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Abstract 
  

The human transcriptome is one of the most well-annotated of the eukaryotic species. 

However, limitations in technology biased discovery toward protein coding spliced 

genes. Accurate high throughput long read RNA sequencing now has the potential to 

investigate genes that were previously undetectable. Using our Transcriptome 

Annotation by Modular Algorithms (TAMA) tool kit to analyze the Pacific Bioscience 

Universal Human Reference RNA Sequel II Iso-Seq dataset, we discovered thousands 

of potential novel genes and identified challenges in both RNA preparation and long 

read data processing that have major implications for transcriptome annotation.   
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Introduction 

 

The transcriptome remains a vastly under explored space despite its significance as a 

foundation for biology. For eukaryotic species, alternative transcription start sites and 

RNA processing can result in a combinatorial array of transcript sequences which poses 

many challenges for understanding which RNA are functional and how they should be 

annotated1. Current genome annotations have mostly been based on data from low 

throughput cDNA sequencing and high throughput short read RNA sequencing2. 

However, cDNA sequencing cannot provide a reasonable coverage of the transcriptome 

and short read sequencing leads to issues with transcript model assemblies3. 

 

The recent development of high throughput long read RNA sequencing promises a new 

age of transcriptome exploration4. Full length transcript reads provides high confidence 

in predicting alternative transcripts and distinguishing real transcripts from sequencing 

noise5.  

 

While there have been many studies using long read RNA sequencing for transcriptome 

discovery5,6,7,8,9, the tools used for processing long read data suffer from limitations that 

severely reduce the sensitivity and specificity of transcriptome exploration. These 

strategies either rely on orthogonal information which biases gene discovery and are 

only available for a small number of species10 (Talon11, TAPIS6, SQANTI12) or on 

algorithms with serious theoretical limitations13,14. 

 

The non-orthogonal strategies are based on inter-read error correction for removing 

errors from long read sequence data. These inter-read methods are split into two main 

strategies: long read error correction and short read error correction. Long read error 

correction involves the clustering of long reads from the same sequencing run or across 

multiple runs for error correction15. Pacific Biosciences’ Cluster/Polish method 

(previously known as Iterative Clustering for Error correction) is the most popular tool for 

doing long read error correction. In short read error correction, long reads are error 

corrected by aligning short read RNAseq data and replacing the long read sequences 

with the higher accuracy short read sequences13,14,16. Both long read and short read 

error correction methods have the drawback of the possible introduction of chimeric 

sequences due to the merging of sequence information across reads. This type of error 

occurs when the alignment of reads is compromised by regions of high error density 

thus allowing for reads from different transcripts to be grouped (Fig. 1). These methods 

are performed prior to mapping the reads to the genome.  
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These inter-read correction strategies also do not fully account for reads originating 

from transcriptional noise. Within any RNA sample collected from a eukaryotic species, 

there is a mixture of mature functional RNA as well as pre-processed RNA, degraded 

RNA, and possible genomic contamination12 (Fig. 1). Differentiating between these 

sources of read information is crucial for producing high quality transcriptome 

annotations and preventing the false identification of novel genes.    

 

To understand the extent of the limitations of currently available long read RNA analysis 

software, we analyzed the Universal Human Reference RNA (UHRR) Sequel II Iso-Seq 

data released by Pacific Biosciences (PacBio) using our Transcriptome Annotation by 

Modular Algorithms (TAMA) tool kit. TAMA is designed to take advantage of long read 

RNA data and high quality reference genome assemblies to produce the most accurate 

and informative transcript models theoretically possible given these inputs. This makes 

TAMA useful for situations where additional types of data are not available17,18 . In 

addition, by not relying on orthogonal information, TAMA also provides a more agnostic 

approach to transcriptome annotation which can reveal problems with prior assumptions 

from previous annotation efforts.  

 

Results 

Pipeline sensitivity comparison 

We processed the UHRR Iso-Seq data using 5 different pipelines to compare the effect 

of each method on gene discovery and model prediction accuracy. These pipelines 

include two pipelines without inter-read error correction (FLNC Low and FLNC High), 

two pipelines using long inter-read error correction (Polish and Cupcake), and one 

pipeline using short inter-read error correction (Lordec). 

  

We first used a low stringency pipeline (FLNC Low) to estimate the upper limit of the 

number of possible gene and transcripts within the UHHR Iso-Seq data. This involved 

no pre-map error correction (mapping FLNC reads directly) and a TAMA Collapse run 

with low stringency parameters.  

 

This FLNC Low pipeline resulted in 168,328 gene models with 752,996 transcript 

models (31,115 multi-exonic genes and 514,364 multi-exonic transcript models). The 

number of predicted genes and transcripts far exceeds the numbers found in the 

Ensembl human genome annotation v9619. These elevated numbers suggest the 

presence of a large amount of either sample noise or wet lab processing noise.  
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The large number of gene models were mostly made up of single exon genes (Fig. 2). 

Single exon genes can be produced from genomic contamination where adapters were 

able to prime either DNA fragments or RNA produced from run-on transcription20. The 3’ 

primer for current cDNA library preparation methods contains an oligo-dT region for 

capturing the poly-A tails of mature RNA. Since these primers only require a repeat of 

A’s to bind, they can bind to a genomic stretch of A’s thus introducing these sequences 

into the cDNA library21. To identify and filter out reads that may have originated from 

these events, we developed the tama_remove_polya_models_levels.py tool. This tool 

can be used to remove all transcript models with a genomic poly-A stretch on the 3’ end 

of the mapped read. Using tama_remove_polya_models_levels.py to remove all single 

exon models with 3’ genomic poly-A stretches resulted in 35,577 genes and 614,279 

(24,133 multi-exonic genes and 507,382 multi-exonic transcripts) which equates to 

21.1% of the genes and 81.6% of transcripts predicted in the FLNC Low pipeline.  

 

While the gene numbers are more reasonable after this filtration step, the transcript 

numbers still appear to be artificially high. This also suggests that the filtered genes 

(132,751) were likely the product of genomic contamination, noisy transcription in 

intergenic regions which span genomic poly-A regions, and/or transcribed processed 

pseudogenes. These filtered genes should be annotated if they are from transcribed 

processed pseudogenes since they would be technically part of the transcriptome and 

may have functionality22. However, if they are from genomic contamination and noisy 

transcription, this would suggest that the UHRR has a significant amount of 

contamination from either of those 2 sources. Since the UHRR is commonly used as a 

baseline for RNA experiments, this contamination would need to be handled 

bioinformatically to avoid erroneous interpretations. 

 

To address the suspiciously large number of transcript models from our FLNC Low run, 

we ran a high stringency pipeline (FLNC High) with TAMA Collapse at a setting to 

remove transcripts with more than 1 error within a 20 bp range of a splice junction. We 

allowed for 1 bp of error due to possible true genomic variation between the UHHR 

samples and the reference genome assembly. We then then only kept transcript models 

with read support from both SMRT cells using 

tama_remove_single_read_models_levels.py. We required read support from both 

SMRT cells to avoid using reads that originated from PCR artefacts since PCR artefacts 

could be sequenced by multiple reads if their relative abundance is high enough. This 

assumes that the libraries for each SMRT cell were prepared separately.  

This high stringency pipeline resulted in 38,743 genes with 135,218 transcript models 

(15,777 multi-exonic genes and 87,112 multi-exonic transcripts) which equates to 

23.0% of the genes and 18.0% of the transcripts predicted in the FLNC Low pipeline. 
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We did not remove reads with genomic poly-A in this pipeline since real transcript 

models can have downstream genomic poly-A and the 2 SMRT cell support filtration is 

meant to remove PCR artefacts such as those caused by internal priming.  

 

We compared both the FLNC Low and FLNC High annotations with the Ensembl v96 

human annotation using TAMA merge to see how many models matched the public 

annotation (Fig. 2). We used two definitions for matching: gene level matches and 

transcript level matches. Gene level matches are defined as the number of genes with 

overlap between gene models (between annotations) on the same strand. Transcript 

level matches are defined as the number of transcripts that have the same exonic 

structures (between annotations) which is described in more detail in the methods 

section. The FLNC Low annotation had 30,947 gene level and 28,234 transcript level 

matches with Ensembl. However, only 13,874 genes had at least one transcript level 

match with the Ensembl annotation. The FLNC High annotation had 21,284 gene level 

and 17,932 transcript level matches with Ensembl with 10,649 genes that had at least 

one transcript level match. 

 

Thus while the FLNC High pipeline produces a more reasonable number of genes and 

transcripts it still identifies 23,302 novel gene models. The FLNC Low pipeline identifies 

9,663 more known genes as compared to the FLNC High pipeline. This suggests that 

choosing more stringent thresholds for filtering leads to a significant loss in real signal 

from the data.  

 

We also compared the FLNC Low and FLNC High to other commonly used pipelines for 

Iso-Seq data. These include running the cluster/polish15 step for long read error 

correction (Polish pipeline), collapsing with Cupcake15 (Cupcake pipeline), and short 

read error correction with Lordec13 (Lordec pipeline).  

 

For the Polish pipeline we ran the Isoseq3 cluster/polish tool on the FLNC reads and 

then processed the mapped reads with TAMA collapse using the same settings as the 

FLNC Low pipeline. This resulted in 25,731 genes and 126,288 transcripts (15,418 

multi-exonic genes and 107,637 multi-exonic transcripts) (Fig. 2). The overall lower 

numbers of genes and transcripts is due to a filtration that occurs during the 

cluster/polish step which removes all reads that do not cluster with at least one other 

read. These non-clustered reads are called singletons.  

 

For the Cupcake pipeline, we tested the effect of the collapsing algorithm by using the 

Cupcake collapse tool instead of TAMA Collapse as was used in the Polish pipeline. 

This resulted in 25,239 genes and 128,389 transcripts (15,395 multi-exonic genes and 
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110,200 multi-exonic transcripts) (Fig. 2). Thus the overall numbers were very similar 

between Cupcake collapse and TAMA collapse when working with clustered reads.  

 

We ran the Lordec pipeline, to compare short read error correction. In the Lordec 

pipeline, we corrected the FLNC reads using Lordec with short read RNA data from the 

UHRR but from another study23. We then ran TAMA Collapse using the same settings 

as in the FLNC Low pipeline. This resulted in 166,766 genes and 753,756 transcripts 

(31,465 multi-exonic genes and 517,244 multi-exonic transcripts) (Fig. 2). These 

numbers are very similar to the FLNC Low pipeline results. Lordec does not discard or 

split reads as other hybrid correction tools do. Thus all reads are retained for mapping. 

This explains the similarity in numbers with the FLNC Low results.  

 

When comparing the number of exons per gene across all 5 pipelines, the vast majority 

of the novel genes from the low stringency pipeline and the Lordec pipeline were single 

exonic (Fig. 2). Single exonic gene models are potentially suspicious as they could be 

the result of genomic contamination. 

Error comparison between pipelines 

The number of genes and transcripts predicted from each pipeline provides some 

information about their respective sensitivity. However, other metrics need to be used to 

assess the accuracy of each pipeline. To understand how each pipeline dealt with 

errors, we looked at the error profiles for each mapped read for the FLNC Low, FLNC 

High, Polish, and Lordec pipelines. The Cupcake pipeline was omitted in this analysis 

because Cupcake does not provide a report on the errors in the mapped reads.  

 

Using the output from TAMA Collapse we looked at length of coverage, identity, 

clipping, insertions, deletions, and substitution errors. These values represent the 

comparison of the mapped reads to the genome assembly and thus only serve as an 

estimate of the true rates of error. 

 

Both FLNC Low and FLNC High pipelines had average coverage and identity values of 

92.38% and 90.17% respectively. Note that the mapped FLNC reads are the same for 

these two pipelines thus all the error profiles of the mappings will be identical. The 

Polish pipeline produced an average coverage and identity of 97.84% and 97.53% 

respectively. While the Lordec pipeline had average coverage and identity of 92.44% 

and 91.48% respectively. Thus the Polish pipeline seems to out-perform the other 

pipelines in this metric. The Lordec pipeline values were unexpectedly similar to the 

FLNC pipelines suggesting that Lordec correction did not provide a large gain in error 

correction.  
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We then looked at overall error rates between the pipelines. To calculate average error 

rates, we counted the number of base pairs that were not matching between the 

mapped read and the genome sequence and divided this number by the length of the 

mapped read. This includes soft clipping, insertion, deletion, and substitution errors but 

does not include hard clipping. The FLNC Low and FLNC High pipelines have an 

average error rate of 2.83% per mapped read with an average mapped length of 1,959 

bp. The Polish pipeline has an average error rate of 0.52% and average mapped read 

length of 2,218. The Lordec pipeline has an average error rate of 1.38% with a mapped 

read length average of 1,968 bp.  

 

The longer average mapped read length of the Polish pipeline is most likely due to the 

cluster/polish algorithm merges read sequences with up to 100 bp length differences on 

the 5’ end. This behavior essentially absorbs the shorter reads into the longer reads 

effectively removing their length representation.    

 

The Lordec pipeline had a similar amount of clipping errors as compared to the FLNC 

pipelines but lower rates of insertion, deletion, and substitution errors (Fig. 2). This 

indicates that the Lordec correction seem to be increasing the quality of the reads 

overall but has some issues correcting the ends of reads.  

Wobble comparison between pipelines 

While the error rates of mapped reads are often used to assess the improvement of 

long read data from different pipelines14, this metric is actually not quite as useful for 

understanding the overall improvement in the transcriptome annotation. In genome 

based transcriptome annotations, the most important features to identify with respect to 

transcript models are the exact starts and ends of each exon as well as real exon 

chaining. Thus if the errors in the reads do not affect the overall transcript model, then 

there is no appreciable difference between a read with 10% error rate versus one with 

0.1% error rate.  

 

We measured this aspect of transcriptome annotation improvement by comparing the 

wobble at splice junctions with respect to transcript models annotated in the Ensembl 

human annotation. Wobble refers to small differences in mapped exon starts and ends 

(Fig. 3). So while two transcripts can have nearly identical structures, there can be small 

differences between their exon starts and ends which can be challenging to resolve. For 

the definition of how we defined “nearly identical” structure, see the methods section. 

Wobble typically occurs due to the higher error rate of long read sequences leading to 

small shifts in mapping the ends of each exon24. The amount of wobble between the 

transcript models of each pipeline compared to the reference annotation, provides a 

metric for the actual differences in the final transcriptome annotations produced by each 
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pipeline. We ignored wobble at the transcript start and end sites due to the high 

variance of these features in natural RNA25,26 . We also only assessed Ensembl 

transcript models that had coverage from all assessed pipelines. 

 

We compared the wobble at splice junctions for 5 different pipelines: FLNC Low, FLNC 

High, Polish, Cupcake, and Lordec (Fig. 3). The FLNC Low pipeline produce the highest 

average wobble per splice junction with 0.7155 start wobble and 0.6903 end wobble. 

The FLNC High pipeline had the lowest average wobble values at 0.2571 start wobble 

and 0.2434 end wobble. The FLNC High pipeline out performed both the Polish and 

Cupcake pipelines which had averages of 0.3081 start wobble and 0.2898 end wobble 

and 0.3149 start wobble and 0.2949 end wobble respectively. The Lordec pipeline had 

relatively high average wobble scores of 0.5876 start and 0.5772 end.  

 

The FLNC Low pipeline had the lowest number of perfect transcripts (transcripts with no 

wobble at the splice junctions) at 9,451, while the FLNC High pipeline had the highest 

number of perfect transcripts at 11,891 (Fig. 3). The Polish pipeline had the second 

highest number of perfect transcripts at 11,562.  

 

Thus, despite the lower overall error rates in the Polish mapped reads, the FLNC High 

pipeline produced a more accurate transcriptome annotation.  

Gene and transcript swapping between pipelines 

One of the major concerns when using inter-read error correction methods such as 

Cluster/Polish and Lordec, is the possibility of creating chimeric sequences which no 

longer represent real transcripts. These chimeric transcripts can either be the 

combination of transcripts from different genes within a gene family or a combination of 

alternative transcripts within the same gene.  

 

To investigate the extent to which these chimerization effects occur, we used the FLNC 

Low pipeline read-to-transcripts mappings as a ground truth and then looked for reads 

which mapped to different genes and transcripts in other pipelines. The reads that map 

to different loci in the Polish and Lordec pipelines represent error corrected reads that 

became chimeric from the inter-read correction methods. Since the Cupcake pipeline 

uses the same Cluster/Polish step as the Polish pipeline, there should be no differences 

in the read mappings. Similarly the FLNC Low and High pipelines used the same read 

mappings.  

 

When comparing the FLNC Low pipeline read mappings to the Polish read mappings, 

there were 34,637 reads which switched from one gene locus to another after 

Cluster/Polish correction.  A total of 6,774 genes had reads which swapped loci 
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between the two pipelines. Of these genes, there were 3,230 genes which were only 

found with the FLNC Low pipeline while 104 genes were only found with the Polish 

pipeline. This suggests that Cluster/Polish is combining reads from different genes 

leading to the assignation of reads to incorrect loci. 

 

To gain a more detailed understanding of what is happening during error correction 

chimerization, we examined the PReferentially expressed Antigen of MElanoma 

(PRAME) gene family. The PRAME gene family is highly associated with cancer 

development27,28,29,30 and is used as a biomarker for identifying various forms of cancer. 

Within the PRAME gene family there are 24 annotated paralogues2. PRAMEF8 is a 

gene within this family which was detected with the FLNC Low pipeline but not in the 

Polish pipeline. The FLNC Low pipeline shows 9 reads mapping to PRAMEF8. Of these 

9 reads, 3 did not pass the Cluster/Polish step and thus were omitted from the Polish 

pipeline. The other 6 reads were mapped to other loci in the Polish pipeline with 5 

mapping to PRAMEF15 and 1 mapping to PRAMEF27. We aligned the PRAMEF8 and 

PRAMEF15  transcript sequences with Muscle31 and found that they had 76.69% 

identity. While the two genes are sequentially similar, the read with the lowest identity 

score during genome mapping in the FLNC Low pipeline had an identity of 89.12% and 

6 reads had mapping identities over 98%. Thus there is strong evidence that the reads 

mapped correctly in the FLNC Low pipeline and were chimerized to the point of mis-

mapping in the Polish pipeline. This particular type of error could have major 

consequences for studies aimed at identifying gene biomarker expression.  

 

When comparing the FLNC Low pipeline read mappings to the Lordec corrected read 

mappings, there were 19,064 reads which switched from one gene locus to another.  A 

total of 3,476 genes had reads which swapped loci between the two pipelines. Of these 

genes there were 775 genes which were only found with the FLNC Low pipeline while 

675 genes were only found with the Lordec pipeline. The number of genes found only in 

the Lordec pipeline is much higher than the number of genes found only in the Polish 

pipeline which may indicate that Lordec correction is more inclined to produce false 

positives. 

 

We also examined how erroneous inter-read error correction can lead to differences in 

the alternative transcripts predicted. In this case, when reads from different alternative 

transcripts are grouped for error correction, the resulting sequence will, at best, 

represent only the more highly expressed transcript and, at worst, represent an 

artificially chimeric sequence. 

 

Again we compared the FLNC Low pipeline to the Polish and Lordec pipelines. When 

comparing the FLNC Low pipeline to the Polish pipeline, we found 477,351 reads which 
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swapped transcript models (within the same gene). This involved 112,891 transcripts 

with 44,852 transcripts found only in the FLNC Low annotation and 1,372 transcript 

found only in the Polish annotation. This represents a large difference between the two 

annotations with the FLNC Low pipeline predicting far more transcript models given the 

same reads as compared to the Polish pipeline.  

 

When comparing the FLNC Low pipeline to the Lordec pipeline, we found 187,829 

reads which swapped transcript models. This involved 142,704 transcripts with 7,117 

transcripts found only in the FLNC Low annotation and 11,732 transcript found only in 

the Lordec annotation. Again it appears that the Lordec pipeline is more prone to 

producing false positives. 

Novel genes breakdown 

In order to understand the source of the novel gene models found in the FLNC Low 

pipeline, we identified several key features of these models: coding potential, number of 

exons, overlap with other genes, overlap with regulatory features, and the presence of 

immediately downstream genomic poly-A stretches. Coding potential was assessed via 

three different methods: Ensembl gene match, CPAT32, and the TAMA open reading 

frame and nonsense mediated decay (TAMA ORF/NMD) pipeline. Ensembl gene 

matches were performed by running TAMA merge to identify gene models with overlap 

between the Iso-Seq annotations and the Ensembl annotation. CPAT is a tool which 

analyzes the sequential patterns of transcript open reading frames to predict coding 

potential. TAMA ORF/NMD identifies possible ORFs and then matches them to peptide 

sequences from the Uniprot33 database. If a gene did not have any predicted coding 

potential from any of these methods, it was labeled non-coding.  

 

There were 26,619 gene models with coding potential and multiple exons. These are 

likely to represent sequences from real genes although they may not necessarily be full 

length models. For instance, 3,969 of these genes had downstream genomic poly-A 

indicating truncation of the 3’ end by the oligo-dT primer binding to the genomic poly-A 

region as opposed to the true poly-A tail (Fig. 5). There were 81,591 single exon non-

coding genes and of those 63,919 had downstream genomic poly-A. These models may 

be the result of genomic fragment contamination or if the gene models overlap other 

genes, they may be the result of internal priming of unspliced RNA molecules.    

 

When looking only at the novel genes (not annotated in Ensembl), the two most 

common set of features are “single exonic, non-coding, gene overlap, and genomic 

poly-A” with 45,820 novel gene models and “single exonic, coding, gene overlap, and 

genomic poly-A” with 30,756 novel gene models. These are the features that gene 
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models from internally primed un-spliced RNA would fall under. Thus it is likely that 

most of these models represent non-functional RNA products which make up part of the 

transcriptional noise of the sample.  

 

The third most common set of features was “single exonic, non-coding, gene overlap, 

and processed poly-A” with 14,036 gene models. This set of features indicates the 

presence of real single exon gene overlapping lncRNA. Since there are no genomic 

poly-A stretches downstream of these models, the source RNA must have had poly-A 

tails added during RNA processing which would suggest the RNA truly exist in that form 

and may have functional roles. 

 

 

RNA Degradation 
 

To gauge the quality of the RNA used in the Iso-Seq sequencing, we developed a 

metric called the Degradation Signature (DegSig) which can be calculated using the 

mapped reads. DegSig is defined as the percent difference in the number of transcript 

models for multi-read multi-exon transcripts between collapsing using a capped 

algorithm vs a no cap algorithm (Fig. 5). A higher percent difference indicates that the 

sample RNA had a greater proportion of degraded RNA.  

 

To test the DegSig metric we used Iso-Seq data from chicken brain samples. One 

sample was prepared with a non-cap selecting method while the other was prepared 

with Teloprime34 5’ cap selection. The DegSig of the non-cap selected data was 56.3% 

while the DegSig for the cap selected data was 23.6%. This suggests a real difference 

in the proportion of degraded RNA sequences captured as cDNA by the two different 

methods.  

 

Since the 5’ exon cascade can exist in real gene models, we tried calculating the 

DegSig of the Ensembl human reference annotation to see what a reasonable baseline 

would be. The DegSig for the Ensembl human annotation was 1.5%. Thus a DegSig of 

0% is virtually impossible, but a completely 5’ intact cDNA library could theoretically 

have a DegSig close to 0%. However, since models derived from 5’ degraded 

transcripts are difficult to distinguish from real gene models with 5’ exon cascade 

patterns, it may be that these types of transcript models are under-represented in all 

annotations which would make the estimation from the Ensembl human annotation 

inaccurately low.  
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We ran DegSig on the UHHR Iso-Seq dataset with independent calculations per SMRT 

cell and chromosome to see if there were any significant differences in DegSig between 

chromosomes.  

 

Almost all chromosomes had a DegSig between 32% and 41% (Fig. 5). However, the Y 

chromosome had a DegSig of 26.7% and 27.2% for SMRT Cell 1 and 2 respectively. 

One explanation for the much lower DegSig on the Y chromosome may be due to the 

lack of read depth for the Y chromosome with only 629 and 588 reads from SMRT cells 

1 and 2 respectively. Lower read depths can decrease the DegSig values due to the 

lack of coverage for each transcript model. For a single gene with only one transcript, 

there is a lower probability that 2 reads will capture a degraded transcript as compared 

to 100 reads.  

 

The range of DegSig for the human data is higher than that for the chicken 5’ cap 

selected RNA data, thus suggesting that there may be a significant number of truncated 

models in the UHRR transcript annotation results. This could also be a source of the 

unusually high number of novel alternative transcripts predicted in the FLNC Low 

pipeline.  

 

Discussion 
 

The UHRR PacBio Sequel II Iso-Seq dataset is the result of the most accurate long 

read RNA sequencing technology applied to an RNA library used as a reference for 

gene profiling experiments. Thus this dataset represents the technological limits and 

challenges that are pertinent to all RNA sequencing studies. The resulting transcriptome 

annotation, however, portrays a very different composition of gene models compared to 

public transcriptome annotations. This raises questions regarding what exactly is 

present in our sequencing data and what is the best way to further dissect this 

information to produce biologically meaningful results.  

 

There has been a heavy emphasis on the use of multi-omics or orthogonal data to 

identify what is real and functional within the transcriptome. While this is certainly a 

powerful means of investigating novel genes, the pipelines developed for this purpose 

often overlook the need to properly process individual sources of data before integrating 

across data types. Using the TAMA tool kit, we have demonstrated some key issues 

with current long read RNA data pipelines that could have major effects on current 

transcriptomic studies.  
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If the goal of RNA sequencing is to accurately identify the sequences and features of 

real transcripts, the semantics surrounding this characterization should reflect 

biologically relevant information. We propose that the major features of interest for 

eukaryotic species should be genomic loci, transcription start and end, and splice 

junctions. These 4 major attributes, allows for more precise integration with other 

sources of information and form the backbone of defining gene models. While these 

features are certainly not new, the ideas pertaining to how we identify these features are 

still developing. 

 

As can be seen in the difference between read errors and splice junction accuracy, one 

metric, although related, does not have a direct correlation with the other. Thus 

algorithms for achieving positional feature predictions should be designed with this 

foundation. While error correction is a worthy objective, it cannot be applied at the cost 

of biological inaccuracies as is the case for the gene and transcript swapping events 

occurring as a result of long read and short read error correction. 

 

The underlying issues in all methodologies is the balance between retaining useful 

information and discarding misleading information. The TAMA tool kit is based around 

the philosophy that data should only be discarded if there is evidence that it is 

erroneous. This differs from other methodologies which try to preserve information 

which is seemingly real due to orthogonal information but may in fact still be erroneous. 

This philosophy limits both sensitivity and specificity for gene discovery.  

 

From our analyses of the UHRR PacBio Sequel II Iso-Seq data, we have identified that 

either there are issues with the RNA preparation methods of the Universal Human 

Reference RNA or there are still thousands of novel genes that have not been 

annotated in the human genome.  
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Methods 
 

Universal Human Reference RNA 

 

An RNA library was first created by pooling the Universal Human Reference RNA 

(Agilent) with SIRV Isoform Mix E0 (Lexogen). cDNA was prepared from the RNA using 

the Clontech SMARTer kit. The sequencing library was the prepare using the Iso-Seq 

Template Preparation for Sequel Systems (PN 101-070-200) and Sequencing Sequel 

System II with "Early Access" binding kit (101-490-800) and chemistry (101-490-900). 

The sequencing library was sequenced on two Sequel II SMRT cells.  

 

Chicken Brain RNA 

 

The non-cap selected chicken brain Iso-Seq data is from the European Nucleotide 

Archive submission PRJEB13246 which was previously analyzed and published3.  

 

The cap selected chicken brain Iso-Seq data was from an adult Advanced Intercross 

Line chicken whole brain sample. The RNA was extracted from the tissue sample using 

the Qiagen RNeasy Mini Kit. The RNA was converted to cDNA using the Lexogen 

Teloprime kit. The resulting cDNA library was sent to Edinburgh Genomics for 

sequencing on the Sequel 1 system using 2.0 chemistry. 

 

 

Iso-Seq Processing 

 

The UHRR Sequel II Iso-Seq data was processed from subread level using the CCS 

tool with the parameters “--noPolish --minPasses=1”. The resulting CCS reads were 

then stripped of adapter sequences using LIMA (lima --isoseq --dump-clips). The poly-A 

tails were then removed using the Refine tool (isoseq3 refine --require-polya).  

 

FLNC Low Pipeline 

 

For the FLNC Low pipeline, the resulting FLNC reads were mapped to the human 

reference genome (GRCh38) using Minimap2 (--secondary=no -ax splice -uf -C5 -t 8). 

The resulting bam file was then split into 12 smaller bam files using 

tama_mapped_sam_splitter.py which splits bam files by chromosome thus preventing 

splitting between reads from the same gene. The resulting smaller bam files were then 

processed using TAMA Collapse (-d merge_dup -x no_cap -a 100 -z 100 -sj sj_priority -

lde 5 -sjt 20 -log log_off). The resulting annotation bed files were then merged into a 
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single bed file using TAMA Merge (-a 100 -z 100). The merged bed files from each 

SMRT cell were then merged together using TAMA Merge (-a 100 -z 100). 

 

FLNC High Pipeline 

 

For the FLNC High pipeline, TAMA Collapse was run on the split bam files using more 

stringent parameters that filter out any mapped read with more than 1 error within 20 bp 

of a splice junction (-d merge_dup -x no_cap -a 100 -z 100 -sj sj_priority -lde 1 -sjt 20 -

log log_off). The resulting annotation bed files were then merged into a single bed file 

using TAMA Merge (-a 100 -z 100). The merged bed files from each SMRT cell were 

then merged together using TAMA Merge (-a 100 -z 100). Then transcript models that 

were only supported by a single read were filtered out using 

tama_remove_single_read_models_levels.py (-l transcript -k remove_multi -s 2). 

 

Polish Pipeline 

 

The resulting FLNC reads from the Refine step were clustered using Iso-Seq3 Cluster 

with default parameters. Iso-Seq3 Polish was then run to perform inter-read error 

correction. The resulting cluster reads were then mapped to the genome using 

Minimap2 (--secondary=no -ax splice -uf -C5 -t 8). The resulting bam file was processed 

using TAMA Collapse (-d merge_dup -x no_cap -a 100 -z 100 -sj sj_priority -lde 5 -sjt 20 

-log log_off). 

 

Cupcake Pipeline 

 

The same steps were performed as in the Polish pipeline up to mapping. After mapping, 

the resulting bam file was processed using Cupcake collapse_isoforms_by_sam.py (--

dun-merge-5-shorter). 

 

Lordec Pipeline 

 

The FLNC reads from the Isoseq3 refine step were error corrected using Lordec (-k 31 -

s 3) with short read RNAseq data from the Universal Human Reference RNA (Agilent) 

(https://www.ncbi.nlm.nih.gov/sra/SRX1426160) 

(https://rnajournal.cshlp.org/content/22/4/597.full.pdf). The resulting error corrected 

reads were then processed in the same way as the FLNC Low starting from mapping to 

the genome.  
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Wobble Analysis 

 

To assess the wobble between each pipeline and the Ensembl annotation, we used 

TAMA merge with parameter settings (-a 300 -z 300 -m 30 -d merge_dup) which 

considers any transcripts which have up to 300 bp difference in their transcription start 

and end and up to 30 bp difference in their splice junctions starts and ends to have 

“nearly identical structures”. This is the definition for matching at transcript level.  

 

Coding Potential Analysis 

 

For the Ensembl match evidence of coding potential, we labelled the Iso-Seq annotation 

genes as coding if they had any overlap on the same strand as an Ensembl annotated 

protein coding gene.  

 

CPAT was used with default parameters and the built-in Human Hex models. A cutoff 

score of 0.364 was used to segregate between coding and non-coding transcripts.  

 

In the ORF/NMD pipeline, ORF’s were predicted from each transcript sequence. The 

ORF’s were then translated into amino acid sequences. Blastp (-evalue 1e-10 -

ungapped -comp_based_stats F) was used to match the amino acid sequences with the 

UniRef90 database. The top hits were used to select the best ORF prediction for each 

transcript model. Transcripts with no hits were considered to have no coding evidence 

from this analysis.  

Code Availability 
TAMA is available from https://github.com/GenomeRIK/tama. 

Data Availability 
The PacBio Universal Human Reference RNA Sequel II Iso-Seq dataset is available 

from https://github.com/PacificBiosciences/DevNet/wiki/Sequel-II-System-Data-

Release:-Universal-Human-Reference-(UHR)-Iso-Seq. The short read Illumina RNAseq 

data used for Lordec error correction are available in the National Center for 

Biotechnology Information Sequence Read Archive under accession number 

SRP066009 (https://www.ncbi.nlm.nih.gov/sra/SRX1426160). The non-cap selected 

chicken brain Iso-Seq data is available from the European Nucleotide Archive under 

accession number PRJEB13246. The Teloprime cap selected chicken brain Iso-Seq 
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data is available from the European Nucleotide Archive under accession number 

PRJEB25416. 
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Figures 
 

 

 

 
 

Figure 1. Long read RNA sequencing diagrams. (a) Types of sequences found in 

RNA samples. (b) Representation of RNA sample sequences relative to the genome. (c) 

Illustration of problems arising from different error correction methods for long reads. (d) 

Diagram of pipelines analyzed. 
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Figure 2. Comparing the results of the different Iso-Seq pipelines. (a) Number of 

novel and Ensembl matching genes by pipeline. (b) Number of novel and Ensembl 

matching transcripts by pipeline. (c) Maximum number of exons per gene by pipeline. 

(d). Type and amount of error per pipeline.   
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Figure 3. Assessing wobble across pipelines. (a) Illustration of wobble definition. (b) 

Average amount of wobble across splice junctions by pipeline. (c) Number of perfect 

transcript models and wobbly models by pipeline. (d) Scatter plot of splice junction 

wobble per transcript by pipeline. Wobble is shown as base pair distance from true 

splice junction exon start and end. Positive wobble represents exon start wobble and 

negative wobble represents exon end wobble. Each x-axis unit represents a single 

transcript model. A 30bp wobble threshold was used for the TAMA Merge run thus the 

apparent drop off in wobble outside this range. 
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Figure 4. Gene and transcript read swapping from error correction. (a) PRAMEF8 

gene with a coverage of 9 FLNC reads. (b) PRAMEF15 gene with a false positive 

coverage of one Polish read. (c) Circos plot showing reads swapping genes after 

correction with Cluster/Polish. Indented shows true read location and non-indented 

shows read allocation after error correction. Each line represents a single read moving 

from one gene to another with 34,637 reads from 4,799 genes moving to 2,793 genes 

after Cluster/Polish.(d) Circos plot for reads swapping genes after correction with 

Lordec. Each line represents a single read moving from one gene to another with 

19,064 reads from 2,292 genes moving to 2,319 genes after Lordec error correction.  

(e) Exampled of false novel transcript model caused by Polish error correction. (f) 

Example of degraded RNA model caused by Cluster/Polish pipeline.   
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Figure 5. Novel genes breakdown and degradation signature analysis. (a). 

Example of genomic poly-A repeat within a transcribed region. Genomic poly-A can act 

as a site for oligo-dT primer binding thus allowing genomic fragments or internal priming 

to be amplified (b). Example of a real genomic poly-A repeat immediately downstream 

of the transcription end site (c) Novel gene breakdown by features. (d) Collapsing 

algorithms for 5’ cap selected RNA and non-cap selected RNA. (e). Degradation 

signature by chromosome per SMRT Cell run.   
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