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Abstract: How spontaneously fluctuating functional magnetic resonance imaging (fMRI) 
signals in different brain regions relate to behaviour has been an open question for decades. 
Correlations in these signals, known as functional connectivity, can be averaged over several 
minutes of data to provide a stable representation of the functional network architecture for 
an individual. However, associations between these stable features and behavioural traits 
have been shown to be dominated by individual differences in anatomy. Here, we propose 
methods to assess and compare the relation between time-varying functional connectivity, 
time-averaged functional connectivity, structural brain data, and non-imaging subject 
behavioural traits. We use these methods to show that time-varying fMRI functional 
connectivity, detected at time-scales of a few seconds, has associations with some 
behavioural traits that are not dominated by anatomy. Despite time-averaged functional 
connectivity accounting for the largest proportion of variability in the fMRI signal between 
individuals, we found that some aspects of intelligence could only be explained by time-
varying functional connectivity. The finding that time-varying fMRI functional connectivity 
has a unique relationship to population behavioural variability suggests that it might reflect 
transient neuronal communication fluctuating around a stable neural architecture.   
 
Significance statement: Complex cognition is dynamic and emerges from the interaction 
between multiple areas across the whole brain, i.e. from brain networks. Hence, the utility of 
functional MRI to investigate brain activity depends on how well it can capture time-varying 
network interactions. Here, we develop methods to predict behavioural traits of individuals 
from either time-varying functional connectivity, time-averaged functional connectivity, or 
structural brain data. We use these to show that the time-varying nature of functional brain 
networks in fMRI can be reliably measured and can explain aspects of behaviour not 
captured by structural data or time-averaged functional connectivity. These results provide 
important insights to the question of how the brain represents information and how these 
representations can be measured with fMRI. 
 
 
Introduction 
 
The emergence of large-scale distributed networks in spontaneous brain activity as measured 
by functional magnetic resonance imaging (fMRI) is a widely-studied phenomenon (Biswal 
et al., 1995; Fox and Raichle, 2007). These networks have been consistently identified using 
cross-regional temporal correlations – referred to as functional connectivity (FC) 
(Damoiseaux et al., 2006; Smith et al., 2013; Hipp and Siegel, 2015). Typically, FC is 
estimated by averaging over several minutes of data (e.g. across a scanning session) to 
provide a stable representation of the functional network architecture for an individual (Finn 
et al., 2015). This time-averaged FC has previously been associated with mental performance 
(Hampson et al., 2006; Hasson et al., 2009) and, more generally, to widespread behavioural 
phenotypes (Smith et al., 2015). However, there is evidence that these associations are to a 
large extent driven by structural differences between subjects (Bijsterbosch et al., 2018; Llera 
et al., 2019). We hypothesised that, while time-averaged FC might to some extent be 
dominated by structural information, the temporal deviations of FC might be less so, and 
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could thereby have a distinct relationship with behaviour. This would provide evidence that 
time-varying FC from fMRI can reflect momentary neuronal communication fluctuating 
around a stable functional architecture, and might be related to dynamic elements of 
cognition such as attention and thinking (Smallwood and Schooler, 2015; Kucyi, 2017).   
 
While there is clear evidence that electrophysiologically-derived FC relates to momentary 
mental states (Palva and Palva, 2012; Hipp et al., 2011; O’Neill et al., 2017; Quinn et al., 
2018), whether dynamic changes in fMRI-derived FC reflect distinct and transient patterns of 
communication between neuronal populations is still controversial (Gratton et al., 2018). In 
the absence of stimuli, known actions or any ground truth, discerning whether time-varying 
FC carries biological meaning in the resting state is indeed not straightforward (Lurie et al., 
2018; Kucyi et al., 2018). One possibility is to use indirect behavioural correlates, for 
example, by assessing the extent to which FC prior to task onset influences task performance 
(Sadaghiani et al., 2015), quantifying how the execution of a task induces differences in 
subsequent resting-state FC (Waites et al., 2005), or using a low demanding task with well-
defined behavioural information as a surrogate of actual resting-state (Kucyi et al., 2017). 
However, these are normally subtle effects, and other researchers have reported little or no 
differences in FC between task and rest (Hampson et al., 2006; Gratton et al., 2018).  
 
Here, we take a different route, by relating time-varying FC to population variability in 
behavioural traits. For this purpose, we implemented a framework to predict subject non-
imaging traits from either time-varying FC, time-averaged FC, or structural data. Critically, 
this was done in such a way that the prediction could be abstracted from the very distinct 
nature of the features used to represent each of the three modalities, allowing us to compare 
their relative and unique contribution to the prediction in an unbiased manner. Using different 
groups of behavioural traits, we used this approach to explore the relationship between time-
averaged FC and population behaviour, as well as between time-varying FC and population 
behaviour, after accounting for the explanatory power of the structural connectivity features. 
We reasoned that if fMRI time-varying FC represents biologically meaningful 
communication between neuronal populations, then it should be capable of accounting for 
aspects of the subjects’ behavioural phenotypes not explained by the time-averaged FC or the 
structural information. We found that this was the case, particularly for the traits that are 
generally related to intelligence.   
 
To measure time-varying fMRI FC, we used a state-based model where each state is 
associated with a specific pattern of FC (Vidaurre et al., 2017), such that instantaneous 
changes in FC manifest as a change of state. This approach is based on a version of the 
Hidden Markov model (HMM) that, in comparison to previous versions of the model used on 
fMRI (Vidaurre et al., 2017; Stevner et al., 2019), emphasises changes in FC over changes in 
amplitude. To model each subject, the HMM uses a temporally-organised mixture of (quasi-
)stable FC patterns in the form of region-by-region covariance matrices. This is an 
appropriate choice to compare time-varying FC with time-averaged FC, since time-averaged 
FC is also based on region-by-region covariance matrices. To model structural variability, we 
used fractional anisotropy (FA; Basser and Pierpaoli, 1996), mean diffusivity (MD; Basser et 
al., 1994) and voxel-based morphometry (VBM; Ashburner and Friston, 2000).  
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Results 
 
In this section, we first summarise the basic steps of the analysis, which are presented in 
more detail in Methods, and then go on to show that there are aspects of behaviour that are 
uniquely expressed in both time-averaged and time-varying FC. We also show how each of 
these representations explicitly relate to each other and to the structural data in terms of their 
relation to behaviour. Overall, these analyses suggest that time-averaged and time-varying FC 
can indeed reflect separate aspects of brain activity.   
 
Functional representations of the data 
 
We used 1003 subjects’ resting-state fMRI data from the Human Connectome Project (HCP; 
Smith et al, 2013b), where each subject underwent four 15-min sessions (two per day). TR is 
750ms. We used a data-driven parcellation obtained through spatial independent component 
analysis (ICA), and extracted 50 components (Beckmann et al., 2009). The time series of 
these ICA components were then standardised separately for each session.  
 
We considered two different FC-related representations of the data. The first representation is 
a time-averaged FC model, where we represented each subject as one (50 by 50) Pearson’s 
correlation matrix across all ICA component time series (Smith et al, 2013). Because the time 
series have unit-variance, these correlation matrices are equivalent to the correesponding 
covariance matrices.  
 
The second representation is a time-varying FC model: all the ICA time series were fed to a 
Hidden Markov model (HMM), which we first ran at the group level – i.e. on the 
concatenated time series for all subjects. The HMM represents the data as (i) a collection of 
states, each represented by a certain probability distribution; (ii) time series of state activation 
probabilities, one per state and time point, referred to as state time courses; and (iii) a 
transition probability matrix containing the probability of switching from one state to another 
within a session (Vidaurre et al, 2017; Vidaurre et al, 2018a); see Fig SI-1 for an illustration. 
The key assumptions of this approach are: that the data can be reasonably represented using a 
discrete number of probabilistic models; and that occurrence of these models is exclusive – 
i.e. the state time courses’ summation across states is one for each time point. Here, we 
implemented an HMM designed to emphasise periods in time with distinct FC. Specifically, 
each HMM state represents one covariance matrix across ICA components, so that changes 
of state activations within session –expressed by the state time courses– correspond to 
modulations of covariance above and beyond the average covariance or FC. Eight states were 
used in this case. Therefore, in this model the state-specific covariances and transition 
probability matrix are estimated at the group level, whereas the state time courses are subject-
specific. Akin to the procedure known as dual regression in ICA (Nickerson et al., 2017), we 
then performed a process of dual-estimation to obtain subject-specific versions of the group-
level HMM in order to get a fuller subject-specific description of time-varying FC, where 
each subject has their own set of state-specific covariances (i.e., FC matrices), transition 
probability matrix, and state time courses; see Methods for details. As occurs with other 
models which parameter estimation depends on an optimisation process, the inference of the 
HMM can potentially produce different solutions depending on the initialisation (Vidaurre et 
al, 2019). Thus, in order to ensure that our conclusions were robust, we conducted five 
repetitions of the inference. 
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Note that the HMM contains information not just on time-varying FC (how FC changes 
within each session), but also regarding the time-averaged FC (the subject-specific FC 
information that remains stable across sessions for each subject). This is because it is possible 
to fully reconstruct the time-averaged FC estimation from the dual-estimated HMM simply 
by computing a weighted average of the states’ covariance (FC) matrices for each subject, 
where the weights are given by the fractional occupancies and the fractional occupancies are 
defined as the total proportion of time spent at each state for every given subject (Baker et al., 
2014); see Methods for further details.  
 
Prediction of behavioural variability 
 
From the two functional representations just described, and the three considered anatomical 
descriptors (FA, MD, and VBM), we went on to assess how each of these can predict the 
considered behavioural traits. Within a 10-fold cross-validation scheme that respected the 
family structure of the HCP data (Winkler et al., 2015), we predicted a number of 
behavioural traits within six different groups of variables: demographic, cognitive, affective, 
personality and sleep-related (Table SI-1). The word “behavioural” is used here in a general 
sense, even though we included demographic and life-factor traits that are not purely 
behavioural. 
 
We used a prediction approach based on distance matrices (DM) and kernel functions. More 
specifically, we computed (N by N) distance matrices (DM), where N is the number of 
subjects and where the distances are calculated to capture how different a specific descriptor 
is between each pair of subjects. Overall, there is one descriptor for the time-averaged FC, 
five descriptors for the HMM-based-FC (i.e. one per repetition of the HMM inference), and 
one descriptor for each of the structural information measures (FA, MD, VBM);  this yielded 
one time-averaged-FC-DM, five HMM-DMs (one per repetition of the inference), and three 
structural-DMs (FA-DM, MD-DM and VBM-DM). Therefore, whereas the approach to 
compute the distances is specific to each modality, all modalities end up reduced to the same 
format (a DM); see Method for details about how the pairwise distances for each modality 
were computed. We then used cross-validated kernel ridge regression (KRR; Saunders et al, 
1999; Schölkopf and Smola, 2001) to predict behaviour, where the prediction is solely based 
on the DMs. The motivation of this approach is two-fold. First, because the prediction is 
based exclusively on distances, the prediction algorithm (KRR in this case) is unconcerned 
with the specifics of how subjects are represented in each case. This offers a clean solution to 
the problem of how to make predictions using a complex object like an HMM distribution, 
where it is not obvious how to convert into a vector of features so that a standard regression 
method can be used. Second, having all types of representation (time-averaged FC, HMM or 
structural) in the same format (a DM) makes it easier to compare the explanatory power of 
each modality in predicting the subject traits, which otherwise could be heavily dependent on 
their specific parameterisation. See Methods for a mathematical description of KRR.  
 
With the above DMs, we ran the predictions on the uncorrected behavioural traits, as well as 
on the behavioural traits after regressing out (deconfounding) the structural information. 
Specifically, we used cross-validated KRR to estimate FA-, DM- and VBM-based predictions 
for each behavioural trait, using their respective DMs. That is, we estimated regularised KRR 
coefficients on the training folds and applied them on each testing fold, in turn, to eventually 
produce an (N by 1) vector of predicted traits for each behavioural variable and structural 
modality. Then, we computed the corresponding residuals as the difference between the 
predicted and the empirical traits, and used these as FA-, MD- or VBM-deconfounded 
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behavioural traits in the subsequent time-averaged-FC-based and HMM-based predictions. 
Cross-validation-based deconfounding was chosen because it is less aggressive and biased 
than standard deconfounding (Snoek et al., 2019). A scheme of this prediction procedure is 
illustrated in Fig 1 for the dual-estimated HMMs: on top, the prediction from the structural 
information; at the bottom, the subsequent structure-deconfounded estimation from the dual-
estimated HMM. The estimation for the time-averaged FC is analogous.  

 
 

 

 
 
 
Fig 1. Prediction scheme 
using representations in 
terms of distance matrices 
(DM). On top, cross-
validated prediction from 
the structural information; 
at the bottom, structure-
deconfounded prediction 
from the dual-estimated 
HMM, which contains 
information of time-
varying FC.  
 
 
 
 

 
Time-varying FC explains distinct aspects of behaviour  
 
Taking into account the structural information, we next show that time-varying FC contains 
information from some behavioural traits that is not contained in the time-averaged FC, and,  
vice versa, that the time-averaged FC is a better predictor than the time-varying FC 
representation for other traits.  
 
Fig 2 shows a comparison of the prediction performances between the HMM representation 
and the time-averaged FC representation for the six behavioural groups listed in Table SI-1. 
This is presented for both the structure-deconfounded (i.e. for FA, MD and VBM; see above 
for details about deconfounding) and the non-deconfounded case. The top panels present the 
cross-validated explained variance (r2) for the HMM and time-averaged FC representation; 
the middle panels reflect the difference between the two – which is positive when the HMM 
representation is a better predictor and negative otherwise; and the bottom panels contain an 
average of these differences per behavioural group. Statistical significance of whether one 
descriptor has a higher r2 than the other across traits is indicated within the bottom panels 
(*<0.05; **<0.01; permutation testing) for each behavioural group. Note that, as mentioned 
above, in the case of the HMM there are five different predictions per trait, one per run of the 
HMM inference; therefore, also, there are five prediction differences between the HMM and 
the time-averaged representation per trait, and five dots per trait in the middle panels. As 
observed, there is considerable variability in which type of representation (HMM- or time-
averaged-FC-based) represents the traits better. Also, structure-deconfounding affects the 
prediction accuracy considerably, confirming previous studies on the influence of the 
structural information on FC-based predictions (Bijsterbosch et al., 2018; Llera et al., 2019). 
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In this regard, Fig SI-2 shows the loss of accuracy in percentage after correcting for the 
structure for each modality, grouped by behavioural group. For reference, Fig SI-3 shows the 
(uncorrected) explained variance by each structural descriptor. 
 
From this analysis, two conclusions are apparent. First and most importantly, that the 
behavioural groups are well separated by which representation is more effective in predicting 
them, with intelligence being particularly well predicted by the HMM representations. 
Second, that correcting by the structural information improves the relative performance of the 
HMM-DM with respect to the time-averaged-FC-DM (Fig SI-2). 
 
 

 
Fig 2. Explained variance, r2, for the prediction of behavioural traits using the time-averaged-FC-DM and the 
HMM-DMs. In the top panels, r2 values (upwards for the HMM and downwards for the time-averaged 
representation); in the middle panels, difference between the HMM and the average-FC representations; in the 
bottom panels, the average differences aggregated by behavioural group (* and ** reflect statistical significance 
for significance levels of 0.05 and 0.01; see main text).   
 
Changes in variance and amplitude of the signal do not explain behaviour 
 
In order to investigate the possibility that the predictions are primarily driven by within-
session changes in the variance or amplitude of the signal instead of FC, we ran two 
additional varieties of the HMM. In the first, referred to as mean-HMM, the states where 
characterised by Gaussian distributions with distinct patterns of signal amplitude (encoded in 
the mean parameter), and a common full covariance matrix shared across states. In the 
second, the var-HMM, the states were characterised by a diagonal covariance matrix, 
modelling just channel variance and not actual covariance between channels. In these models, 
the FC was not allowed to vary between states. Furthermore, while the mean-HMM takes 
into consideration the time-averaged FC through the shared covariance matrix, the var-HMM 
does not model FC at all. Fig 3 presents the explained variance of the FC-based version of 
the HMM used throughout the paper (here, referred to as FC-HMM) versus the explained 
variance of each of the other two HMM varieties. As observed, the explained variance for 
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FC-HMM is consistently superior, highlighting the importance of accounting for time-
varying FC above and beyond changes in amplitude and variance.  

 
Fig 3. Behavioural explained variance by the FC-based HMM model (which is the type of HMM used 
throughout the paper, Y-axis) vs (i) the mean-HMM, a type of HMM with one shared covariance matrix and one 
“mean” parameter per state that models changes in amplitude (top row; X-axis), and (ii) the Var-HMM, a type 
of HMM with state-specific variance parameters, i.e. with no cross-channel covariances (bottom row; X-axis).   
 
 
Time-varying FC is more dissimilar to the structural information than time-averaged 
FC 
 
Through their differences in accuracy, we have investigated the information contained in 
either the time-averaged or the time-varying FC representations with respect to behaviour. A 
complementary question is about the relation and similarities of these different brain 
representations in terms of their relation to behaviour. That is, if two representations are very 
similar with respect to a given behavioural group, that means that they represent similar 
information about that specific aspect of behaviour; if they are very dissimilar, it means that 
their information about the behavioural group is mostly non-overlapping. Specifically, for 
each group of behavioural traits (see Table SI-1), we correlated the trait predictions between 
each pair of brain representations: time-averaged FC, each of the three structural measures, 
and each of the five HMM runs for the three HMM configurations described in the previous 
section (i.e. FC-HMM, which is the main model used throughout this study; mean-HMM, 
which only models the amplitude; and var-HMM, which models changes in variance). In the 
spirit of (Kriegeskorte et al., 2008), this procedure produced a (no. of brain representations by 
no. of brain representations) similarity matrix per behavioural group, capturing how similar 
the prediction of behavioural traits was between each pair of representations.  
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Fig 4 presents the corresponding similarity matrices, for each behavioural group. The five 
matrices have some common patterns but some differences are also apparent. The most 
relevant pattern here is that the structural representations were more related in all cases to the 
time-averaged-FC than to the FC-HMM representations that capture time-varying FC 
information, confirming that time-varying FC is more unrelated to the structure than time-
averaged FC. We can also observe that the five FC-HMM representations are more consistent 
in explaining the demographic traits (i.e. the correlation between HMM runs is higher) than 
they are in the other groups; and they are also more related to the time-averaged FC 
representation for this behavioural group than for the others. Both findings suggest that at 
least part of the predictive power of the HMM estimations on these traits is not residing in 
their time-varying information, but on the information the FC-HMM representation contains 
about time-averaged FC. The other two types of HMM estimations, having fewer parameters 
and without capturing any information about time-varying FC, are in general more similar 
across runs and quite different from the FC-HMM, indicating that the FC-HMM approach is 
unlikely to be purely driven by changes in amplitude. In terms of the structural information, 
MD and FA are fairly similar to each other for all behavioural groups, but their similarity to 
VBM varies according to the behavioural group (highest for intelligence and sleep; lowest for 
demography).  
 
Altogether, this analysis reveals clear differences and similarities between the different 
neuroimaging representations in terms of explaining behaviour, and provides further evidence 
that time-varying FC is more unrelated to the anatomy than the time-averaged FC. 
 

 
Fig 4. Similarity matrices capturing how similar the prediction of behavioural traits was between each pair of 
representations, shown for each of the five behavioural groups: time-averaged FC, HMM-based representations 
including time-varying FC (FC-HMM; used throughout the paper), HMM representations including only 
changes in amplitude (mean-HMM) or variance (var-HMM), and structural (FA, MD and VBM). 
 
Reproducibility of DMs 
 
The HCP data contains four sessions per subject, with the first two (1 and 2) being acquired 
on one day and the last two (3 and 4) on the following day. In order to further quantify the 
reproducibility of the estimations, we estimated separate time-averaged FC and (FC-)HMM 
models for the first day and for the second day, i.e. for sessions 1 and 2, and then for sessions 
3 and 4. We also estimated models for the first session of the day, and then separately for the 
second session of the day. For each half-split estimation, (HMM- or time-averaged FC-
related), we then computed DMs. Fig 5 presents a quantitative assessment of the 
reproducibility of the estimations in terms of how similar their respective DMs were across 
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half-splits of the data. Here, the dots represent a measure of distance between one pair of 
subjects. As expected, the reproducibility within day is considerably larger than between days 
for both types of representation, and the time-averaged FC description (being a simpler 
quantity to estimate) exhibits a higher reproducibility than the HMM representation (Vidaurre 
et al. 2019).   
 

 
 
Fig 5. Reproducibility of the 
estimations between the first 
and the second day of scanning 
(top), and between the first 
session and the second session 
of each day (bottom), for the 
HMM (left) and the time-
averaged FC representation 
(right). Each dot corresponds to 
an element of the DM, i.e. a 
distance measure between a pair 
of subjects, and the colour 
reflect the density of dots. For 
each panel, the correlation 
between the DMs (i.e. across 
dots) is reported as a Pearson 
correlation r.  
 

 
Discussion 
 
In the resting state, the quantification of time-varying functional connectivity (FC) has 
elicited considerable interest and controversy: that is, to what extent can we measure and 
interpret within-session changes in the patterns of FC between areas? Whereas many studies 
rely on the average magnitude of activation that is evoked by a task or stimulus, FC is a 
second-order statistic and therefore is harder to estimate accurately. Similarly, it is unclear 
whether or not FC can reflect changing patterns of communication between distant neuronal 
populations, and therefore be meaningful for investigating cognition. Even though the total 
amount of between-subject variability attributed to stable subject FC features (i.e. that do not 
change within session and are preserved for each subject across sessions) is considerably 
higher than the within-session variability (i.e. that change within a session; Gratton et al., 
2018), here we show that fMRI-derived FC indeed contains both stable and time-varying 
behaviourally meaningful information, and that time-varying FC can explain behavioural 
variability that is less likely to be mediated by structural connectivity and other anatomical 
features. This suggests that time-varying FC may represent meaningful neuronal dynamics 
related to certain aspects of behaviour. As a consequence, the study of FC fluctuations 
remains promising for the understanding of transient cognition.  
 
To answer this question, it is informative to disentangle the different mechanisms by which 
time-varying FC computed from fMRI data could be non-informative: first, the 
characterisation of time-varying FC may be limited by fundamentally technical issues; 
second, the actual amount of information contained in the time variations, when assessed 
unbiasedly, may be negligible; and third, even if we can prove that there is non-negligible 
information in time-varying FC that can be reliably quantified, it may still not be cognitively 
significant. We argue that certain technical limitations do not apply to all methods of 
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estimating time-varying FC equally. In the case of the HMM, for example, the technical 
limitation of having a statistically unstable estimation due to limited amounts of data is 
overcome by using large amounts of data in the estimation of each state (on average, 125h 
per state in the present data set). 
 
It has been shown that the time-averaged (subject-specific) FC features represent most of the 
variance in fMRI data (Gratton et al., 2018). However, the fact that time-varying FC explains 
considerably less variance does not necessarily mean that time-varying FC is deficient in 
explaining behavioural traits. We consider that discussing the physiological relevance of a 
brain descriptor in terms of explained variance (of the data) is not appropriate for two 
reasons: (i) that “physiological relevance” must be connected to a specific scientific question 
– e.g. relevant to the study of attention; and (ii) that, provided such a question, there is not 
prior evidence to assume that the most informative aspect of the signal (for that question) is 
the one that explains the most variance in the data. For example, in the context of prediction 
it is a well-known phenomenon that the first principal components of the predictor data are 
not necessarily the most explanatory to predict the target variable (Frank and Friedmann, 
1993). As an example closer to neuroscience, electrophysiological signals hold most of their 
variance at lower frequencies. In comparison, only a small fraction of variance is contained 
e.g. in the gamma frequencies (>40 Hz). These, however, have been demonstrated to be 
essential to behaviour (Jensen et al., 2007). Another example is genetics, where the main 
components of population genetic variance do not typically contain (what is generally 
considered) useful information and are usually discarded or even used as confound 
covariates. In summary, the argument that there is considerably more variability in the 
between-subject than in the within-subject differences cannot be used to claim the lack of 
biological relevance of these features. 
 
Some of the conclusions of this study relate to the recent work from Liégeois et al. (2019), 
who found, in fMRI, that the autoregressive model (which linearly represents how on average 
the signal at time point t depends across regions on the signal at time point t-1) was often 
more explanatory of behavioural variability than the standard time-averaged FC estimation. 
Because the autoregressive model is known to describe the dynamics of the signal well 
(Liégeois et al., 2017), the conclusion of this study was that the dynamic aspects of the data 
can often explain behaviour better than (average) instantaneous fMRI correlations. Critically, 
there is a conceptual distinction between a model of the multivariate dynamics of the system 
(as captured by the autoregressive model) and time-varying FC (as captured by the HMM) 
that is important to the message of this study. Specifically, while both the HMM and the 
autoregressive model can capture time-varying FC, the autoregressive model also captures 
other elements such as spectral information (Vidaurre et al., 2016), while the HMM captures 
aspects of the data that the autoregressive model does not explicitly account for, like the 
identification of punctual events in the time series such as periods of higher whole-brain 
synchronisation. For this reason, the autoregressive model is not able to answer our specific 
question, which is focussed on FC and its within-session changes: i.e., do variations over 
time in the fMRI FC have biological significance above and beyond the temporally averaged 
FC, and also the structural information? Can they represent instantaneous neural 
communication? These questions require a model that explicitly considers variations around 
the time-averaged FC in a way that is not mixed with these other elements. The version of the 
HMM used here is one way to achieve this, but not the only one. Other data descriptions 
capturing related or different aspects could also be considered, such as those based on signal 
events (Allan et al., 2014) or quasi-periodic patterns (Thompson et al., 2014). 
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It is also important to appreciate that neither the HMM nor other commonly used time-
varying FC estimators are explicitly biophysical models. Decisions about the appropriate 
number of states and other parameters are useful insofar as they affect the extent to which we 
can address the specific question at hand. For example, estimating more states will offer a 
more fine-grained representation of the data, which might be necessary in certain applications 
but cannot be interpreted as more or less faithful to the biology. In general, different 
parametrisations just offer different perspectives of the data, and, assuming model 
identifiability, the HMM is not more or less valid than other models. We also acknowledge 
that, while the version of the HMM used in this work is designed to emphasise time-varying 
FC, it could also be sensitive to changes in amplitude (Duff et al., 2018). However, we have 
explicitly tested that a version of the HMM only based on changes in amplitude is unable to 
explain behaviour to the same extent, emphasising the importance of time-varying FC. Other 
aspects of the data that can influence the HMM estimation are long-range temporal 
dependencies, which are not explicitly modelled by the HMM (Shappell et al., 2019). A 
quantitative assessment of the long-term dependencies in the data and how they affect the 
HMM estimation will be subject of future work.  
 
An important methodological consideration is that, even though all the representations are 
unbiasedly compared at the level of prediction because of their common DM representation, 
our analysis still depends on the choice of how to compute the distances. For example, in this 
study we used a Kullback-Leibler divergence approximation to compute distances between 
HMM representations (Do, 2003; see Methods). Alternatively, one could compute differences 
purely based on the temporal aspects of the model (e.g. the transition probability matrix) or 
its spatial properties. Future work will be dedicated to devise methods where the computation 
of the distances is incorporated as part of the prediction, so that the most predictive features 
of the models are identified in a data-driven way.   
 
Another aspect to consider about models for which inversion does not have a mathematically 
closed formulation (as is the case of ICA and the HMM among many others – but not of 
Pearson correlation or the autoregressive model) is the fact that, every time we estimate the 
model, we might get a slightly different description of the data insofar as the estimation has a 
random seed (see for example Fig 4). Even though the HMM inference is relatively stable on 
this data set (Vidaurre et al, 2017), that is not guaranteed to be the case always. Again, these 
are not biophysical models, so all estimations are theoretically valid as far as they are 
considered as what they are: data-driven descriptions. Although there exist statistical testing 
approaches available to combine across estimations so that statistical power is boosted 
(Vidaurre et al., 2019), in this work we have analysed each estimation separately to ensure 
the comparability of the results. 
 
A final caveat to consider is that the ICA maps are known to contain important subject-
specific differences that can be relevant to behaviour (Bijsterbosch et al. 2018). These 
differences were not considered in this paper, as we estimated both time-varying and time-
averaged FC using only the ICA time series. In future work, we will study the combination of 
these analyses with techniques that are more suitable to account for this information 
(Harrison et al., 2015). 
 
In summary, this study presents methods to use different sources of brain data and/or models 
for prediction, in a way that makes comparisons possible in terms of their explanatory power 
of behavioural or clinical variables. Using this method, we have shown that time-averaged 
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and time-varying FC explain distinct aspects of behaviour, above and beyond the behavioural 
variability expressed on the considered structural brain data. 
 
Methods 
 
We provide some details on the nature of the Hidden Markov model estimation, the 
computation of the distances between each pair of subjects for each of the considered 
measures or subject variables, the use of kernel regression to test the relation between 
imaging and non-imaging variables, and the statistical tests used in the paper.  
 
 
 
An FC-focused Hidden Markov model 
 
The Hidden Markov model (HMM) is a probabilistic framework used to model time series 
using a finite number of recurring patterns that succeed each other in some order (Rabiner, 
1989). Each of these patterns or states are an instantiation of a certain probability distribution. 
The HMM is generic in the sense that it can accommodate different state probability 
distributions, depending of the type of data we are processing and the features that we wish to 
model. A suitable state choice for fMRI data is the Gaussian distribution (Vidaurre et al., 
2017), where each state, indexed by k, is modelled by a certain "mean activity" parameter μk 
and a covariance matrix Σk. Let xt be the data at time point t – i.e. the value of the ICA time 
courses at t. The probability density function that describes xt, assuming that state k is active 
at time t, is given by  
 

 2 ��� �⁄  |��|�/� exp 
� (��� 
������(��� 
���

�  , 
 
where J is the number of brain regions (here ICA components), |Σk| is the determinant of the 
state-specific covariance matrix Σk and exp() is the exponential function. Here, Σk represents 
the covariance of the residuals, i.e. after subtracting the mean parameter μk to the signal. 
 
Note that the interpretation of Σk as FC is not analogous to what is typically referred to when 
time-varying FC is assessed using sliding-window analysis (Thompson and Fransson, 2018). 
This is because, as opposed to sliding windows, in this type of HMM the mean μk is also 
allowed to be time-varying. Therefore, in order to focus the HMM decomposition on the FC 
changes, and in order to make the HMM estimation more comparable to standard analyses of 
time-varying FC, we enforced μk = 0, by describing the probability density function for state 
k as   
 

 2 ��� �⁄   |��|�/� exp 
� �� �������

�  , 
 
where Σk represents state-specific FC. This is equivalent to describing each state by a Wishart 
distribution. Note that this model carries information of both time-averaged FC and time-
varying FC. 
 
Another important element of the HMM, also estimated from the data, is the transition 
probability matrix (TPM), which encodes the probability of transitioning from one state to 
another at any time point. Practically speaking, the TPM serves two purposes: it identifies the 
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transitions that are more probable, and it regularises the state switching to minimise the 
amount of spurious transitions. In particular, whenever we have a more persistent (temporally 
regularised) solution, the diagonal elements will be comparably larger than the off-diagonal 
elements of the TPM.  
 
The estimation of the HMM, carried out through a procedure of Bayesian variational 
inference (Wainwright and Jordan, 2008; Vidaurre et al., 2018a), was first computed at the 
group level, such that the state probability distributions were shared across subject – though 
the state time courses and the time spent in each state were subject-specific.  
 
Next, we computed subject-specific HMMs using a process that we refer to as dual-
estimation (in analogy to dual-regression in ICA; Beckmann et al., 2009). To do this, we 
simply used the subject-specific state time courses to compute a subject-specific estimation 
the states; then, based on these state estimations, we recomputed the state time courses and 
the TPM for each subject.  
 
The HMM contains time-averaged FC information 
 
Given N subjects and K states, the group level HMM estimation represents some of the 
subject-specific time-averaged (or static) FC (avFC) information, according to the following 
expression: 
 
  avFC
  � avFC
��������

 = ∑ 	�
  ���  ,   
 
where i indexes subjects and 	�
  represents the fractional occupancy for subject i and state k 
(i.e. the total time spent on that state for that subject). Given that the number of states is lower 
than the number of subjects (K < N), this is an approximation, and therefore there is some 
time-averaged FC information that is not captured by the HMM. Likewise, the HMM has 
information (for example in the TPM) that is not captured by a standard time-averaged FC 
estimation; formally, we refer to this differential information as time-varying FC. 
 
As opposed to the group level estimation, the dual-estimated HMM estimation captures all 
the time-averaged FC information 
  
 avFC
  = avFC
������ 
  ∑ 	�
  ������  ,   
 
where d-e denotes dual-estimated. This is because: 
 
   

avFC
������
 =  ∑ 	�
  ���� ���

�  �����
���� ���

��  = �
�  ∑ ∑ ���
  ������� 


                                              ��  ∑ ����� sum� ���
�  
  �
�  ∑ ������  
 avFC
 ,  

 
where ���
  is the probability for subject i to be in state k at time point t, sum� ���
 
 1 by the 

definition of a probability, and 	�
 
  �
�  ∑  ���
� .  

 
The HMM contains time-varying FC information 
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We have established that the HMM contains some time-averaged FC information. But, to 
which extent does the HMM capture time-varying FC information, above and beyond the 
time-averaged FC?  
 
As a sanity check, in Fig SI-4 we show that the time-averaged FC contains information that 
is essentially uncorrelated to the FC temporal variability. To compute a measure of the extent 
to which there is time-varying FC for each pair of regions, we first constructed an 
instantaneous estimate of FC at each time point, using a weighted sum of the dual-estimated 
HMM states’ FC, weighted by the assigned HMM state probabilities at that time point. We 
then took the variance of these instantaneous estimates of FC across time to produce a 
(regions-by-regions) matrix of estimated FC temporal variability for each given subject. We 
then compared this to the time-averaged FC, confirming that these are unrelated.  
 
 
 
Other HMMs with no time-varying FC information 
 
Previously, we have shown that the dual-estimated HMMs contain all the information there is 
about time-averaged FC. Having K FC descriptions per subject instead of one, plus a TPM 
ruling the transitions between these states, it is apparent that the HMM contains additional 
information beyond time-averaged FC. An important question is then what that additional 
information represents. There are three possible sources of variability: actual within-session 
changes of FC (i.e. time-varying FC), within-session changes in the variance of the signal, 
and estimation noise. By meaningfully relating the HMM information to behaviour above and 
beyond the influence of time-averaged FC (see below, and Results) we can rule out the 
possibility that the HMM extra parameters are purely noise-driven. However, given that both 
variances and correlations (i.e. FC) are part of the state descriptions, there is no 
straightforward analytical way to disambiguate how much these two elements drove the 
inference of the HMM. In order to prove the relevance of pure time-varying FC in the HMM 
estimation, we obtained alternative HMM estimations where the states are purely derived by 
changes in the variance of the signal. The probability density function of this model is given 
by  
 

 ∏  � �
�� � ����

 exp 
�����
� ����   �  , 

 
where ∏ �·�  represents multiplication across regions, � ��  is the variance for region j and state 
k, and ��  is the value of the signal for region j at time point t.  
 
The fact that HMM using full covariances matrices can explain aspects of behaviour that this 
model was unable to explain (see Fig 4) suggests that there is relevant information in the 
HMM that is not related to changes in variance. 
 
Even though the mean parameter of the Gaussian distribution (which reflects the amount of 
activity of each state with respect to the average signal) was not included in the model in the 
first place, we estimated a third HMM model where the states were solely defined by the 
mean, i.e. without state-specific covariances – and with a shared, global covariance. The 
purpose of this analysis is to rule out the possibility that this type of information, though not 
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explicitly included in the HMM description used here, permeated the state covariance 
matrices and determined the HMM inference. The probability density function of this model 
is given by  
 

 � |�|�/� exp 
� (��� 
�����(��� 
���

�  , 
 
with one single covariance matrix � shared across states. Note that this model holds 
important similarities with ICA, in the sense that each state or component is represented by a 
map of activation. Again, as reflected in Fig 4, this model is less predictive of behaviour. 
 
 
Measures of structural variability 
 
We applied independent component analysis (implemented by the Melodic tool in FSL; 
Jenkinson et al., 2012) on the fractional anisotropy (FA), mean diffusivity (MD), and voxel-
based morphometry (VBM) values for each subject across the whole brain (2mm resolution); 
resulting in 50 independent components of FA, MD, and VBM variability across subjects. 
 
In more detail, the structural T1 weighted data was preprocessed using the computational 
analysis toolbox (CAT)−12 (Nenadic et al., 2015), which extends the SPM’s VBM pipeline 
(Ashburner and Friston, 2000). Before grey matter volume estimation, all participants’ T1 
images were affinely aligned, segmented, normalized, and bias-field-corrected, yielding 
images containing grey and white matter segments and CSF. DARTEL (Ashburner, 2007) 
was then used to normalize all images to a standard grey matter template provided by CAT-
12. Subsequently, all grey matter volumes were smoothed with a 9.4 mm FWHM Gaussian 
smoothing kernel (sigma = 4 mm). The diffusion weighted data was preprocessed using the 
DTIFIT routine from FSL (Jenkinson at al., 2012) in order to extract FA and MD. More 
details about structural preprocessing can be found in Llera et al. (2019).  
 
Measuring dissimilarities between subjects 
 
The kernel-based prediction algorithm employed in this paper is based on distance matrices 
(DM) containing the dissimilarities between each pair of subjects within the geometrical 
space defined by each type of representation (see Fig 1). As mentioned, the main purpose of 
this approach here is to abstract ourselves from the specifics of each representation (e.g. time-
averaged or time-varying FC) and their complexity, so that the prediction is made in a 
comparable fashion. Furthermore, there is not a straightforward way to unwrap the 
parameters of an HMM model into a vector of predictive features, so that a standard 
regression model can be applied. Because it is possible to compute distances between HMM 
models more straightforwardly, a  kernel-based approach a more natural way to make 
predictions in this case.   
 
We next detail how to compute DMs in the spaces defined by the different imaging-based 
modalities: time-varying FC, time-averaged FC, and structural.  
 
We first discuss the HMM model, which, as discussed above, contains information about 
both the time-averaged FC and time-varying FC. In particular, we computed the symmetric 
Kullback-Leibler divergence between each pair of (dual estimated) subject HMMs, denoted 
as M1 and M2.  
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 Dist

������, ���  
  0.5 KL(��||���  �  0.5 KL(��||��� , 
  
where KL(M1 || M2) represents the standard (non-symmetric) Kullback-Leibler divergence 
between probabilistic models M1 and M2. More specifically, the Kullback-Leibler divergence 
represents how much information a probability distribution contains in relation to a second 
reference probability distribution. Whereas the Kullback-Leibler divergence has a closed 
form for various well-known distributions (e.g. the Gaussian distribution), this is not the case 
for more complex probability distributions such as the one represented by the HMM. For this 
reason, we adapted the mathematical approximation proposed by Do (2003) for discrete state 
distributions to the Gaussian case:  
  
 KL ���||���  
 sum� � � KL�!��, !���  �  � KL�"��, "����, 
 
where !�
  represents the (Dirichlet-distributed) probabilities of transitioning from state k to 
any of the other states according to model i (i.e. the k-th row of the TPM); "�
  is the state 
Gaussian distribution for state k and model i; and νk is a factor representing the weight of 
state k in M1 (see below). Given the initial probabilities π1 of the HMM state time courses for 
model M1 (which are computed from the data together with the TPM), ν can be numerically 
computed such that it meets the following necessary criteria (see Do, 2003):  
  
   !� 
   , 
 lim!"# �� !�	   
   ,   
 
The expressions for KL�!��, !��� and KL�"�� , "��� are standard and can be found elsewhere 
(MacKay 2003). The code to compute the symmetric Kullback-Leibler divergence between 
two HMM models is provided in1. Note that these expressions require the states to be 
matched between HMM models; i.e. the first state of �� must correspond to the first state of ��. This is guaranteed here by the fact that the dual-estimated HMMs are derived from the 
same group-level HMM.  
  
The second type of DM corresponds to the time-averaged FC. To keep the comparisons fair, 
and in line with the approach taken for the time-varying FC, we described the time-averaged 
FC by fitting a Gaussian distribution per subject. Given that the time series were standardised 
for each subject (i.e. they are demeaned and have variance equal to 1.0), the resulting 
Gaussian distributions only contain a covariance matrix that is mathematically equivalent to 
using a Pearson correlation matrix. The time-averaged FC’s DM was computed using the 
symmetric Kullback-Leibler divergence between each pair of the subject-specific Gaussian 
distributions, 
 

Dist
����"�, "�� 
  0.5 KL("�||"�� �  0.5 KL("�||"��.  

 
Note that, because this way we are taking into account the non-Euclidean geometry of the 
covariance matrices, this approach is mathematically more principled and therefore 
statistically more efficient than using correlations across the off-diagonal elements of the FC 
matrices (as is more commonly done in the literature).  
 

                                                 
1
 https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/math/hmm_kl.m 
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Finally, the third type of DM is computed from the structural information, using the three 
considered structural measures: FA, MD and VBM. As discussed earlier, we have 50 ICA 
components for each measure, so the data consist of 50 weights per subject in each case. 
Given that there is no specific geometrical constrain on these values, we just used Euclidean 
distances between each pair of subjects in order to estimate the corresponding DMs. 
 
Predicting subject traits using kernel regression 
 
Given the pre-computed DMs from either of the three modalities (time-varying FC, time-
averaged FC, and structural information), we used kernel ridge regression (KRR) to perform 
the prediction of the subject traits, and 10-fold cross-validation (CV) to assess the 
performance of the prediction. As mentioned, the motivation of using a kernel-based method 
is that, once we have the distances between subjects in whatever representation (e.g. a HMM-
based representation, a time-averaged FC estimation, or an anatomical measure), we can 
abstract ourselves of how each subject is represented, making the comparison between 
modalities more straightforward.  
 
More specifically, KRR is a kernelised version of ridge regression (Hoerl and Kennard, 
1970). As with other kernel-based approaches, such as the support vector machine or 
Gaussian processes, KRR works on a (N by N; where N is the number of subjects) kernel 
matrix Η, which is computed by applying some kernel function on the corresponding DM. 
Here, we chose a Gaussian radial basis function kernel, parametrised by a radius parameter τ 
(Hastie et al., 2011): 
 %�,� 
  &�%& Dist�,� ��, 
 
where Dist�,� is the distance between subjects models 1 and 2 within the training CV-fold, 
and %�,� is the corresponding element of the kernel matrix. That is, once we have computed 
the corresponding DM, the KRR approach does not need to consider where these distance 
come from. This choice of the Gaussian kernel function is motivated by the fact that it 
generalises well to most domains, given its lack of strong assumptions (Schölkopf and Smola, 
2001). 
 
Now, for subject i in the test CV-fold, the (N by 1) KRR estimation ()
  of a given behavioural 
trait is given by  ()
 
 ( *, 
 
where * is a (N by 1) vector of KRR weights, and ( represent the observed (N by 1) vector of 
values of the behavioural trait from the training CV-fold. Let h be a (1 by N) vector 
containing the result of applying the Gaussian kernel to the N distances between each of the 
subjects in the training set and subject i in the test CV-fold. As shown in the mathematical 
derivations by Saunders et al. (1998), we can make use of the kernel trick to estimate * as   
 * 
 + �% � , -���, 
 
where , is a regularisation parameter. The code for KRR, which uses a nested cross-
validation loop to select both , and τ, is provided in 2. Note that the type of kernel we are 

                                                 
2
 https://github.com/OHBA-analysis/HMM-MAR/blob/master/utils/prediction/predictPhenotype.m 
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using here (Gaussian) makes the prediction non-linear (Schölkopf and Smola, 2001), bringing 
additional flexibility to the estimation over an standard regression approach.  
 
In summary, this approach produces an (N by 1)  cross-validated vector of predicted traits ()
 
for each data description, given only their corresponding DMs and without the need to access 
the original representation (e.g. the HMMs, the structural images, or the time-averaged 
Pearson correlation matrices). 
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Supplemental Information 
 
 
 
 
 
 
Fig SI-1. Illustration of the HMM 
description of time-varying FC, for an 
example session; states are represented 
as connectivity matrices. On the bottom 
right, depiction of the distribution of 
state dwell times for two of the states, 
at the group level.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Fig SI-2. Loss in explained 
variance of the deconfounded 
predictions with respect to the 

non-deconfounded predictions, 
expressed as a percentage.   
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Fig SI-3. Explained variance of each of behavioural trait by the structural information. Traits are coloured 
according to five different behavioural groups: demographics, intelligence, affective, personality and sleep.  
 

 
Fig SI-4. In order for FC temporal variability and time-averaged FC to explain distinct aspects of behaviour, 
these descriptors must contain non-shared elements of information of brain function. This amounts to showing 
that there is unique, subject-specific behaviourally-relevant information in the time-varying FC, which is not 
contained in the time-averaged FC. To do this, we computed the time-averaged FC for each subject and 
compared it with a measure of FC temporal variability for each subject (see Methods). This figure shows that 
the amount of time-averaged FC for any pair of regions is unrelated to amount of FC temporal variability for 
such a pair: (A) an example for one subject, where the upper triangular matrix represents time-averaged FC and 
the lower triangular matrix represents FC temporal variability; (B) the relation between time-averaged FC and 
FC temporal variability for that same subject as a scatter plot, where each dot corresponds to a pair of regions. 
Although the null hypothesis cannot be proved in this way, we note that the correlation between these measures 
is 0.01 and non-significant; (C) histogram of correlations between time-averaged FC and FC temporal 
variability across subjects; the mean correlation is 0.0015 and is non-significantly positive. 
 
 
 
  
 
 

Trait group Traits 
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Demographic Age, handedness, race, ethnicity, SSAGA_Employ, SSAGA_Income, SSAGA_Educ, 
SSAGA_InSchool, SSAGA_Rlshp, SSAGA_MOBorn 

Intelligence MMSE_Score, PicSeq_Unadj, PicSeq_AgeAdj, CardSort_Unadj, CardSort_AgeAdj, 
Flanker_Unadj, Flanker_AgeAdj, PMAT24_A_CR, PMAT24_A_SI, 
PMAT24_A_RTCR, ReadEng_Unadj, ReadEng_AgeAdj, PicVocab_Unadj, 
PicVocab_AgeAdj, ProcSpeed_Unadj, ProcSpeed_AgeAdj, VSPLOT_TC, 
VSPLOT_CRTE, VSPLOT_OFF, SCPT_TP, SCPT_TN, SCPT_FP, SCPT_FN, 
SCPT_TPRT, SCPT_SEN, SCPT_SPEC, SCPT_LRNR, IWRD_TOT, IWRD_RTC, 
ListSort_Unadj, ListSort_AgeAdj 

Affective AngAffect_Unadj, AngHostil_Unadj, AngAggr_Unadj, FearAffect_Unadj, 
FearSomat_Unadj, Sadness_Unadj, LifeSatisf_Unadj, MeanPurp_Unadj, 
PosAffect_Unadj, Friendship_Unadj, Loneliness_Unadj, PercHostil_Unadj, 
PercReject_Unadj, EmotSupp_Unadj, InstruSupp_Unadj, PercStress_Unadj, 
SelfEff_Unadj 

Personality 
NEOFAC_A, NEOFAC_O, NEOFAC_C, NEOFAC_N, NEOFAC_E, NEORAW_01, 
NEORAW_02, NEORAW_03, NEORAW_04, NEORAW_05, NEORAW_06, 
NEORAW_07, NEORAW_08, NEORAW_09, NEORAW_10, NEORAW_11, 
NEORAW_12, NEORAW_13, NEORAW_14, NEORAW_15, NEORAW_16, 
NEORAW_17, NEORAW_18, NEORAW_19, NEORAW_20, NEORAW_21, 
NEORAW_22, NEORAW_23, NEORAW_24, NEORAW_25, NEORAW_26, 
NEORAW_27, NEORAW_28, NEORAW_29, NEORAW_30, NEORAW_31, 
NEORAW_32, NEORAW_33, NEORAW_34, NEORAW_35, NEORAW_36, 
NEORAW_37, NEORAW_38, NEORAW_39, NEORAW_40, NEORAW_41, 
NEORAW_42, NEORAW_43, NEORAW_44, NEORAW_45, NEORAW_46, 
NEORAW_47, NEORAW_48, NEORAW_49, NEORAW_50, NEORAW_51, 
NEORAW_52, NEORAW_53, NEORAW_54, NEORAW_55, NEORAW_56, 
NEORAW_57, NEORAW_58, NEORAW_59, NEORAW_60' 

Sleep PSQI_Score, PSQI_Comp1, PSQI_Comp2, PSQI_Comp3, PSQI_Comp4, PSQI_Comp5, 
PSQI_Comp6, PSQI_Comp7, PSQI_Min2Asleep, PSQI_AmtSleep, 
PSQI_Latency30Min, PSQI_WakeUp, PSQI_Bathroom, PSQI_Breathe, PSQI_Snore, 
PSQI_TooCold, PSQI_TooHot, PSQI_BadDream, PSQI_Pain, PSQI_Other, 
PSQI_Quality, PSQI_SleepMeds, PSQI_DayStayAwake, PSQI_DayEnthusiasm, 
PSQI_BedPtnrRmate 

 
Table SI-1. List of behavioural and anatomical traits per group.  
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