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Abstract  

Identifying heterogeneous cognitive impairment markers at an early stage is vital for Alzheimer’s disease 
diagnosis. However, due to complex and uncertain brain connectivity features in the cognitive domains, it 
remains challenging to quantify functional brain connectomic changes during non-pharmacological 
interventions for amnestic mild cognitive impairment (aMCI) patients. We present a new quantitative 
functional brain network analysis of fMRI data based on the multi-graph unsupervised Gaussian 
embedding method (MG2G). This neural network-based model can effectively learn low-dimensional 
Gaussian distributions from the original high-dimensional sparse functional brain networks, quantify 
uncertainties in link prediction, and discover the intrinsic dimensionality of brain networks. Using the 
Wasserstein distance to measure probabilistic changes, we discovered that brain regions in the default 
mode network and somatosensory/somatomotor hand, fronto-parietal task control, memory retrieval, and 
visual and dorsal attention systems had relatively large variations during non-pharmacological training, 
which might provide distinct biomarkers for fine-grained monitoring of aMCI cognitive alteration.  
 
 

zheimer’s disease (AD) is a neurodegenerative brain disorder and the most common 

form of dementia1. However, there is still no cure and no effective drug treatment for 

AD2. Hence, non-pharmacological cognitive intervention for patients at early stages of 

AD has received a lot of attention due to its non-invasive manner, safety and scalability. Recent 

studies show that non-pharmacological cognitive intervention can play a positive role in delaying 

the process or even reducing the cognitive decline for both healthy controls3 and amnestic mild 

cognitive impairment (aMCI) patients4. In particular, aMCI is a vital prodromal state of AD 

harboring memory impairment and has a high risk to develop AD5. Multi-domain interventions 
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targeting memory and non-memory domains simultaneously are urgently needed for an optimal 

aMCI intervention effect. However, most of the previous multi-domain cognitive intervention 

studies, e.g., the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and 

Disability (FINGER)6, the French Multidomain Alzheimer Preventive Trial (MAPT)7, the Dutch 

Prevention of Dementia by Intensive Vascular Care (Pre-DIVA)8, the Drug and Alcohol 

Intervention Service for Youth (DAISY)9, etc.,  evaluated the intervention outcomes based solely 

on neuropsychological assessment or simple characterization of brain anatomical structural 

changes (e.g., gray matter volume, cerebral ventricle volume). There is a critical need to develop 

a patient-specific quantitative analysis for the underlying functional brain regional activity 

changes during the multi-domain cognitive intervention process. Functional brain network 

analysis for AD intervention studies can offer great qualitative and quantitative insights into the 

brain micro-circuits alterations for MCI patients, and could also play an important role in the 

accurate prediction of the AD progression.  

In the present study, we focused on functional brain network analysis for aMCI patients, who 

completed a multi-domain cognitive training (MDCT) intervention that was designed at the 

PKU-sixth hospital of China. For each of 12 patients, resting-state functional MRI scans and 

cognitive assessment scores (MMSE10 and MOCA11) were collected before and immediately 

after a 12-week intervention4. Aiming to investigate quantitatively the underlying functional 

brain network changes associated with the MDCT intervention, we propose a new approach 

based on an unsupervised Gaussian embedding-based functional brain network analysis for 

resting state fMRI data. This method enables mapping of a brain network into multivariate 

probabilistic Gaussian distributions so as to detect the underlying link changes of functional 

brain connectomes after the MDCT intervention. Moreover, it provides uncertainty estimation 

for each node in the latent brain network representational space by performing deep learning-

based Gaussian embedding for the weighted brain network computed from pre-processed fMRI 

data using the functional brain template12. We compared the new method, called Graph2Gauss13, 

against other methods, e.g. node2vec14, and cited related literature in the SI. Most of the existing 

graph embedding methods focused only on a single and binary graph embedding.  However, the 

human brain network is in the form of a weighted graph. Moreover, presently few works 

consider Gaussian embedding for multigraphs, yet it is prerequisite for quantitative analysis of 

multi-subject brain networks before and after MDCT intervention. Hence, in our study, we 
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propose a multi-graph Gaussian embedding (MG2G) method for the MDCT intervention dataset 

of aMCI patients.  

Results 
Graph embedding model training and evaluation. An important application of graph 

embedding is link prediction that quantifies how well a model can predict unobserved edges. In 

order to evaluate the representational performance of the MG2G method, we carried out link 

prediction experiments on brain networks computed from resting state fMRI data recorded from 

12 aMCI patients before and after MDCT intervention. The brain networks were constructed by 

computing the Pearson’s correlation coefficient between the fMRI time series of 264 brain 

regions of interest (ROI) that belong to 14 communities (neural systems) according to the Power 

et al., 2011 brain atlas 12. We split the total edges obtained from the network adjacency matrices 

into three sets: a training set (85%), a validation set (10%) and a test set (5%). The performance 

in the validation set in terms of AUC (area under the ROC curve) for different values of 

embedding size L is shown in Fig. 1 for a fixed value of K=2; here K denotes the maximum 

distance we consider for finding the k-hop neighborhoods.  

 
Fig. 1 MG2G model performance in link prediction for different values of embedding size (L). Results are 

shown for the validation dataset based on L = 2, 4, 8, 16, and 32, with K=2 (k-hop neighborhoods).   

MG2G achieved high AUC performance in link prediction for embedding size L equal to 

4, 8, and 16. In contrast, the AUC performance was low for L = 2 because embeddings with 
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small size cannot sufficiently capture the representational information of the original graph data. 

Performance was also low when L increased to 32 because an embedding size larger than the 

latent dimension of the graph may include higher levels of noise. High values of L are also not 

desirable because they increase computational cost. In addition to evaluating the sensitivity to 

different embedding size values (L) in link prediction, we also evaluated the performance of 

MG2G for different k-hop neighborhoods (K=2 vs. K=3); the results are shown in the 

Supplementary Figure 5 indicating that K = 2 is adequate. Finally, for the test set we obtained 

AUC value of 0.945 in link prediction for a fixed embedding size L=2 and k-hop neighborhood 

K=2. 

Quantification of intervention-related brain network alterations using the Wasserstein 

distance. By performing Graph Gaussian embedding for all patients’ brain networks, every brain 

region (node) is represented by multivariate Gaussian distributions in a latent space. In order to 

assess the complex functional network alteration patterns within each patient, we quantified how 

each node moved in the latent space following the intervention. Specifically, we measured the 

distances of each patient’s brain network embeddings (or Gaussian distributions) for each ROI 

before and after intervention. The distance measure relied on the 2-Wasserstein distance (W2), 

which quantifies distances between Gaussian probability distributions. Since our dataset lacks a 

control group and W2-distance is positive without a known parametric distribution, there is no 

obvious parametric or non-parametric statistical procedure to apply to these results. However, in 

the next section we will provide largely consistent results with an alternate group-level analysis. 

The within-subject W2 distances for each of the 12 patients are shown in Fig. 2a, with the 

264 ROIs and related 14 systems in the brain atlas12 described in the Supplementary Table 1. We 

observe across different patients that the ROI IDs from 112 to 138 exhibited large variations 

before and after intervention among most patients, and most prominently for subject 3, 6 and 9. 

Based on the system information from SI Table 1, these regions mainly fall into three functional 

systems: default mode, memory retrieval, and visual systems. Moreover, subject 0 had the 

greatest number of ROIs with large W2-distance between intervention, and we note that this 

patient was also diagnosed with depression symptom. There were also patients with smaller 

variations, namely subjects 4 and 8, compared to other aMCI patients after intervention.  

To better assess the overall network alteration at the subject-level, we used a “violin plot” 

(combination of box-plot and density plot) to visualize the W2-distance distributions and 
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probability densities for different patients (Fig. 2b). Each “violin" contains a box-plot (white dot, 

vertical thick black box and thin black line). The white dot represents the median of W2 

distances at each column in Fig. 2a, the vertical thick black box indicates the inter-quartile range, 

and the thin black line denotes the extensions to the maximum and minimum values. The shaded 

areas surrounding the box plot show the probability density of the W2-distances across the 264 

brain regions for each patient. These results reveal that patients varied considerably with respect 

to the network alterations, with some subjects exhibiting large W2 medians and variability (e.g., 

subjects 0 and 6) and others the opposite (e.g., subjects 4 and 8), while there are also some 

unique subjects with multi-modal shape of the W2 distribution (e.g., subject 7). 

 
Fig. 2 Within-subject intervention-related brain network alterations. (a) W2-distance before and after 

intervention for each of the 264 ROIs across the 12 patients (L=16, K=2). (b) Violin plots of the W2-

distance distribution over the 264 regions for each of the 12 patients.   

To more specifically quantify the ROI-level W2-distance density changes across the 12 

patients, we constructed the Kernel Density Estimation (KDE) plot in Fig. 3a. The brain regions 

(ROIs) around the index ranges of 100-150 and 221-240 exhibited larger alterations (in terms of 

the W2-distance) compared to other brain regions. As shown in SI Table 1, these regions belong 

to the following communities (brain systems): default mode, memory retrieval, visual and dorsal 

attention. Additionally, from the KDE plot we can also distinguish three dark blue areas (default 

mode, visual, frontal-parietal task control, dorsal attention and uncertain) with high probability 

densities of W2-distance compared to other regions. Subsequently, we obtained the top-15 brain 

regions for all patients measured by the W2-distance, and identified the brain systems they 
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belong to, shown in blue bars in Fig. 3b. Here, the vertical axis denotes the total number of top-

15 ROIs corresponding to each community. The highest system-level MG2G results identified 

with this analysis were: default mode, visual, uncertain, dorsal attention, salience, subcortical, 

sensory/somatomotor hand, and memory retrieval, which overlap with the dark blue areas in Fig. 

3a.  

To further validate these system-level results, we also performed a secondary analysis 

using a different graph-embedding method, the deterministic “node2vec”14. The node2vec results 

are shown in yellow, green and red bars in Fig. 3b; here we performed a similar analysis as in 

MG2G, but the metric was Euclidean distance because node2vec is deterministic and nodes are 

mapped to point-vectors in the latent space. We assessed the sensitivity of the results change for 

different embedding size (L = 16, 32) and different hyperparameters (p and q values) in 

node2vec; these values control the neighborhood exploration in node2vec. The default mode, 

sensory/somatomotor hand, auditory, visual, salience, and uncertain communities exhibited large 

subject-level intervention effects.  Additional system-level comparisons at the single-subject 

level can be found in Supplementary Figures 3 and 4 using both the proposed MG2G as well as 

the node2vec method. We observed some variability among the patients and the two methods 

(MG2G and node2vec) but overall the top-15 changes in brain regions among the 12 patients 

mostly occurred in the default mode, visual, uncertain, salience, memory retrieval, fronto-

parietal task control, dorsal attention. 

 
Fig. 3 Within-subject intervention-related alterations at ROI-level and system-level. (a) Kernel Density 
Estimation plot of the W2-distance across all 264 ROIs. (b) Quantification of functional/system-level 
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changes for all 12 patients before and after MDCT intervention based on MG2G (blue) and node2vec 
(yellow, green, and red, corresponding to different node2vec parameters). SSH: sensory/somatomotor 
hand; SSM: sensory/somatomotor mouth; CoTC: cingulo-opercular task control; Audit: auditory; DMN: 
default mode; MemRt: memory retrieval; Vis: visual; FpTC: fronto-parietal task control; Sal: salience; 

SubCt: subcortical; VenAtt: ventral attention; DorsAtt: dorsal attention; Cerebl: cerebellar; Uncert: 
uncertain. 

Statistical evaluation of intervention-related brain network alterations at the group-level. 

Here we quantified the intervention-related brain network alterations by defining a new measure, 

the reorganization index, which captured cross-subject W2-distance intervention effects. For 

every pair of different subjects, we computed the W2-distance per ROI when: i) one subject was 

before and the other after intervention (between-pair), or ii) when both subjects were paired 

before intervention (within-pair). The former assessed cross-subject intervention-related effects, 

whereas the latter established a baseline cross-subject W2-distance. We then defined the 

reorganization index RI as the averaged W2-distance of the between- minus within-pairs. Given 

12 patients, we obtained 66 between-pair W2-distances matched by an equal number of within-

pair W2 distances, allowing us to perform one-sample t-tests for statistical evaluation. 

 The between-pair and within-pair distances are exemplified for the ROIs belonging to the 

‘Sensory/Somatomotor Hand’ neural system in Supplementary Fig. 6. The between-pair (blue) 

were largely above the within-pair (red) W2 distances, demonstrating that RI increased due to 

the intervention for most of the ROIs. 

 RI results for all 264 ROIs are shown in Fig. 4, with statistically significant results 

highlighted with red bars (p<0.05, one-sample t-test, false discovery rate corrected). The 

majority of the ROIs had significantly positive RI, which suggests extensive fMRI brain network 

reorganization following the MDCT intervention. In Fig. 5, we counted the number of significant 

ROIs belonging to each neural system. The results indicate that the most extensive brain network 

reorganization encompassed the default mode, somatosensory/somatomotor hand, fronto-parietal 

task control, visual, salience, dorsal attention and uncertain brain systems. These systems 

largely overlap with the neural systems identified with the within-subject analysis in the previous 

section. A list of the significant ROIs contained within each neural system is presented in Table 

1. 
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Fig. 4 Reorganization index for each of the 264 ROIs. A large number of ROIs had significant RI (red 

bars; p<0.05, FDR corrected), suggesting extensive intervention-related brain network reorganization. 
System name abbreviations same as in Fig. 3. 
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Fig. 5 Number of ROIs with significant network alterations (significant RI index) contained within 
different functional brain systems. System name abbreviations same as in Fig. 3. 
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Table 1. Names of ROIs with significant network alterations (significant RI index) for each brain system. 
System name abbreviations same as in Fig. 3. 

 

Nodal uncertainty quantification: With Graph2Gauss embedding, every brain region was 

encoded as a multivariate Gaussian distribution. Hence uncertainty, quantified by the variance, 

can also be assessed using this graph embedding approach. Fig. 6 illustrates the nodal uncertainty 

results of graph embedding at baseline and after intervention averaged across all patients. The 

vertical axis shows the embedding variance for each of the L=16 dimensions. Dimensions 8, 10, 

and 11 had consistently high variance values for the majority of nodes before and after 

intervention. Dimensions with high uncertainty are unstable and do not contribute to a low-

dimensional embedding in the latent space13. Thus, we can infer the effective latent dimension to 

represent our brain network to be equal to (L – 3) by excluding the highly unstable dimensions. 

This yields an effective dimension of 13 (since the embedding dimension was L=16), which is 

approximately equal with the ground truth community number (14) in the brain atlas. Therefore, 

our proposed method for fMRI data analysis not only predicted the latent representations, but 

also yielded the effective dimensionality of the low-dimensional space (latent dimension) by 
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monitoring (during training) the “uncertain" dimensions. More detailed uncertainty 

quantification results by plotting the corresponding Gaussian distributions are shown in 

Supplementary Figure 2.  

 

Fig. 6 Uncertainty quantification using the MG2G approach. Average nodal uncertainty (variance-σ2) 

results for 12 patients before (a) and after intervention (b); (embedding size L=16). 

Discussion 
The new method MG2G we introduced, and other recent graph embedding techniques, hold great 

promise in diverse real-world applications. However, so far the studies incorporating prevalent 

graph embedding techniques for the analysis of complex and heterogeneous functional brain 

network systems for brain disorders (e.g. Alzheimer’s, Parkinson’s, etc.) are scarce. For example, 

Rosenthal et al.15 first proposed to use a connectome embedding method, node2vec14, for the 

mapping of high-order relations between brain structure and function. As discussed earlier, this 

method cannot model important uncertainty information about nodal embedding in the latent 

space. We have applied node2vec in our study to verify the results of MG2G, which in addition 
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can effectively quantify uncertainty for the learned node representations. Therefore, Gaussian 

embedding can facilitate functional brain connectome analytics by employing a stochastic 

quantitative analysis, which is necessary given the lack of big data and the sensitivity and 

diversity of the human brain connectomes. To this end, we proposed a new functional brain 

network analysis framework based on multiple brain connectome Gaussian embeddings via deep 

neural networks, combined with weighted information of the original graphs. Additionally, we 

adopted the Wasserstein distance (W2) to quantify the brain region (ROI)-level differences 

between the multivariate embedded Gaussian distributions before and after intervention (Fig. 

2a). We constructed violin and KDE plots to estimate and display the W2 distance distributions 

(Figs. 2b and 3a) from two different perspectives (patient-specific and ROI-specific) and 

developed a group-level analysis to statistically validate our findings (Figs. 4 and 5). Our results 

demonstrated that Gaussian embedding-based functional brain network analysis can 

automatically and quantitatively detect the underlying multiscale (region->system->patient) 

subtle changes of brain networks after non-pharmacological MDCT interventions for aMCI 

patients. Moreover, we demonstrated two main advantages of the nodal embedding uncertainty 

in our study: i) we can obtain the intrinsic dimensionality (L) of the brain network, and ii) we can 

quantify the heterogeneity (diversity) of node’s neighbors. The latter is because the high 

uncertainty to some nodes is due to potential connections with neighbors of different 

communities with possibly contradicting underlying patterns.  

Furthermore, the deep neural network-based model we employed in our study enabled 

learning the highly non-linear mapping from the original high-dimensional brain network space 

into low-dimensional Gaussian distributions, while at the same time quantifying the uncertainty 

about the node embeddings. This is in line with the recent successes of emerging deep learning 

techniques in diverse fields, when compared to traditional matrix-factorization methods (e.g. 

SVD17) and random walk-based models (e.g., node2vec14). Our MG2G model can readily scale 

up to large-scale network applications unlike traditional methods.  

To evaluate the robustness and generalization of the MG2G method, we compared with 

the node2vec method employed in the work of Rosental et al15. We compared the two methods in 

SI (see Supplementary Figures 3 and 4 for details) using the same data as in our main study. 

Another alternative method is spectral embedding18 designed to use an “informative” eigenvector 

decomposition, however, it becomes inefficient and unstable for large-scale and noisy fMRI 
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data. In contrast, the node2vec approach produced comparable results as our proposed MG2G 

method, as shown in Fig. 3b and in Supplementary Figures 3 and 4, but ignored critical 

uncertainty information about the node embeddings and the intrinsic system dimensionality. 

Such information is potentially important for the dynamic, heterogeneous and complex 

functional role of different regions in the brain connectome. Our proposed deep neural network-

based Gaussian embedding model can overcome the aforementioned problems effectively, and 

obtain probabilistic node representations, while preserving both local and global graph topology 

properties of brain networks. 

In addition to the within-subject analysis quantifying network alterations after 

intervention, we also analyzed statistically network alterations at the group-level by defining a 

new measure, the reorganization index (RI). In this case too, we found that a large number of 

ROIs were affected after intervention (Fig. 4), and these changes at the system/community level 

(Fig. 5) were comparable to the ones we obtained with the within-subject analysis in Fig. 3b. 

Taken together, our results using two different approaches (MG2G and node2vec) and two 

different methods of analysis (top-15 ROI and t-test) showed consistency in the regions affected 

by the MDCT intervention, with details of each region presented in Table 1. 

In addition to fMRI networks, in previous work4 we have investigated the MDCT 

intervention effects on structural MRI data and found significant increases in gray matter volume 

in the right angular gyrus and other subareas following the MDCT intervention. In the current 

study, we further investigated the underlying MDCT intervention effects at both ROI-level and 

community-level on the fMRI networks. Therefore, MG2G can provide a more elaborate, cross-

modality quantification of network alterations. Specifically, we quantified the differences 

between probabilistic Gaussian embeddings of functional brain connectomes before and after 

intervention using the W2-distance metric. The results revealed significant changes on an 

extensive number of brain regions (Fig 4 and Table 1). Also, system-level changes occurred 

primarily in the default mode, somatosensory/somatomotor hand, fronto-parietal task control, 

memory retrieval, visual and dorsal attention brain systems (Figs. 3b and 5). Moreover, network 

alterations varied across patients (Fig. 2), which is consistent with the heterogeneous clinical 

score profiles.  

The broad intervention-related alterations on the intrinsic functional networks may reflect 

adaptive mechanisms of information integration among different functional systems over the 
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whole brain, due to putative co-activation during the multi-domain training. A previous study 

that used only explicit-memory training has found increased activation and connectivity in 

distributed neural networks mediating explicit-memory functions19. Hence, an integrated 

cognitive training that targets more cognitive domains should stimulate more diverse distributed 

networks underlying multiple cognitive functions. A recent study using MDCT in a healthy older 

population has found increased functional connectivity within three higher cognitive networks 

that overlap with our current study: default mode, salience, and central executive network3. 

Therefore, our findings here suggest that widespread changes in functional connectivity induced 

by MDCT may be due to an enhanced restoration by functional reorganization that benefits brain 

cognition.  

In the future, to better assess and validate the MG2G method on the MDCT intervention 

study, we plan to extend our method to process multi-modality data (fMRI, MRI, MEG, genetic, 

and PET) given the multifaced nature of AD. Further, as more subjects enroll in the study and 

longitudinal data become available, we will better characterize the effectiveness of the MDCT 

intervention. Specifically, it is important to complete a longitudinal study that facilitates dynamic 

brain network fluctuation modeling during intervention (i.e., temporal and spatial patterns). 

Collecting data from a control group will also enable a direct comparison of network alterations 

across populations for a deeper understanding of the underlying mechanisms of the MDCT 

intervention.  

Methods 
Participants. All aMCI participants were recruited from the Dementia Care Research Center of 

Peking University Institute of Mental Health (DCRC-PKUIMH) between May 2015 and 

September 2015. Twelve of them met the inclusion criteria and completed both a standardized 

neuropsychological evaluation and MRI scanning at Peking University Third Hospital.  All 

participants were required to be equal to or more than 55 years old, right handed, and have an 

education level of no less than five years. They were also required to meet the MCI criteria, 

according to Petersen et al.20 as follows: (a) subjective memory complaint, confirmed by an 

informant; (b) a mini-mental state examination (MMSE) score of no less than 24; (c) an ADL 

score of no more than 26, and not diagnosed as having dementia (according to ICD-10 and 

NINCDS-ADRDA criteria). Other inclusion criteria were: a global clinical dementia rating score 
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of 0.5 and no depressive symptoms (Hamilton Depression Scale score £12). Exclusion criteria 

were: a current or past neurological disorder or a current neuro-psychiatric disorder listed in the 

DSM-IV affecting cognition; currently taking cognitive enhancers; and any physical condition 

that could preclude regular participation in the intervention program.  The present study was 

approved by the ethics committee of Peking University Institute of Mental Health (Sixth 

Hospital), Beijing, China. All participants were fully informed regarding the study protocol and 

provided written informed consent. 

MDCT intervention and cognitive assessment. We used a self-controlled design to investigate 

the effect of the MDCT program on spontaneous brain activity in older participants with aMCI. 

Every patient underwent 24 training sessions delivered twice per week over approximately 12 

weeks. Each session lasted 60 minutes and included tasks that covered three different cognitive 

domains. The participants spent 20 minutes engaged in each task per session. The 24-session 

intervention targeted multiple cognitive domains across the different sessions, including 

reasoning, memory, visuo-spatial skill, language, calculation, and attention. Neuropsychological 

assessments and MRI scans were conducted before and after the 12-week training program; 

details are described below. 

Imaging protocol. MRI was performed using a 3T General Electric MRI 750 (Chicago, Illinois, 

United States) with an 8-channel sensitivity-encoding head coil (SENSE factor = 2.4), with 

parallel imaging using a Gradient-Recalled Echo-Planar Imaging (GRE-EPI), at the Peking 

University Third Hospital Neuroimaging Center. Two resting state BOLD fMRI imaging data 

were collected for each of the 12 aMCI patients, one before and one after MDCT intervention. 

The resting state functional MRI (rs-fMRI) data in each patient consisted of 230 functional 

volumes, each slice had a 64 ´ 64 grid, time repletion (TR) = 2000 ms, time echo (TE) = 20 ms, 

flip angle= 90°, field of view (FOV)= 240´240 mm2, 41 axial slices, thickness = 3.0 mm, 

spacing between slices = 3.3 mm, acquisition matrix = 64 × 64. 

Cognitive assessment. We applied a comprehensive cognitive test battery to evaluate the 

cognition of patients at the baseline and after 12-week MDCT intervention. Global cognition was 

assessed via the MMSE (range 0–30) and MOCA (Montreal Cognitive Assessment) (range 0–
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30), with higher MMSE scores indicating higher levels of global cognition in both tests. Memory 

was evaluated via the Hopkins Verbal Learning Test-Revised, with higher MOCA scores 

indicating greater levels of memory (range 0–12). The speed of processing was examined using 

the Trail Making Test A, with lower scores indicating greater levels of processing speed. Visuo-

spatial ability was examined using the Brief Visuospatial Memory Test-Revised, with higher 

scores indicating greater levels of visuo-spatial ability (range 0–12). Language function was 

examined using a verbal fluency test for animal naming, where higher scores indicate greater 

levels of language. Executive function was assessed via subtests, including a 100-stimulus 

version of the Stroop color and word test, a digit span test, a space span test, and a picture 

completion test; higher scores indicate greater levels of executive function. The complete 

cognitive assessment took about 120 minutes and took place at DCRC-PKUIMH. 

Image pre-processing. The pre-processing of resting state fMRI data was carried out using 

Statistical Parametric Mapping (SPM12)21 and Data Processing Assistant for the R-fMRI 

(DPARSF) toolkit22.  The main steps included: (1) dropping off the first ten EPI volumes; (2) 

temporal correction for slice acquisition; (3) spatial normalization into the MNI space based on 

transformation parameters derived from aligning T1 images to the MNI standard template using 

diffeomorphic anatomical registration through the exponentiated lie algebra (DARTEL) method; 

(4) resampling to 3-mm isotropic voxels and spatially smoothing with a 4 mm full width at half 

maximum Gaussian kernel; (5) regressing out the following nuisances from each voxel’s time 

series, including 24 head motion parameters, global signal, cerebrospinal fluid, and white matter 

time series and linear trend; (6) filtering the residual time series within a frequency range of 

0.01–0.1 Hz for reducing the effect of low-frequency drifts and high-frequency noise. 
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Fig. 7 Illustration of brain connectivity construction workflow based on the Power et al. 

functional atlas12.  

Functional brain network construction. Based on the pre-processed fMRI images, the overall 

functional brain connectivity construction process is shown in Fig.7. First, we used a sphere-

based functional brain atlas (Power et al.12, 2011) to define 264 brain regions of interest (ROI) 

belonging to 14 communities (neural systems) in total. Then, the mean signals (time-series) were 

computed within spheres of fixed radius r (r = 5) around a sequence of voxels in T functional 

brain scans (T = 230). Finally, we computed the Pearson’s correlation coefficient across all pairs 

of time series to construct the brain connectivity matrix C and obtained the corresponding 3D 

visualizations for functional brain connectomes. For every patient in the pre-processed fMRI 

dataset, we computed the brain connectivity matrices for fMRI data obtained at baseline (week 

0) and week 12. The averaged brain connectivity results before and after interventions are shown 

in Fig. 8, and the corresponding brain graphs exemplified for one patient are plotted in Fig. 9. 
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Fig. 8 Brain connectivity matrices averaged across all 12 patients at baseline (a) and after 

12-week MDCT intervention (b).  

 

 
Fig. 9 Graphical representations of brain connectivity for subject 1 at baseline (a), and 

after 12-week MDCT intervention (b). 

Multi-Graph2Gauss embedding approach for functional brain network analysis. Since 

functional brain networks calculated from our raw fMRI data were undirected and weighted, in 

our work we extended the Graph2Gauss method15 to a multi-graph Gaussian embedding 

(MG2G) prediction model for functional brain networks. This method can realize an 

unsupervised Gaussian projection learning from an original brain network into latent low-

dimensional Gaussian distributions (Fig. 10).  
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Fig. 10 Main architecture of the proposed MG2G model for multiple human brain networks. 

First, for each of the P=24 original brain connectivity matrices C, we obtained a 

thresholded adjacency matrix A by setting to 0 connectivity values below an empirical threshold 

(t=0.1). These thresholded matrices were then used to compute k-hop neighbors (Nik, k ≥ 2) for 

each brain region (node i) based on Supplementary Eq. 2, and sample valid triplet sets based on 

the obtained hops (Supplementary Eq. 3).  

In addition, for each node i, we assigned as node attributes the ith row vector of A. In 

other words, each node had attributes the connectivity profile (connection weights) across all the 

N nodes in the network. Consequently, brain graphs had N-dimensional node attributes, with the 

aim of subsequently compressing them to L dimensions via graph embedding.  

In order to encode multigraph data jointly into the same space, we stacked all brain 

network’s edge attribute matrices into a 3D tensor. This yielded a 3D matrix 𝑋 ∈ 𝑅$×&×', where 

N denotes the number of brain regions in brain network, D denotes the dimension of attributes 

and is equal to N in our work, and P is the number of brain networks (Fig. 10). Matrix X as the 

input of the deep encoder architecture. We adopted a 3D encoder to learn a mediate latent 

representation, and in turn used it to output the means and variances of the final embedding 

Gaussian distributions for all patients. Furthermore, the optimization of deep neural networks 

was carried out by minimizing the square-exponential loss as shown in Supplementary Eq. 6.  

In comparison with the basic principles of Graph2Gauss summarized in SI, our MG2G 

model for functional brain networks made three contributions: i) we made use a weighted (as 

opposed to binary) symmetric adjacency matrix to compute k-hop neighbors and triplet sets; ii) 

we added the connection weights as edge attributes to provide extra information for graph 

embedding, and iii) we extended the method to multigraph data. 

 As a metric of comparison and to capture the subtle differences before and after MDCT 

intervention, we made use of the 2-Wasserstein distance (Eq. 1) for quantitative evaluation of 
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ROI-specific changes between encoded probabilistic Gaussian distributions with respect to each 

patients’ brain networks before and after interventions. 
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