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Abstract 7 

Foot strike pattern affects ankle joint work and Triceps Surae muscle-tendon dynamics during running. 8 

Whether these changes in muscle-tendon dynamics also affect Triceps Surae muscle energy 9 

consumption is still unknown. In addition, as the Triceps Surae muscle accounts for a substantial 10 

amount of the whole body metabolic energy consumption, changes in Triceps Surae energy 11 

consumption may affect whole body metabolic energy consumption. However, direct measurements 12 

of muscle metabolic energy consumption during dynamic movements is hard. Model-based 13 

approaches can be used to estimate individual muscle and whole body metabolic energy consumption 14 

based on Hill type muscle models. In this study, we use an integrated experimental and dynamic 15 

optimization approach to compute muscle states (muscle forces, lengths, velocities, excitations and 16 

activations) of 10 habitual mid-/forefoot striking and 9 habitual rearfoot striking runners while running 17 

at 10 and 14 km/h. The Achilles tendon stiffness of the musculoskeletal model was adapted to fit 18 

experimental ultrasound data of the Gastrocnemius medialis muscle during ground contact. Next, we 19 

calculated Triceps Surae muscle and whole body metabolic energy consumption using four different 20 

metabolic energy models provided in literature. Neither Triceps Surae metabolic energy consumption 21 

(p > 0.35), nor whole body metabolic energy consumption (p > 0.14) was different between foot strike 22 

patterns, regardless of the energy model used or running speed tested. Our results provide new 23 

evidence that mid-/forefoot and rearfoot strike pattern are metabolically equivalent. 24 

Introduction 25 

The metabolic energy consumed during submaximal running, often referred to as running economy, is 26 

an important factor determining endurance running performance (Jones and Carter, 2000). Reduced 27 

energy consumption corresponds to improved running economy and hence superior endurance 28 

performance (Hoogkamer et al., 2016; Kipp et al., 2019). As such, runners seek to adopt a running 29 

pattern with minimal metabolic energy consumption. One aspect of people’s running pattern is foot 30 

strike pattern. Although foot strike pattern is a continuum, generally three different foot strike 31 

patterns are considered: forefoot strike, midfoot strike and rearfoot strike (Cavanagh and Lafortune, 32 

1980). 33 
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While rearfoot striking is the most common running pattern during shod running (Hasegawa et al., 34 

2007; Kasmer et al., 2013; Larson et al., 2011), there seems to be a widespread popular believe that 35 

forefoot striking would be more economical than rearfoot striking. Previous research has 36 

demonstrated that there is a greater percentage mid-/forefoot strikers among the first finishers in long 37 

distance races (de Almeida et al., 2015; Hasegawa et al., 2007), which suggests that forefoot striking 38 

may be more economical. However, studies comparing metabolic energy consumption between 39 

habitual forefoot and habitual rearfoot strikers found no difference in whole body metabolic energy 40 

consumption (Gruber et al., 2013) or even lower energy consumption in rearfoot strikers compared to 41 

their forefoot striking colleagues at 11 and 13 km/h but not at 15 km/h (Ogueta-Alday et al., 2014). 42 

Available analyses of the kinetic and kinematic differences between foot strike patterns do not clearly 43 

provide evidence for either differences in or unchanged energy consumption with foot strike patterns. 44 

The shorter ground contact times (Di Michele and Merni, 2014; Mercer and Horsch, 2015), associated 45 

with forefoot striking, may increase metabolic energy consumption according to Kram and Taylor’s 46 

cost of generating force hypothesis (Kram and Taylor, 1990). They established that the metabolic 47 

energy consumption is inversely proportional to ground contact time, which implies that forefoot 48 

strikers may consume more metabolic energy. In addition, forefoot strikers demonstrate greater 49 

negative ankle work compared to rearfoot strikers (Stearne et al., 2014). This ankle work is 50 

predominantly absorbed by the muscle-tendon unit (MTU) spanning the ankle joint, i.e., Triceps Surae 51 

muscle and the in series connected tendinous tissue (SEE, series elastic element). Hence, differences 52 

in ankle work may affect the MTU and subsequently the energy consumption of this Triceps Surae 53 

muscle. We recently demonstrated that in habitual mid-/forefoot strikers the Gastrocnemius medialis 54 

(GM) produces greater muscle force but at lower contraction velocities during early stance compared 55 

to habitual rearfoot strikers (Swinnen et al., 2019). Higher muscle force production suggests more 56 

muscle activation and thus higher metabolic energy consumption, whereas lower contraction 57 

velocities are more force efficient and would therefore reduce muscle activation and thus metabolic 58 

energy consumption. Hence, we hypothesized that the differences in metabolic energy consumption 59 

would counteract each other and no difference in GM metabolic energy consumption would exist 60 

(Swinnen et al., 2019). Yet, as Fletcher and MacIntosh (2017) estimated that 25 to 40% of the total 61 

whole body metabolic energy is consumed by the Triceps Surae muscle, we would expect different 62 

whole body metabolic energy consumption if Triceps Surae metabolic energy consumption would be 63 

different between foot strike patterns.  64 

Model-based approaches have been used to estimate individual muscle and whole body metabolic 65 

energy consumption based on Hill type muscle models (Bhargava et al., 2004; Miller, 2014; Uchida et 66 

al., 2016; Umberger, 2010; Umberger et al., 2003). However, to obtain reliable simulation results, a 67 
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close match between simulated and experimental data is essential. Here, we used experimental 68 

dynamics ultrasound data from the Gastrocnemius medialis (GM) to improve our dynamic 69 

optimization and as such, ensure more reliable estimations of muscle metabolic energy consumption. 70 

We used four different metabolic energy models (Bhargava et al., 2004; Uchida et al., 2016; Umberger, 71 

2010; Umberger et al., 2003) to calculate Triceps Surae muscle and whole body metabolic energy 72 

consumption of habitual mid-/forefoot and rearfoot strikers running at 10 and 14 km/h. We 73 

hypothesized that neither Triceps Surae nor whole body metabolic energy consumption would be 74 

different between foot strike patterns. 75 

Methods 76 

 Participants. Ten habitual mid-/forefoot strikers (6 males, 4 females; body mass: 65.2 ± 7.7 kg; 77 

body height: 1.78 ± 0.07 m) and 9 habitual rearfoot strikers (6 males, 3 females; body mass: 72.7 ± 12.5 78 

kg; body height: 1.81 ± 0.08 m) participated in this study. All participants were regular runners who 79 

ran at least 30 km/week, did not have any Achilles tendon or calf injury in the last six months and  had 80 

no prior Achilles tendon surgery. Written informed consent, approved by the local ethical committee 81 

(Medical Ethical Committee of UZ Leuven), was obtained at the start of the experiment. 82 

Experimental procedure. The experimental procedures have been described in detail in our 83 

earlier publication on gastrocnemius medialis muscle-tendon interaction and muscle force production 84 

in this group of runners (Swinnen et al., 2019). Briefly, after a 10 minutes warm-up, participants ran 5 85 

minutes on a force measuring treadmill (Motekforce Link, Amsterdam, The Netherlands): 2.5 minutes 86 

at 10 and at 14 km/h, in randomized order. We collected kinetic, kinematic, muscle activation and 87 

ultrasound data of at least four strides during the last minute of each running speed. All measurements 88 

were synchronized through a trigger pulse signal sent from the ultrasound device.  89 

Kinetics, kinematic and foot strike angle. Thirteen infrared cameras (Vicon, Oxford Metrics, 90 

UK) captured the motion of forty-seven reflective markers at a sampling frequency of 150 Hz. We used 91 

OpenSim 3.3 (OpenSim, Stanford, USA) to first scale a musculoskeletal model based on the subject’s 92 

dimensions (Hamner et al., 2010) and to subsequently compute joint kinematics using a Kalman 93 

smoothing algorithm (De Groote et al., 2008). Muscle tendon unit lengths were calculated using 94 

OpenSim’s Muscle Analysis Tool. 95 

Ground reaction force data, sampled at 900 Hz, was first low pass filtered with a cut-off frequency of 96 

20 Hz and used to determine ground contact phase adopting a 30 N threshold. We determined foot 97 

strike angle using a marker based method (Altman and Davis, 2012). At initial ground contact, we drew 98 

a line through the first metatarsal-phalangeal joint marker and heel marker of the left foot. The angle 99 

between this line and the ground was calculated and considered as the foot strike angle. Following 100 
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Altman and Davis (2012) runners with a foot strike angle greater than 8° were considered rearfoot 101 

strikers, while runners with a foot strike angle under 8° were considered mid-/forefoot strikers. Foot 102 

strike angle was averaged over the strides used for ultrasound analysis. Foot strike type (rearfoot or 103 

mid-/forefoot) was consistent within subjects across running speeds. 104 

We calculated joint torques using OpenSim’s Inverse Dynamics Tool based on joint kinematics and 105 

ground reaction forces. Joint torques were low pass filtered using a recursive fourth order Butterworth 106 

filter with cut-off frequency of 20 Hz. 107 

 Dynamic ultrasound imaging. We collected dynamic ultrasound images of the GM muscle 108 

fascicles of the left leg with a B-mode ultrasound system (Telemed Echoblaster 128 CEXT system) 109 

sampling at 86 Hz. The linear transducer (UAB Telemed, Vilnius, Lithuania, LV 7.5/60/128Z-2) was 110 

placed on the mid-belly of the muscle, aligned with the muscle fascicles and attached to the calf with 111 

tape and bandages. To analyze the GM muscle fascicle lengths and pennation angles we used a semi-112 

automatic tracking algorithm (Farris and Lichtwark, 2016). We analyzed at least four strides and 113 

calculated fascicle length changes relative to fascicle length at toe-off. All data were splined to 100 114 

data points per ground contact, starting at initial contact. 115 

Muscle activity. We used surface electromyography (EMG) to determine GM and Soleus (SOL) 116 

muscle activity of the right leg through a wireless EMG acquisition system (ZeroWire EMG Aurion, 117 

Milano, Italy) measuring at 900 Hz. EMG signals were first band-pass filtered (20-400 Hz), rectified and 118 

low-pass filtered (20 Hz). For each subject and muscle, EMG waveforms were normalized to maximal 119 

activation, determined as the maximal activation of each muscle using a moving average over 10 data 120 

points. Due to technical issues, the EMG data of the GM of one participant (mid-/forefoot striker) and 121 

SOL of three participants (2 mid-/forefoot strikers and 1 rearfoot striker) could not be used. 122 

Comparison between experimental EMG and simulated activation of the GM and SOL demonstrated 123 

similar trends, yet due to our optimization criteria (minimization of muscle activation squared) pre-124 

activation is not predicted (Fig. S1). 125 

 Estimating muscle and whole body metabolic energy consumption. Several models for 126 

estimating muscle metabolic energy rate have been proposed and it is yet unclear which model yields 127 

the most valid results. We, therefore, used multiple models primarily to assure that our results are 128 

independent from the metabolic energy model used. Our goal was not to compare the different energy 129 

models (for comparison between metabolic energy models see Miller 2014). All models required the 130 

muscle states (i.e., muscle activations, excitations, lengths, velocities and forces) as inputs. To obtain 131 

these muscle states we solved the muscle redundancy problem using a dynamic optimization 132 

algorithm that takes into account muscle-tendon dynamics (i.e., muscle activation and contraction 133 
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dynamics) of the 43 lower limb muscles of the left leg in our model (De Groote et al., 2009; De Groote 134 

et al., 2016). Individual muscle moment arms, muscle tendon unit lengths and muscle properties were 135 

extracted from the scaled OpenSim model and were input to the muscle redundancy solver. We scaled 136 

maximal isometric muscle force based on the subject’s body mass and height (Handsfield et al., 2014). 137 

To avoid maximal muscle activations and unrealistically high reserve actuator forces, muscle forces 138 

were multiplied by 3 for all participants. The Triceps Surae muscles, containing the GM, Gastrocnemius 139 

lateralis (GL) and SOL, were modeled as three separate muscle-tendon units, with the tendon 140 

representing the Achilles tendon. To ensure a close match between experimental GM muscle fascicle 141 

length changes and simulated GM muscle fascicle lengths, we adjusted the normalized tendon 142 

stiffness, a scaling factor to calculate GM, GL, SOL tendon stiffness based on the ratio between maximal 143 

isometric force and tendon slack length, to a value of 5 for all participants (Figure 1). Gerus et al. (2015) 144 

previously stated that the Achilles tendon is more compliant than the generic tendon stiffness as 145 

described by Zajac (1989). We tested multiple other values (ranging from 4 to 35) where 5 gave the 146 

best match. The normalized stiffness for all other muscles was kept on the default value of 35. Joint 147 

torques served as inputs to solve the muscle redundancy problem by minimizing the squared muscle 148 

activation. We solved the dynamic optimization problem through direct collocation using GPOP-II 149 

software (Patterson and Rao, 2014). Subsequently the resulting nonlinear equations was solved using 150 

ipopt (Wächter and Biegler, 2006). In 9 out of the 154 ground contact analyzed the optimization 151 

algorithm failed to find an optimal solution, these strides were excluded. 152 

 153 

Figure 1. Simulated (solid) and experimental (dashed) GM muscle fascicle length changes during ground contact in mid-154 
/forefoot strikers (A,B; n = 10) and rearfoot strikers (C,D; n = 9) at 10 km/h (A,C) and 14 km/h (B,D). Muscle fascicle length 155 
changes are normalized to muscle fascicle length at toe off. Shaded area represent standard deviation. 156 
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Next, the simulated muscle states were used as input in four models to estimate muscle metabolic 157 

energy rate 𝐸
˙

 that are consistent with Hill based muscle dynamics: Umberger, Gerritsen and Martin 158 

(2003) (U2003), Bhargava, Pandy and Anderson (2004) (B2004), Umberger (2010) (U2010) and Uchida 159 

et al. (2016) (U2016). All these models had the same general form to calculate energy expenditure: 160 

𝐸
˙

= 𝐻
˙

𝐴 +𝐻
˙

𝑀 +𝐻
˙

𝑆𝐿+ 𝑐𝑊
˙

 161 

Where 𝐻
˙

𝐴, 𝐻
˙

𝑀and 𝐻
˙

𝑆𝐿 are the heat production rates of the muscles for activation, maintenance and 162 

shortening/lengthening respectively, 𝑊
˙

 is the muscle mechanical work rate where concentric work is 163 

defined positively and 𝑐 is weighting factor depending on the type of work (concentric of eccentric). 164 

Major differences between the models are how they treat eccentric muscle work and how they weight 165 

muscle lengthening heat rate. While in U03 and U16 negative mechanical work (i.e., metabolic energy 166 

generation) is incorporated, B04 and U10 are restricted to positive mechanical work only, negative 167 

mechanical work is excluded and the lengthening heat rate coefficient is adapted. Apart from these 168 

differences, the heat rate calculations have similar terms between the models, though the scaling 169 

factors used are different. Activation and maintenance heat rates are generally defined by muscle 170 

mass/force, length and fiber type composition while shortening/lengthening heat rate depend on 171 

muscle contraction velocity. U03, U10 and U16 scale these heat rates by muscle activation whereas 172 

B04 does not. We refer to the specific papers for more detailed information on the models.  173 

Muscle metabolic energy rate was integrated over time to obtain metabolic energy consumption 174 

during one stance phase which was then multiplied by 2, to account for both legs, and multiplied by 175 

the stride frequency to obtain metabolic energy rate in Watts. The metabolic energy consumed by the 176 

Triceps Surae muscles was normalized to their respective muscle mass. We computed whole body 177 

metabolic energy expenditure as the sum of metabolic energy consumed by all 43 muscles included in 178 

the model and added a basal rate of 1.2 W/kg (Waters and Mulroy, 1999). Whole body metabolic 179 

energy consumption was normalized to body mass.  180 

 181 

Statistics. All data are presented as mean ± standard deviation. We categorized our data in 182 

four groups: mid-/forefoot strike at 10 km/h (FF 10), mid-/forefoot strike at 14 km/h (FF 14), rearfoot 183 

strike at 10 km/h (RF 10) and rearfoot strike at 14 km/h (RF 14). First, normality was checked with the 184 

Shaprio-Wilk test. If data from all groups followed a normal distribution a mixed analysis of variance 185 

(ANOVA) was used to determine interaction and main effects (foot strike pattern and running speed) 186 

using SPSS v.24 (IBM SPSS, Armonk, New York, USA). Yet, if not all the data in the groups followed a 187 
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normal distribution, the non-parametric Mann-Whitney U test was performed to compare foot strike 188 

pattern differences at 10 and 14 km/h separately. To determine the effect of running speed for these 189 

datasets, the data was first grouped according to running speed and again checked upon normality. If 190 

both datasets were then normally distributed, a paired t-test was performed, if not we performed a 191 

Wilcoxon signed-rank test. Statistical significance was considered when p < 0.05. 192 

 193 

Results 194 

Although mean foot strike angle was more than 15° different between both foot strike groups (p < 195 

0.01; Table 1), Triceps Surae metabolic energy consumption was not different between foot strike 196 

patterns, regardless of speed or metabolic energy model (p > 0.35; Figure 2). Moreover, metabolic 197 

energy consumed by the individual Triceps Surae muscles, i.e. GM, GL and SOL, was not different 198 

between foot strike patterns (p > 0.10) independent of the model used or running speed. Furthermore, 199 

estimated whole body metabolic energy consumption was not different between foot strike patterns 200 

regardless of model or running speed tested (p > 0.14; Figure 3). As one would expect, running faster 201 

resulted in greater metabolic energy consumption in the Triceps Surae muscle group (p < 0.01) as well 202 

as in all three Triceps Surae individually (p < 0.02). Also, whole body metabolic energy consumption 203 

was greater when running at 14 km/h compared to 10 km/h (p < 0.01). 204 

The ratio of metabolic energy consumed by the Triceps Surae relative to whole body metabolic energy 205 

consumption ranged between 22 and 32% across foot strike patterns and running speeds but was not 206 

different between foot strike patterns (p > 0.19). In contrast, the different models revealed 207 

inconsistent results when the effect of speed on this ratio was considered. While U03 and U16 did not 208 

show significant differences in this ratio between running speeds (p > 0.07), U10 showed a significant 209 

greater ratio at 14km/h compared to 10 km/h (p = 0.01), whereas B04 showed a significant smaller 210 

ratio at 14 km/h than at 10 km/h (p = 0.02). 211 

 212 

 213 

 214 

 215 
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Table 1 Comparison between mid-/forefoot and rearfoot strikers and between 10 and 14 km/h. All data are expressed as 216 
mean ± SD. a significant main foot strike effect. b significant running speed effect. c significant interaction effect. 217 

  speed Forefoot strike Rearfoot strike 

Foot strike angle 

(°)a 

 10 km/h 

14 km/h 

-0.4 ± 4.4 

0.3 ± 5.3 

14.8 ± 3.7 

17.2 ± 5.4 

 

 

Ratio (%) 

 (𝑬
˙

𝑻𝑺/𝑬
˙

𝑾𝑩) 

U03c 

 

B04b 

 

U10b 

 

U16c 

10 km/h 

14 km/h 

10 km/h 

14 km/h 

10 km/h 

14 km/h 

10 km/h 

14 km/h 

26 ± 4 

25 ± 3 

26 ± 3 

23 ± 4 

27 ± 4 

28 ± 5 

27 ± 4 

26 ± 3 

22 ± 8 

25 ± 8 

27 ± 6 

26 ± 6 

28 ± 9 

32 ± 10 

23 ± 8 

26 ± 9 

 218 

 219 
Figure 2. Triceps Surae (TS) metabolic energy consumption including individual muscles: Soleus (black), Gastrocnemius 220 
medialis (dark grey) and Gastrocnemius lateralis (light grey) in mid-/forefoot strikers (FF, n = 10) and rearfoot strikers (RF, 221 
n = 9). Mixed ANOVA or Mann-Whitney U test demonstrated no significant difference in metabolic energy consumed between 222 
foot strike patterns, not for individual Triceps Surae muscle (p > 0.10) nor for all three muscles together (p > 0.35). Mixed 223 
ANOVA, paired t-test or Wilcoxon signed-rank test demonstrated significant greater energy consumption at 14km/h compared 224 
to 10km/h (p < 0.01). 225 

 226 
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Discussion 227 

This study investigated the effect of habitual foot strike pattern on simulated Triceps Surae muscle and 228 

whole body metabolic energy consumption. We used a dynamic optimization approach in which the 229 

Achilles tendon stiffness of the musculoskeletal model was adapted to better match experimental GM 230 

ultrasound data (Figure 1). Four different metabolic energy models were incorporated to ensure model 231 

independency. In line with our hypothesis, none of the individual Triceps Surae muscles, nor whole 232 

body metabolic energy consumption demonstrated significant differences between mid-/forefoot 233 

strikers and rearfoot strikers (Figure 2 and Figure 3). Faster running increased both simulated Triceps 234 

Surae muscle and whole body metabolic energy consumption.  235 

 236 

Figure 3. Estimated whole body (WB) metabolic energy consumption for all four metabolic energy models used for mid-237 
/forefoot strikers at 10 km/h (FF10) and 14 km/h (FF14) and rearfoot strikers at 10 km/h (RF10) and 14 km/h (RF14). U03 238 
= Umberger, Gerritsen and Martin (2003), B04 =  Bhargava, Pandy and Anderson (2004), U10= Umberger (2010) and U16 = 239 
Uchida et al. (2016). Mixed ANOVA or Mann-Whitney U test demonstrated no significant difference between foot strike 240 
patterns (p > 0.14). Mixed ANOVA, paired t-test or Wilcoxon signed-rank test demonstrated significant increase in energy 241 
consumption when running at 14 km/h compared to 10 km/h. 242 

 243 

Our results provide additional scientific evidence that mid-/forefoot and rearfoot strike patterns are 244 

energetically equivalent. We recently showed that GM muscle force production is greater while muscle 245 

contraction velocity is smaller in mid-/forefoot strikers compared to rearfoot strikers, especially during 246 

early ground contact (Swinnen et al., 2019). Here, we provide further evidence that the greater muscle 247 

forces in mid-/forefoot strikers are more economically produced due to the lower muscle contraction 248 
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velocities and hence no difference in GM, GL or SOL metabolic energy consumption between foot 249 

strike patterns exist. Moreover, previous experimental research already demonstrated that 250 

differences in whole body metabolic energy consumption between foot strike patterns are small 251 

(Ogueta-Alday et al., 2014) or even non-existing (Cunningham et al., 2010; Gruber et al., 2013; Lussiana 252 

et al., 2017; Perl et al., 2012). Studies investigating the effect of gait retraining from rearfoot to 253 

forefoot strike running do not find an effect on the metabolic energy consumption during running 254 

when enough training sessions (≥8) were offered (Ekizos et al., 2018; Roper et al., 2017). However, 255 

when only two training sessions were provided an initial increase in metabolic cost is reported (Ekizos 256 

et al., 2018), indicating the need for habituation. Hence, since habituation is necessary when switching 257 

foot strike pattern and switching ultimately does not result in a reduced metabolic cost, switching foot 258 

strike pattern seems to be ineffective from a performance point of view.  259 

Next to estimated Triceps Surae muscle and whole body metabolic energy rate, the contribution of the 260 

Triceps Surae to the whole body metabolic energy rate (i.e. ratio) was also not different between foot 261 

strike patterns. However, the effect of running speed was less clear. Two models (U03 and U16) did 262 

not find a speed effect, while U10 and B04 did find a speed effect, but in opposing directions. With 263 

faster running the relative contribution of joint power/work during ground contact seems to gradually 264 

shift more towards proximal joints (i.e. hip), especially at running speeds closer to sprinting (Schache 265 

et al., 2015). Hence, if a shift in muscle metabolic energy consumption would occur, a shift in the same 266 

direction as joint power would have been expected, implying a decreased relative contribution of the 267 

Triceps Surae with increasing running speed.  However, the difference in running speeds tested in this 268 

study was small and our fastest speed did not approach sprinting. Therefore, to better understand the 269 

effect of running speed on the distribution of muscle metabolic energy consumption across lower 270 

extremity muscles a wider range of running speeds should be investigated. 271 

Dynamic optimization allowed us to account for muscle-tendon interactions when estimating muscle 272 

states. A good match between experimental and predicted muscle states is crucial for good 273 

estimations of muscle metabolic energy. We found that it was important to adapt Achilles tendon 274 

stiffness to obtain a close match between simulated and measured GM fiber lengths. Using a generic 275 

normalized tendon stiffness value of 35 resulted in negligible length changes of the tendinous tissues 276 

and as a consequence muscle fascicle length changes were no longer uncoupled from length changes 277 

of the entire muscle tendon unit (Fig. S2). Nevertheless, there is ample experimental evidence that the 278 

tendinous tissue interacts with the Triceps Surae muscles, uncoupling the muscle fascicle length 279 

changes from the length changes of the entire MTU (Fukunaga et al., 2002; Lai et al., 2015; Lichtwark 280 

and Wilson, 2008), allowing the muscle fascicles to contract at much slower - more force-efficient - 281 

velocities implying lower metabolic energy consumption (Hill, 1922; van der Zee, Lemaire and van 282 
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Soest, 2019). As a result, predicted Triceps Surae muscle metabolic energy consumption with the 283 

generic stiff tendon was on average 80% higher compared to the adapted Achilles tendon stiffness 284 

(Fig. S3). Also, estimated whole body metabolic energy consumption was on average 23% higher 285 

compared to the adapted Achilles tendon stiffness (Fig. S4). The discrepancy between the results based 286 

on the generic and adapted tendon stiffness values illustrates the importance of a good match 287 

between computed and experimental muscle states to obtain reliable results of muscle metabolic 288 

energy consumption. Moreover, the increased metabolic energy consumption associated with the stiff 289 

tendon emphasizes the importance of the muscle-tendon unit interaction on the metabolic energy 290 

consumption during running.  291 

Although our conclusions are independent of the metabolic energy model used, the wide variability in 292 

absolute energy rates between the metabolic energy models are remarkable. While B04 and U10 293 

predict experimental whole body metabolic energy consumption rather close to experimental data, 294 

whole body metabolic energy consumption predicted by U03 and U16 are almost twice as high as 295 

experimentally observed (Batliner et al., 2018; Kipp et al., 2018). The major difference is that U03/U16 296 

neglect eccentric work whereas B04/U10 account for eccentric work. Instead of accounting for 297 

negative work, U03/U16 reduce the lengthening heat rate coefficient. Our results (lower energy rates 298 

with U03/U16) illustrate that the reduction of the lengthening heat rate more than offsets the 299 

exclusion of eccentric muscle work. While we seem to have a good understanding of the energy cost 300 

of isometric and concentric muscle contractions, the energy cost during eccentric or stretch-shortening 301 

muscle contraction is more debatable. It is clear that eccentric muscle work is more efficiently 302 

produced compared to concentric muscle work (Hill, 1960), and therefore it appears reasonable to 303 

allow eccentric muscle work and muscle lengthening to reduce the metabolic energy consumption rate 304 

of a muscle, however a clear consensus on how to treat eccentric work is still lacking. Also the energy 305 

cost associated with the stretch-shortening of a muscle is still controversial (Holt et al., 2014; van der 306 

Zee et al., 2019). Nevertheless, in contrast to the absolute differences, the relative increase in 307 

metabolic energy consumption based on all muscle metabolic models when running faster 308 

corresponds quite well with the experimental data. Experimental data indicates that increasing the 309 

running speed from 10 km/h to 14 km/h would corresponds with an increase in whole body metabolic 310 

energy consumption of approximately 40 to 45% (Batliner et al., 2018; Kipp et al., 2018). The energy 311 

models predict similar increases of 40% (U03), 41% (B04), 49% (U10) and 45% (U16). In summary, while 312 

metabolic energy models do a good job for predicting relative changes, absolute values are not in 313 

accordance with experimental data. Therefore, experimental muscle research on how to account for 314 

the energy cost of eccentric and stretch-shortening muscle contractions is necessary before 315 

recommendations on how to implement these contractions in metabolic energy models can be made. 316 
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Our study has some limitations. First, we did not measure Achilles tendon stiffness from our 317 

participants and assumed equal normalized Achilles tendon stiffness for all subjects. Kubo et al. (2015) 318 

found no difference in Achilles tendon stiffness between foot strike patterns and thus, on average, we 319 

can assume equal normalized Achilles tendon stiffness. Mid-/forefoot strikers are reported to earlier 320 

activate their Gastrocnemii muscles (Ahn et al., 2014; Swinnen et al., 2019). However due to our 321 

optimization criteria (i.e. minimization of muscle activation squared) pre-activation of the Triceps 322 

Surae muscles is not predicted. Still, our simulations demonstrate a slightly earlier Triceps Surae 323 

muscle activation in mid-/forefoot strikers than rearfoot strikers (Fig. S1). Furthermore, our 324 

musculoskeletal model has some limitations. For example, the musculoskeletal model lacks a midfoot 325 

arch, which has been shown to store and release energy and subsequently reduce the metabolic rate 326 

during running (Ker et al., 1987; Stearne et al., 2016). Moreover, we only took metabolic energy 327 

expenditure during ground contact into account, according to Arellano and Kram (2014) only 328 

considering ground contact would lead to an underestimation of 7% of the net metabolic energy 329 

expenditure. We used ultrasound data to validate our simulations, a well-known limitation of 330 

ultrasound data is that these 2D images represents a 3D muscle structure, possibly resulting in 331 

underestimation of muscle fascicle length changes when there is out of plane muscle movement. 332 

In conclusion, we demonstrated that – in contrast with the widespread belief in the running 333 

community – none of the foot strike patterns induce a reduction in metabolic energy consumption of 334 

the Triceps Surae muscle while running. In agreement with previous experimental research, simulated 335 

whole body metabolic energy consumption was also similar between foot strike patterns. Hence, we 336 

conclude that none of the foot strike patterns can be associated with a superior running energetics. 337 

Yet, we looked into differences in metabolic rate during sub-maximal running, an important 338 

performance parameter in distance running. It should be noted that for sprinting energy rate is not as 339 

important due to the short distance/time. 340 
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