to their disturbance at the transcriptional level in AD patients. Among them, protein degradation, neuroinflamma-

tion and mitochondrial function are the most affected processes. They may explain the visible neuropathological features of

AD patients, such as amyloid plaque and neurofibrillary tangles.

Combining these findings, it may lead to a novel causal mechanism for AD genesis and development, where brain tran-

scriptional regulation degenerates from an organized system in normal individuals into a deficient system in the AD patients,

which disrupts many AD-related biological processes. Compared to existing hypotheses, this mechanism better integrates

the existing knowledge about AD under a unified framework, including the epigenetic dysregulation [17, 18, 19], disturbed

gene regulatory network [9, 10, 11], broad involvement of multiple biological processes, complex clinical manifestations and

AD patient diversity. AD genesis and development can be described like that epigenetic dysregulation or missing TF binding

sites disrupt the brain transcription regulation and lead to abnormal cellular responses to internal or external signals; regu-

lation loss mainly affects the AD-related biological processes, such as protein degradation, neuroinflammation mitochondrial

function and synaptic function, which may contribute to the clinical outcomes of AD patients, including tau aggregations,

amyloid plaques, neuroinflammation and mitochondrial dysfunction in the brain.

In the context of this work, transcriptional regulation loss indicates that TFs no longer exerts regulatory roles to their

downstream genes at the right time and right genomic locations. And it is not necessary to indicate non-expression or low-

expression of TF genes or the targeted genes. This is validated by the differential expression analysis between subjects with

or without TF regulation, where the downstream genes of dysregulated TFs were not necessarily differentially expressed.

Hence, it remains unclear as to what contributes to regulation loss in AD patients. We investigated expression changes

of MR and WR regulators by differential expression analysis and differential isoform usage analysis. However, differential

expression of TF genes was only observed for a few TF genes and they did not exhibit significant enrichment. As such, it is

likely that regulation loss is regulated at the levels beyond the expression level of TFs. In our study of active transcription

marks, e.g. H3K27ac, open chromatin accessible regions and TF binding sites, we observed a tendency of active mark loss in

AD, indicating the transcription loss may result from the consequence of multiple dysregulations at different levels. Another

guess is that the ageing process contributes to the regulation loss. We attempted to identify the TFs in the ageing process

that also contributed to regulation loss in AD. Our analysis indicated that they were not the same process for the limited

overlap of lost TFs. Furthermore, we attempted to build the connection from the lost TFs in the ageing process to the
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dysregulation in AD. Several TFs were predicted to take tying roles to AD. However, their contribution is too limited to

account for regulation loss in AD. It is possible that the ageing process just triggers AD genesis.

Current analysis pipeline has several limitations. First, it is not surprising to observe regulation loss happened following

increasing ages, which may explain the causal mechanism of the ageing process in a reasonable way. However, this also

complicates our study to AD for their co-occurrence. Since age is the biggest risk factor of AD, it is important to better

understand how the ageing process contributes to AD genesis. However, by now, there is still no clear clue to bridge

them. In terms of the methodology of our present study, bi-clustering as a data mining method, is also an NP problem.

We applied an approximating solution to identify the gene-subject combinations by gradually removing the subjects and

checking improvement of Spearman’s correlations. This algorithm might reach a local optima or even a false solution.

Another limitation is that we used a set of arbitrary cutoffs in our bi-clustering analysis. For example, we used |𝑟| > 0.8

as the cutoff of TF-gene dominant regulation and used a minimum number of 30 genes and 50 patients as the cutoff for

successful bi-clustering results. Due to the limited knowledge of TF action mechanism, the selected cutoff setting may not be

in accordance with the actual scenarios. Meanwhile, the bi-clustering could generate a continuous combination of subject and

genes. How to select the best gene-patient blocks is also a great challenge. We choose the combination when the number of

block genes reaches the maximum values. This may not work for some TFs. In the future, we would improve the bi-clustering

algorithm so that it can optimize the output based on the properties of bi-clustering output.

4 Data and Methods

4.1 Brain samples

Postmortem brain samples in the prefrontal cortex regions of 26 individuals, including 13 diagnosed with AD and 13 normal

subjects were collected from the Chinese Brain Bank Center in Wuhan (CBBC, http://cbbc.scuec.edu.cn) and China Brain

Bank, Zhejiang University (http://www.neuroscience.zju.edu.cn). Informed consent for autopsy has been signed for all

the subjects by brain banks when the participants were in life. The clinical information of each subject was reviewed by

independent neurologists with expertise in dementia and the neuropathological diagnosis was given regarding the most likely

clinical diagnosis at the time of death. This study was reviewed and approved by the Ethics Committee of both brain banks

and Shanghai University of Chinese Medicine for both ChIP-seq and ATAC-seq. The final sample size was limited by the

available AD samples. 13 AD samples were collected and one sample was excluded for bad sample quality. We prioritized the

samples with no AD or other neurological clinical manifestation as the control samples. The AD and normal samples were

assigned into two groups (each size of 6): one group was used for ChIP-seq experiment of OLIG2 and ATF4 and another

group was used for ChIP-seq of THRA1 and ATAC-seq. The subject information is available in Table S4.

4.2 Chromatin Immunoprecipitation (ChIP-seq)

The whole experiment was performed following the published protocols (see Supplementary Methods). The used the antibody

includes (1) ATF4, CTS,11815S (lot#4); (2) Olig2, RnD, AF2418 (lot#UPA0718031); (3) THRA, SantaCruz, SC-56873

((lot#J1614).

4.3 Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)

ATAC-seq was performed in GENEWIZ company following the protocol introduced in [58, 59] (see Supplementary Methods).
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4.4 Data collection and processing

The RNA-seq expression data were collected from the Mount Sinai Brain Bank (MSBB) study of Accelerating Medicines

Partnership-Alzheimer’s Disease (AMP-AD) projects. The raw counts data were firstly filtered to remove the non-expressed

genes by setting the maximum number of subjects with counts 0 is less than 10%. Then, the counts data were normalized

by the TMM algorithm implemented in edgeR package [60]. A linear regression model was used to adjust the effects of

covariates, including age, sex, postmortem interval (PMI) and RNA integrity number (RIN). The covariates were evaluated

by the principal components to make sure their effects are excluded. The samples with obvious deviation were treated as

outliers and removed for further analysis. The independent expression data, including ROSMAP study using microarray [9],

ROSMAP study using RNA-seq [10], HBTRC study [9], Mayo’s RNAseq study for cerebellum (CBE) and temporal cortex

(TCX) [52]. All of them can be retrieved from AMP-AD projects. Like the ROSMAP data, the RNA-seq counts data

were collected and the similar processing pipeline was applied. For the microarray, the normalized data were collected and

post-processing was performed like that of RNA-seq data.

4.5 Transcription factor

The TFs were selected based on the Gene Ontology (GO) annotation. The used GO biological process terms included “DNA

binding activity” and “ transcription regulator activity”. 1855 genes with both GO annotation were collected. Then, they

were filtered for the ones with gene expression equal to 0 in any sample of RNA-seq data. Finally, 869 TFs were used for

bi-clustering analysis.

We also performed TF binding site over-representation analysis for the target genes identified by bi-clustering analysis.

Here, TF binding annotation were collected from RcisTarget package [28]. 490 out of 869 TFs were selected for evaluation

by filtering the ones without binding motif annotation and the ones with less than 50 target genes. Then, the TF identified

by bi-clustering analysis were checked for motif enrichment. To evaluate random occurrence of enriched TF binding sites, we

randomly selected 𝑛 brain-expressed genes, where 𝑛 was equal to the number of TF-regulated target genes, and found the

chance for false recovery ratio was about 6% on overage.

4.6 Bi-clustering analysis

We developed a bi-clustering algorithm to study patient divergence among AD patients. The philosophy behind this algorithm

was to cluster the AD patients into subsets with different TF regulation status. To measure the regulation status, we selected

a set of biomarker genes to indicate the TF activity, including both average co-expression correlation and number of TF-

regulated genes. To make sure of the confidence, we choose a set of strict parameters setting to define the dominant regulation,

including minimum size of TF regulated patients 𝑛 > 50, minimum number of TF-regulated genes 𝑚 > 30 and minimum

co-expression correlation 𝑟 > 0.8. Only the result satisfying all these thresholds would be reported. As the process of

bi-clustering analysis would generate a continuous number of patients and genes, the solution of bi-clustering analysis was

reported under three scenarios: the solution with the maximum number of genes, the solution with the maximum number

of patients and the solution with the maximum multiplied product values of patient and gene number. We evaluated them

for their clinical association and found that the first one had overall better clinical consistency, which better indicated the

status of regulation loss.

The full description of the algorithm is available in Supplementary Methods. The R and C++ source for bi-clustering

analysis is available: https://github.com/menggf/bireg.
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4.7 Regulation loss burden

We used regulation loss burden (RLB) to measure the degree of regulation loss in a subject. Its calculation was based on

the prediction result of bi-clustering analysis. In this process, each subject was denoted by a binary vector 𝑥𝑖, in which 1

indicated transcription regulation of a corresponding TF and 0 indicated no regulation. RLB is defined as

𝑅𝐿 =
𝑛∑︁

𝑖=1

𝑥𝑖 * 𝑤𝑖

𝑅𝐿𝐵 =
𝑛

𝑅𝐿

(1)

where, 𝑛 is the number of TFs and 𝑤𝑖 is a constant value that is only determined by regulation types. In this work, we

tried different 𝑤𝑖 values for WR TFs, ranging from 0 to 1, and evaluated them by fitting the clinical status of subjects. The

evaluation results indicated the values from 0.5 to 1 acceptable in most of cases. In this work, we used the following setting:

𝑤𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if subject is under strict regulation

0.5 if subject is under weaken regulation

0 if subject is under missed regulation

(2)

4.8 Peak calling

Paired-end reads of ChIP-seq and ATAC-seq DNA fragments were generated by Illumina Novaseq 6000 platform. On average,

20 million reads were available for each sample. The raw fastq files were firstly checked by fastqc and found overall good

quality of the sequencing data. We used NGmerge to remove the adaptors [61]. Then, reads were aligned to human genome

hg38 using bowtie2 [62]. The output sam files were filtered for reads with PCR duplicates, unmapped tags, non-uniquely

mapped tags or with mismatches greater than 2. SAM files were then transformed into sorted and indexed bam files by

samtools [63]. We applied macs2 [64] to identify the peaks under a cutoff of 𝑞 < 0.05. For ATAC-seq data, we used a set of

option “–broad –nomodel –shift 37 –extsize 73 –keep-dup all”.

For both AD and control group, we observed that the number of reported peaks are quite diverse among subjects. To

identify the peaks with more confidence, we did cross-validation to select the peaks observed in more than one sample using

“bedtools”. Each ”*.bed” file was checked with other peak files using “bedtools intersect -wa -f -r 0.6”.

4.9 Differential peak analysis

Besides of peak calling analysis for each sample, we also did differential peak analysis to study the overall histone modifica-

tion/open chromatin accessibility/TF binding intensity in AD and control samples. In this process, we applied an analysis

pipeline proposed by S.J. Marzi et.al [24]. In peak calling steps, bam files of both AD and normal subjects were merged

to maximize the power of peak calling. Under a parameter setting mentioned above, MACS2 [64] was used. Considering

the fact that the histone modification marks usually spread broad regions, we set “–broad” option for the ChIP-seq data of

H3K27ac, H4K16ac and ATAC-seq data. We validated and filtered the identified peaks by checking the peak overlap using

the ones identified in the NIH RoadMap Epigenomics Consortium in all brain regions, including angular gyrus, anterior

caudate, cingulate gyrus, BI.middle hippocampus, inferior temporal lobe, middle frontal lobe and substantia nigra. Next, we

estimated the read abundance of peaks using the tools in Rsubread package. After filtering the peaks with read count of 0
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or total reads number is less than 100, we did differential peak analysis to find the genomic regions with regulation loss and

gain. In this step, we used edgeR [60] to identify the peaks with altered TF binding affinity or open chromatin accessibility

status. Different from S.J. Marzi et.al’s analysis pipeline, we consider the facts that the peaks loss and gain are not equal in

AD samples and one-step differential peak analysis may cause under-estimation to the regulation loss. A better solution is to

normalize the count data using only peaks without regulation loss or gain. Therefore, we applied a multiple round analysis.

In each round, we perform differential peak analysis and removing the differential peaks. This process was repeated until

no new differential peak was reported anymore. The library size and dispersion information of count data were updated

using the count matrix reported in last round of differential peak analysis. Considering that the selected histone modification

markers, open chromatin accessibility and TF binding sites were all associated with active regulation, we reported the peaks

with increased read abundance as regulation gain and the peaks with decreased abundance as the regulation loss at a cutoff

of FDR < 0.05. Using ChIPseeker package [65], we annotated the differential peaks for their genome location and nearby

genes in a arrange from -3000 bp to 1000 bp round transcription start sites.

The perl and R source code for differential peak analysis is available:https://github.com/menggf/bireg/tree/master/

code.

4.10 Functional annotation

Our evaluation suggested that the regulators took dominant regulatory roles to their downstream genes. The functional

involvement of regulators was inferred by annotation to the downstream regulated genes. The R package clusterProfiler

was implemented for enrichment analysis using Gene Ontology biological process terms. Under a cutoff of Benjamini 𝑝 < 0.05,

the enriched terms were selected and calculated for their frequency among all the regulators. After manually filtering the

terms with overlapped functional annotation, terms with both significant enrichment and high frequency were identified to

represent the functional involvement of regulators. The used terms were clustering using the hierarchical clustering method

based on the 𝑝-values reported by enrichment analysis. To smooth the heatmap visualization, the 𝑝-values were transformed

with −𝑙𝑜𝑔10. If the −𝑙𝑜𝑔10(𝑝) value is greater than 6, they were set to 6. We also did the functional annotation for each

regulator by text-mining tools, including Ingenuity Pathway analysis (IPA), GeneCards (https://www.genecards.org/)

and PumMed, to evaluate the functional consistency among prediction from different sources.

4.11 Enrichment analysis

Enrichment analysis was performed to evaluate the statistical significance of feature overlaps, such as genes associated with

the same biological process. For 𝑘 input genes, the number of genes with certain feature is 𝑥. Among 𝑛 whole genomic genes,

the number of genes with such feature is 𝑝. Fisher’s exact test can evaluate if the observed 𝑥 genes resulted from random

occurrences. We used the R codes to calculate statistical significance:

> 𝑚 = 𝑚𝑎𝑡𝑟𝑖𝑥(𝑐(𝑥, 𝑘 − 𝑥, 𝑝− 𝑥, 𝑛− 𝑘), 𝑛𝑐𝑜𝑙 = 2, 𝑏𝑦𝑟𝑜𝑤 = 𝑇 )

> 𝑝 = 𝑓𝑖𝑠ℎ𝑒𝑟.𝑡𝑒𝑠𝑡(𝑚, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = ”𝑔𝑟𝑒𝑎𝑡𝑒𝑟”)$𝑝.𝑣𝑎𝑙𝑢𝑒

4.12 Co-expression network analysis

We used WGCNA, as the implementation of co-expression network analysis, to predict gene modules of expression data

by following the protocol introduced by the official document in https://labs.genetics.ucla.edu/horvath/htdocs/

CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html. Considering the fact that WGCNA has some parameter
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setting while no golden standard to optimize them, we test different setting one by one and chose the setting combination

where best clinical association were observed as the final parameter setting. The summarized profiles or eigengenes of modules

were investigated for their clinical association by Spearman’s correlation. Except for the gray module, modules with the best

clinical correlation were selected for evaluation.

5 Data Available

The ATAC-seq and ChIP-seq data were publicly available in the Gene Expression Omnibus (GEO) database with the ID of

GSE129041. Its reviewer token is: epkfqwoyzfsdxed.
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[28] Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Hana Imrichova, Gert Hulselmans, Florian Rambow,

Jean-Christophe Marine, Pierre Geurts, Jan Aerts, Joost van den Oord, et al. Scenic: single-cell regulatory network

inference and clustering. Nature methods, 14(11):1083, 2017.

[29] Guofeng Meng, Axel Mosig, and Martin Vingron. A computational evaluation of over-representation of regulatory motifs

in the promoter regions of differentially expressed genes. BMC bioinformatics, 11(1):267, 2010.

[30] Guofeng Meng and Martin Vingron. Condition-specific target prediction from motifs and expression. Bioinformatics,

30(12):1643–1650, 2014.

[31] Towfique Raj, Yang I Li, Garrett Wong, Jack Humphrey, Minghui Wang, Satesh Ramdhani, Ying-Chih Wang, Bernard

Ng, Ishaan Gupta, Vahram Haroutunian, et al. Integrative transcriptome analyses of the aging brain implicate altered

splicing in alzheimer’s disease susceptibility. Nature genetics, 50(11):1584, 2018.

[32] Wei Liu, Hui Zhou, Lei Liu, Chuntao Zhao, Yaqi Deng, Lina Chen, Laiman Wu, Nicole Mandrycky, Christopher T

McNabb, Yuanbo Peng, Perry N Fuchs, Jie Lu, Volney Sheen, Mengsheng Qiu, Meng Mao, and Q Richard Lu. Disruption

of neurogenesis and cortical development in transgenic mice misexpressing olig2, a gene in the down syndrome critical

region. Neurobiology of disease, 77:106–116, May 2015.

[33] B Waldau and A K Shetty. Behavior of neural stem cells in the alzheimer brain. Cellular and molecular life sciences :

CMLS, 65:2372–2384, August 2008.

23

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2019. ; https://doi.org/10.1101/779249doi: bioRxiv preprint 

https://doi.org/10.1101/779249
http://creativecommons.org/licenses/by-nd/4.0/


[34] Yan-Yun Liu and Gregory A Brent. Thyroid hormone and the brain: Mechanisms of action in development and role in

protection and promotion of recovery after brain injury. Pharmacology & therapeutics, 186:176–185, June 2018.

[35] Louisa Goumidi, Frédéric Flamant, Corinne Lendon, Daniela Galimberti, Florence Pasquier, Elio Scarpini, Didier Han-

nequin, Dominique Campion, Philippe Amouyel, Jean-Charles Lambert, and Aline Meirhaeghe. Study of thyroid hor-

mone receptor alpha gene polymorphisms on alzheimer’s disease. Neurobiology of aging, 32:624–630, April 2011.

[36] Jimena Baleriola, Chandler A Walker, Ying Y Jean, John F Crary, Carol M Troy, Peter L Nagy, and Ulrich Hengst.

Axonally synthesized atf4 transmits a neurodegenerative signal across brain regions. Cell, 158:1159–1172, August 2014.

[37] Dylan M Williams, Ida K Karlsson, Nancy L Pedersen, and Sara Hägg. Circulating insulin-like growth factors and
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