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Abstract 9 

To understand activity in the visual cortex, researchers typically investigate how parametric changes in 10 
stimuli affect neural activity. A fundamental tenet of this approach is that the response properties of neurons 11 
in one context, e.g. color stimuli, are representative of responses in other contexts, e.g. natural scenes. This 12 
assumption is not often tested. Here, for neurons in macaque area V4, we first estimated tuning curves for 13 
hue by presenting artificial stimuli of varying hue, and then tested whether these would correlate with hue 14 
tuning curves estimated from responses to natural images. We found that neurons’ hue tuning on artificial 15 
stimuli was not representative of their hue tuning on natural images, even if the neurons were strongly 16 
color-responsive. One explanation of this result is that neurons in V4 respond to interactions between hue 17 
and other visual features. This finding exemplifies how tuning curves estimated by varying a small number 18 
of stimulus features can communicate a small and potentially unrepresentative slice of the neural response 19 
function. 20 

 21 
Introduction 22 

Neuroscience has long characterized and categorized neocortex based on the functional properties that vary across its 23 
surface. Our understanding of the visual cortex, for example, largely derives from observations that the response 24 
properties of the ventral stream ascend in complexity. V1 is discussed as responding to “edge-detecting” Gabor filters 25 
(1), V2 to variations in local curvature (2), V4 to more complex shapes (3), and IT to specific objects and faces (4), 26 
which together have inspired the theory that object recognition proceeds via hierarchical image representations (5-7). 27 

An area’s response properties are most often characterized by varying stimuli while recording activity in that area. If 28 
neural activity changes robustly along a stimulus dimension, those neurons are sometimes said to ‘encode’ or be 29 
‘tuned’ for that feature. This approach thus relies on building a response function, or tuning curve, along one dimension 30 
of stimuli, or at most a small handful. However, natural stimuli are described by an enormously high number of 31 
dimensions. This means that there are necessarily many dimensions of stimuli that are left untested by any experiment 32 
that varies only a few dimensions of stimuli. 33 

Leaving the response to dimensions of stimuli uncharacterized can complicate the interpretation of a tuning curve. In 34 
many studies it is hoped that tuning curves estimated from artificial stimuli will be good models of how neurons 35 
respond to stimuli in different contexts and thus represent their general functional role in visual processing. If a 36 
researcher characterizes hue tuning by presenting only colored bars, for example, they expect hue tuning to be the 37 
same for other colored shapes. For a tuning curve to be valid across multiple contexts, however, it must be the case 38 
that the dimensions of stimuli varied in an experiment do not interact with the dimensions that were not characterized, 39 
which are likely very numerous. In other words, the neural response function must be separable with respect to the 40 
varied dimension. In general, it is not clear that this is a reasonable starting assumption, and ideally it should be tested 41 
if tuning inferred from simplified stimuli is indeed informative of tuning for more complicated stimuli, like natural 42 
scenes. 43 

In early visual areas and especially V1, there has been a large effort to characterize neurons directly from their 44 
responses to natural images (8-13). These characterizations were sometimes, but not always, consistent with those 45 
made using artificial stimuli sets. The preferred orientation of V1 neurons, for example, appears the same for both 46 
natural images and drifting gratings (11). Other aspects of the V1 response, however, are different for natural images 47 
(10), which limits how well characterizations with simple stimuli can predict the response to natural stimuli (12, 14). 48 
For higher areas like V4, however, such a comparison has not been possible. The natural scene approach popularized 49 
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in V1 requires approximating the response with a linear or second-order function of the image, but this is cannot be 50 
done accurately for V4. The nonlinearity of the V4 response is evidenced by the nonlinearity of the models that best 51 
predict V4 activity (5, 15, 16), as well as the fact that receptive fields (RFs) estimated from simple stimuli fail to 52 
predict much of the response to more complicated or natural stimuli (17-19). Without access to interpretable receptive 53 
fields estimated with natural stimuli, it has not been possible to verify that experiments with artificial stimuli sets 54 
describe how V4 responds to natural images. 55 

Tuning curve experiments have nevertheless built a core component of our knowledge about the function and anatomy 56 
of V4. The study of its response to color has been particularly influential. V4 was first characterized as a color area 57 
(20) before later studies found selectivity for other visual features (such as orientation (21), curvature (3), shape (17, 58 
22, 23), depth (24-26), and motion (27); reviewed in (28)). The selectivity for different visual features is spatially 59 
clustered within V4. Color-selective neurons are predominantly located in color ‘globs’ (29), which intersperse 60 
‘interglob’ regions more selective for orientation (30). Glob cells are further arranged by their color preference (31) 61 
and generally in the same hue sequence as is found in perceptual color space (32, 33). These findings have led to a 62 
hypothesis that V4 is anatomically segregated by function. It is important to note, however, that these findings largely 63 
follow from experiments in which the stimuli were colored gratings, oriented colored bars, or other single shapes. Our 64 
knowledge of color tuning in V4, and of the functional organization of V4 more generally, is thus dependent on the 65 
experimental paradigm of varying the color of simple stimuli while observing neural activity. This leaves open the 66 
possibility that our current understanding of the functional properties of V4 are not accurate for natural stimuli.  67 

In this work, we asked whether the hue tuning curves of color-responsive neurons in macaque V4 accurately describe 68 
their hue tuning to naturalistic stimuli. That is, we asked how well P(Y|X, Z=z), which is the probability of spike 69 
counts Y given hue X and a fixed context z, stands in for P(Y|X), the average hue tuning marginalized over natural 70 
images. This required developing a new method to determine how hue affects the response of a general nonlinear 71 
model of the V4 response, which in our case was based on a deep artificial network pretrained to classify images (5). 72 
We found that the tuning curves estimated from responses to stimuli of a uniform hue poorly described how hue 73 
affected responses to natural scenes. That is, P(Y|X, Z=z) ≠ P(Y|X). Previous conclusions about the general physiology 74 
of V4 that depended on this assumption may have to be revisited. Although hue strongly modulates the V4 response, 75 
hue tuning curves do not generalize from artificial settings to natural stimuli. 76 

RESULTS 77 

We recorded the spike rates of neurons in area V4 of two macaques as they viewed images on a monitor. One monkey 78 
(M1) freely viewed images as we tracked its gaze, while the gaze of the second monkey (M2) was fixed at image 79 
center during image presentation. We analyzed the responses of 90 neurons in M1 over several viewing sessions, 80 
taking care that the identity of cells on each electrode did not drift across sessions (see Methods: Session 81 
Concatenation), and in M2 recorded from 80 neurons in a single session. We then estimated tuning curves from 82 
responses to both artificial and naturalistic stimuli in order to ask if and how hue tuning generalizes. 83 

Tuning to hue on uniform screens 84 

We first measured hue tuning by varying the hue of a uniform flat screen (Fig. 1A). We found that many of our neurons 85 
were well-tuned to specific hues (see examples in Fig. 1B), consistent with the previous literature on hue tuning in V4 86 
(29, 30, 32). We could consistently estimate hue tuning trials for 79/90 of neurons in M1 (Fig. 1C), but only for 17/80 87 
neurons in M2 (Supp. Fig. 2A). A general trend across analyses was that neurons in M2 were more poorly described 88 
by hue than the neurons in M1. This difference in monkeys was possibly due to the spatial heterogeneity of color 89 
responses in V4 (29, 30).In later analyses, we compared the hue tuning of neurons only when we could reliably 90 
estimate tuning.  91 

Next, we asked if the tuning curves of the uniform hue context could predict natural scene responses. The V4 response 92 
is complex, but if the uniform field tuning curves accurately represent the contribution of hue, and the hue response is 93 
any considerable proportion of the overall response, then they should capture at least some variance. For example, we 94 
might expect that if a neuron preferred uniform fields of orange hue (like the examples in Figure 1), then that neuron 95 
would prefer scenes containing predominantly orange hues. Instead, we found that the images that elicited the highest 96 
spike rates were often composed of consistently different hues (Fig. 1D vs. Fig. 1E). The top example in Fig. 1, for 97 
example, responded most strongly to blueish natural scenes. The bottom example represents the minority of neurons 98 
that showed a better match between uniform and natural tuning. We observed that the discrepancy between uniform 99 
hue tuning and natural scene responses was consistent across all neurons and trials (Fig 1F). Specifically, we asked 100 
how well uniform hue tuning curves could predict natural scene responses by interpreting the curves as the coefficients 101 
of a linear response to hue, and then scoring this model (see Methods). The pseudo-R2 score of the tuning curve model 102 
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was below zero for all but one neuron (Fig. 1F and Supp. Fig. 2C), which implies that variance predicted by the 103 
uniform field tuning curves gave worse predictions than the mean firing rate on natural scenes. Knowledge of V4 104 
responses to single hues thus does not help to predict responses on natural images. 105 

Having observed this incongruence, we turned to considering the reason why this might occur. Hue tuning could shift 106 
between contexts, or alternatively these neurons might simply respond much more strongly to non-hue features such 107 
that the hue response is negligible. In both cases uniform hue tuning curves would explain only a small fraction of the 108 
natural scene response. To distinguish these two possibilities, we next estimated tuning to hue from the responses to 109 
natural images and compared it with uniform hue tuning. 110 

 
Figure 1. Tuning curves were built from responses to artificial stimuli. Data from M1; see Supp. Fig. 2 for M2. A) We recorded 
from neurons in area V4 as a monkey viewed fields of a uniform hue. B) The uniform hue tuning curves for two example 
neurons, showing strong hue modulation. C) Our ability to estimate hue tuning for each neuron was captured by the correlation 
of the tuning curve estimated on two non-overlapping halves of the trials. This correlation would be 1 in the no-noise or infinite-
data condition. D) Using the uniform hue tuning curve as a model of V4 activity on natural scenes, we would have expected 
these 9 trials to elicit the strongest responses. Each image displays only the image portion within the fixation-centered receptive 
field. E) In reality, the highest spike rates were observed on these 9 fixations. Neuron 1’s strongest drivers were dissimilar in 
hue from the peak of the tuning curve, while those of Neuron 2 were somewhat consistent. The mean hue of each image 
(weighted by saturation) is shown as a tick in panel B. F) The natural scene responses on all trials and neurons were different 
than would be expected from the uniform hue tuning curves. Displayed here is the histogram of the Poisson pseudo-R2 goodness-
of-fit scores of the tuning curves’ predictions, which is below zero when the predictions underperform the mean firing rate.  

 111 
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Tuning to hue on natural scenes 112 

In the context of natural images, one straightforward way to estimate hue tuning is to fit a (generalized) linear model 113 
to the natural scene responses using hues as covariates. In this approach, a tuning curve represents the mean change 114 
in the (log) firing rate observed with changes in each hue. This was our first and most simple method. A limitation of 115 
this model, however, is that it does not control for other visual features that drive V4 neurons, including interactions 116 
between hues. These factors will influence the hue tuning curve to the extent that hues and other features co-vary in 117 
natural scenes. To control for interaction effects, we additionally estimated tuning curves with two more complex 118 
models that each accounted for a greater number of possible drivers of V4. This progression allowed us to ensure that 119 
any discrepancy between uniform field hue tuning and natural scene hue tuning was not due to visual confounds. 120 

 
Figure 2. Tuning curves for hue were constructed from the responses to natural images. Data from M1; see Supp. Fig. 2 for M2. 
A) We trained two models, a generalized linear model (GLM) with Poisson output and a nonlinear machine learning model 
(gradient boosted trees) with Poisson output, to predict each neuron’s response from the hues present in its receptive field. B) 
(i) The 9 trials that each model predicted to have highest firing rate looked similar to trials with the actual strongest response, 
unlike the uniform hue model. (ii) We built tuning curves from each model. The uncertainty of each curve is given by the 5th 
and 95th percentiles of hundreds of model fits to the trials resampled with replacement. (iii) This uncertainty is then propagated 
into the correlation between the uniform hue tuning curves and natural scene tuning curves. C) The correlations of the natural 
scene and the uniform hue tuning curves across all neurons show that the natural scene and uniform hue hues rarely correlate. 
Above: The neurons are sorted by their correlation to show a cumulative distribution. The two example neurons are highlighted 
in orange. The error bars on each neuron show the 5th and 95th percentiles of the distribution of correlations observed while 
bootstrapping over model fits. Below: The smoothed density of all neurons’ natural scene/uniform hue correlations is similar to 
what would be expected if neurons randomly shuffled hue tuning between conditions (overlaid, blue). Also overlaid (in pink) is 
the control distribution, which shows how well tuning estimated from one half of the natural scene trials correlated with the 
tuning estimated on the other half. If hue tuning were the same across stimuli, then the distributions would look like the control 
distributions. 

 121 

 122 
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Generalized linear model of hue responses 123 

We first modeled natural responses with a generalized linear model (GLM) upon hues (Fig. 2A). The covariates, 124 
detailed in Methods, are more specifically a histogram of the hues present in the neuron’s receptive field on each 125 
fixation, with the contribution of each pixel weighted by its saturation. In monkey M2, the GLM could explain little 126 
activity (Supp. Fig. 3C), which prevented any analysis of hue tuning. (We were able to meaningfully estimate hue 127 
tuning in M2 only with our third and most complex model, below.) In monkey M1, the GLM successfully explained 128 
variance within the response to held-out natural scenes (Supp. Fig. 3B). This was a large improvement from the model 129 
estimated from responses to uniform fields. Indeed, compared to the predictions of the uniform hue tuning curves, the 130 
9 strongest drivers of the model appeared more similar to the actual 9 strongest drivers (Fig. 2Bi). Thus, in M1, a hue 131 
model fit directly to natural scene responses provided better predictions than one fit to uniform hue responses.  132 

The hue tuning of the GLM was measured from its responses to single hues, which is equivalent to inspecting the 133 
weights upon each hue (Fig. 2Bii, green curve). To see if hue tuning changed between natural scenes and uniform 134 
hues, we correlated the tuning curves across contexts (Fig. 2Biii). Across all neurons analyzed in M1 (Fig. 2C), the 135 
correlation between the tuning curves of the two stimuli sets varied widely and had a mean not significantly different 136 
from zero (mean of 0.01 [-0.06 0.06], 95% bootstrapped confidence interval). In fact, the spread of correlations was 137 
similar to the distribution that would arise by chance if hue tuning changed randomly between contexts (Fig. 2C inset), 138 
which we approximated by shuffling the neurons and cross-correlating their uniform field tuning curves. Thus, the 139 
tuning curves of the GLM hue model fit to natural scenes were quite dissimilar from the uniform field tuning curves. 140 

Since the correlation across contexts would also appear to be lower due to noise or simply a bad model fit, it was 141 
important to quantify our uncertainty of the tuning estimation. We repeatedly refit the GLM on the natural scene trials 142 
resampled with replacement, and observed the distribution of coefficients. This distribution was propagated through 143 
the analysis to obtain a distribution of curve correlations (Fig. 2Biii) whose 95th percentiles form the confidence 144 
interval of the natural scene (NS) /uniform field correlation for each neuron. Since correlations of exactly 1 would be 145 
impossible in the presence of any sources of noise in curve estimation, we also visualized how high correlations would 146 
have appeared if tuning were the same in both contexts, given all sources of noise. This was estimated by comparing 147 
hue tuning on two non-overlapping halves of natural scene trials (Supp. Fig. 1A). The correlations between natural 148 
scene and uniform hue tuning were significantly lower than this control, (p=3.2x10-12, Wilcoxon signed-rank test; see 149 
Fig. 2C for the population distributions and Supp. Fig. 1D for the per-neuron comparison). Note that the split-trial 150 
control is a conservative lower bound of our quality of estimation, as the model was fit on only half the number of 151 
trials. Thus, uncertainty in our curve estimation cannot explain away our observation of a difference in the hue tuning 152 
of the GLM fit to natural scenes and uniform hue tuning. 153 

Nonlinear model of hue responses 154 

A shortcoming of the GLM is that it does not model interactions between hues. Nonlinear hue interactions have been 155 
previously observed in V4 (34). This would lead to a bias in the GLM’s hue tuning because hues are correlated in 156 
natural scenes (Supp. Fig. 3A). To test if this bias could explain the observed difference in hue tuning, we fit a second 157 
model that included nonlinear interactions between hues. We fit a machine learning model (gradient boosted decision 158 
trees, via XGBoost) to predict the neural response from the histogram of hues present in each natural image fixation. 159 
This model, which we refer to as the ‘nonlinear hue model’, predicted neural activity more accurately than the 160 
generalized linear hue model for all neurons in both M1 and M2 (Supp. Fig. 3B,C). This confirmed that these neurons 161 
responded nonlinearly to hue. It is important to note that because of this nonlinearity, no one-dimensional tuning curve 162 
could represent the full hue response. It would be necessary to estimate multi-dimensional hue tuning curves to display 163 
interactions between hue bins. Our focus here is instead on the average response to individual hues on natural scenes, 164 
and whether this average hue response was similar to hue tuning on uniform hues. 165 

We estimated hue tuning curves for the nonlinear hue model fit on natural scene responses by measuring its responses 166 
to single hues, in essence reproducing the uniform hue experiment but on the natural scene model. If hue tuning were 167 
the same between contexts, then the tuning curves of this model would be the same as the tuning curves of the neurons 168 
estimated on uniform hues. In neurons for which we could consistently estimate hue tuning, we found that these tuning 169 
curves correlated poorly with the uniform field tuning curves (Fig. 2B,C). However, they correlated strongly with 170 
those estimated from the GLM (Supp. Fig. 4A), indicating the bias due to nonlinearity and hue correlations was small. 171 
As we did for the GLM, we estimated our ability to estimate tuning by correlating tuning curves estimated on non-172 
overlapping halves of data. The nonlinear hue model was able to consistently estimate hue tuning for many neurons 173 
in M1 (Fig. 2C overlay) but for just two neurons in M2 (Supp. Fig. 2 D-F), which prevented a statistical analysis in 174 
M2. In M1, the natural scene/uniform field tuning curve correlations were significantly lower than these split-trial 175 
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correlations (p=1.0x10-14, Wilcoxon signed-rank test; Supp. Fig. 1D), indicating that the observed change in hue tuning 176 
across contexts was not a consequence of noise in the estimation of tuning. Thus, even after accounting for interaction 177 
effects between hues, our key finding – that uniform field tuning does not generalize to natural scenes – is consistent 178 
across models. 179 

 
Figure 3. A model of V4 responses was built from a pretrained convolutional neural network (CNN), which we then used to 
build tuning curves for hue. Data from M1; see Supp. Fig. 2 for M2. A) We trained a nonlinear Poisson regression model 
(gradient boosted trees) to predict the V4 response from the activations of an intermediate layer in the VGG16 network given 
the visual stimulus. B) The quality of the neural predictions on each neuron, measured by the cross-validated pseudo-R2 score, 
were similar between the CNN model and the nonlinear hue model. C) We built hue tuning curves in the following manner: (i) 
For each image in a test set, we slightly desaturated all pixels in a bin of hues, and subtracted the CNN model’s predictions on 
the perturbed image from those on the original image. (ii) For each neuron, the average change in the predicted response across 
all test images was plotted against the percentage by which hues were desaturated. The slope of each line is, to first order, the 
average effect of that hue on the model response in the test set. The top and bottom plots show the same example neurons as in 
earlier plots. (iii) The resulting tuning curve (purple) summarizes the average effect of each of the 8 bins of hues – i.e. the slopes 
of the 8 desaturation curves. It can be seen that the tuning of neuron 1 was poorly correlated with the uniform hue tuning (blue), 
while that of neuron 2 was well-correlated, in agreement with the hues of the strongest-driving stimuli shown in Fig. 1B. D) We 
calculated the correlation between the two tuning curves for all neurons. The distribution of correlations was lower than for the 
reconstructed hue tuning of simulated neurons (“simulated tuning control”; see also Supp. Fig. 5) as well as the distribution of 
correlations between tuning curves estimated from two non-overlapping halves of the natural scene trials (“split-trial control”; 
see also Supp. Fig. 1). E) The quality of the CNN model fit for each neuron did not predict the correlation of the tuning curves. 
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Neural network model of V4 responses 180 

We next repeated the estimation of hue tuning on natural scenes with a more general model of V4 neurons that does 181 
not rely on hand-specified summaries of the features present in a receptive field. This was important to ensure that our 182 
results were not sensitive to design decisions in processing the images, as well as to account for the confounds of 183 
other, non-hue features contained in the image. The model we selected was based on a recent encoding model of V4 184 
that relates neural responses to the activations to the upper layers of a convolutional neural network (CNN) pretrained 185 
to classify images (5). Such “transfer learning” models have also recently been used to infer optimal stimuli for 186 
neurons in V4 (15, 16). Our model took an entire fixation-centered image as input, ran it through the network, and 187 
then the network activations were used to predict each neuron’s response with a classifier trained for each neuron (Fig. 188 
3A). The predictions of neural activity given by this model were comparable in accuracy to those of the nonlinear hue 189 
model, indicating that the neurons predominantly responded to hue and that the nonlinear hue model was a good 190 
simplified description (Fig. 3B). The CNN model of V4 comparably predicted the activity of neurons despite making 191 
many fewer assumptions about how raw pixels related to responses. 192 

This learned V4 model has several advantages over the linear and nonlinear models predicting activity from hue 193 
statistics in the estimated receptive field. First, instead of having to pre-specify a receptive field or estimate one with 194 
sparse noise, we allowed the CNN model to learn any location sensitivity itself and thus fed the entire fixation-centered 195 
image as input. The CNN model could also model the interactions of hue with spatial features. This allowed us to 196 
control for non-hue confounds. The linear and nonlinear hue models would provide biased estimates of tuning if 197 
neurons also responded to other visual features, and if these features co-varied in the image dataset with hue. If most 198 
green objects are plants, for example, the observed dependence on green hues may be partially attributable to a 199 
response to the high spatial frequency of greenery. Theoretically, one could include these features as additional 200 
covariates, but the list of features that drive the V4 response in a simple manner (e.g. linearly) is not comprehensively 201 
known. Good progress has been made with shape and texture (3, 35, 36), but arguably not enough to thoroughly 202 
control for all non-hue features in a simple model. The CNN model circumvented this problem by learning the relevant 203 
visual features rather than requiring that they be chosen by a researcher, parameterized by hand, or written out.  204 

We developed a novel method to estimate hue tuning from a general encoding model like the CNN model. We found 205 
we could not simply observe the model’s response to images of a uniform hue, as before, because this approach failed 206 
to reconstruct tuning on simulated data. This interesting parallel to our main finding is likely due to feature interactions 207 
in the model and the fact that uniform field test images are far outside the domain of natural scenes on which the CNN 208 
was pretrained. Instead, we estimated the effect of hue by slightly perturbing the hue of input images and observing 209 
the change in the learned model’s response (Fig. 3C). First, for a test set of images not used for training, we desaturated 210 
all pixels within a bin of hues by a set percentage (Fig. 3Ci). The percentage of desaturation varied from 0% (i.e. no 211 
change) to 100% (in which all pixels of one hue are taken to isoluminant grey). We took the difference between the 212 
model’s predictions on the original and perturbed images and examined how severely this difference depended on the 213 
level of desaturation (Fig. 3Cii). For each neuron, we averaged over the entire image dataset to yield the average hue 214 
tuning on natural images. Finally, to build the tuning curves, we calculated the slope of the desaturation curve for each 215 
hue (Fig 3Ciii). This method established the effect of hue only in the tight neighborhood of each image, and is set up 216 
to estimate the average local effect of hue on the natural image response. 217 

To ensure that this process could in principle reconstruct correct tuning curves, we built simulated responses (Supp. 218 
Fig. 5). We generated random cosine tuning curves, then simulated a hue response by applying these as linear filters 219 
upon the histograms of the hues present in each image. We then attempted to predict these simulated responses from 220 
the activations of the pretrained CNN given the raw images. Using the method of progressively desaturating test 221 
images, we found we could reconstruct the original cosine tuning curves with high accuracy (Fig. 3D overlay and 222 
Supp. Fig. 5), even though the pretrained CNN model was trained to classify images and not to extract hues. As a 223 
second, more conservative test, we also performed the split-trial control for the actual V4 neurons, which involved 224 
repeating the entire analysis separately on two non-overlapping halves of natural scene trials and then correlating the 225 
two resulting tuning curves. The split-trial tuning curves showed significantly positive correlations for most neurons 226 
in M1 (Fig. 3D overlay) as well as for neurons in M2 (Supp. Fig. 1). This method of querying the effect of hue could 227 
thus accurately estimate hue tuning curves from natural scene responses in both monkeys.  228 

We next asked if these tuning curves would be different than tuning curves to uniform hues. We found that the tuning 229 
curves of one context were different from tuning in the other (Fig. 3D for M1 and Supp. Fig. 2I for M2), as for the 230 
previous models. If hue affected V4 responses in the same way in both contexts, we would have observed the 231 
correlations to be at least as positive as the split-trial control. This was not the case. Among those neurons for which 232 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/780478doi: bioRxiv preprint 

https://doi.org/10.1101/780478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8 

we could consistently estimate hue tuning, the natural scene/ uniform hue tuning curve correlations were significantly 233 
closer to 0 (Supp. Fig. 1D for M1; Supp. Fig. 2I for M2). This difference in tuning curves was not an artifact of our 234 
model fit or estimation method, as this would be measured in the split-trial control, and additionally we observed no 235 
correlation between the model’s accuracy on unseen natural images and the natural scene/uniform field correlation 236 
(Fig. 3E and Supp. Fig. 2K). In addition to changes in tuning curve shape as captured by correlation, we also examined 237 
if the natural scene tuning curves showed changes in the overall degree of hue modulation. We found that hue 238 
modulation – the maximum of a tuning curve minus the minimum, normalized by the mean – was related across 239 
contexts, but weakly (Supp. Fig. 6). Many neurons strongly modulated by hue on uniform fields had weak responses 240 
to hue on natural scenes, and vice versa. Overall, the tuning curves estimated with this more advanced method support 241 
our previous conclusion that hue tuning on uniform fields does not agree with the effect of hue in natural scenes.  242 

 
Figure 4: Interactions between features allow neurons to carry more information in their activity, at more times. A) In this two-
dimensional tuning curve, a hypothetical neuron responds to only hue and carries no information about other variables. B) A 
hypothetical neuron that responds as well to another non-hue feature is informative about multiple dimensions of stimuli (due 
to its nonzero derivative). C) We can build a hue tuning curve for this neuron by varying hue with the other feature held fixed. 
If the average non-hue feature is different between natural images and uniform hues, the tuning curves to hue will differ between 
contexts.  

 243 
Why interactions between features? 244 
 245 
A straightforward explanation of why hue tuning differs across visual contexts is that these neurons respond to 246 
nonlinear combinations between hue and non-hue features, as shown schematically in Figure 4. There must be a 247 
computational advantage that explains this coding scheme for visual perception. It is clear that if the role of these 248 
neurons were to encode hue alone, then any nonlinear interactions would be detrimental. This is because hue can no 249 
longer be unambiguously read out without additional contextual information. Therefore these V4 neurons likely assist 250 
in a more general task, like object recognition or segmentation. Other studies have also noted that color vision may be 251 
best thought of in terms of task performance; the absorbance spectra of the L and M photoreceptors in primates, for 252 
example, are not maximally separated as in birds but rather overlap significantly, likely because this helps to 253 
discriminate and classify fruit and leaves (37). The question then arises: why would neurons being responsive to 254 
multiple features help visual processing? 255 

A simple strategy that predicts nonlinear interactions is to minimize the error of any read-out of encoded information 256 
from V4 to other brain areas. We can make this idea precise by referring to the notion of Fisher information, which 257 
bounds the mean squared error of any optimal readout from population activity (see Supplementary Information for 258 
additional details). This framework pulls from a large literature relating to optimal coding strategies (38-40). The 259 
Fisher information is higher – and the potential decoding error is lower – when the neural population activity is highly 260 
sensitive to changes in the task-relevant features. One way to increase the population sensitivity to the task (i.e. the 261 
Fisher information) is to have each neuron be sensitive to multiple features. This will increase the total number of 262 
neurons in the population that are sensitive to each feature; when each neuron responds to k features instead of just 263 
one, k times more neurons respond to each feature on average. By increasing this number, the Fisher information also 264 
increases (though see below), and the minimum achievable error on the task decreases.  265 

Eventually, however, further increasing the k number of features to which a neuron responds will deteriorate how 266 
precisely it can respond to other features, decreasing the Fisher information. Depending on neural physiology (for 267 
example, the maximum firing rate, synaptic noise levels, and correlated variability), this tradeoff determines the 268 
optimal number of features that a neuron should respond to. It is an extreme and unlikely case when the optimal 269 
number is one. Indeed, several publications have found that in common scenarios, like linear-nonlinear responses (39) 270 
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and von Mises tuning curves (41), feature interactions are usually optimal. In particular, some degree of interaction is 271 
always optimal when the features co-vary in the natural world. This is the case with hue and most visual descriptors, 272 
and so it could be expected that V4 neurons would show interactions between hue and other visual features. 273 

DISCUSSION 274 

For populations of V4 neurons in two macaques, we tested if tuning curves measured from simple stimuli of uniform 275 
hues would accurately describe hue tuning measured from natural scenes. We found that hue tuning for uniform hues 276 
was not informative of hue tuning estimated directly from natural scene responses. This finding was robust across 277 
multiple methods of estimating tuning, which together accounted for the confounds of both hue-hue interactions as 278 
well as of non-hue drivers of V4 activity. This was accomplished by measuring the hue tuning of a general, neural 279 
network-based encoding model by slightly perturbing the hue of test images. A hue tuning curve for V4 estimated 280 
from any one set of stimuli thus does not universally describe the average response to hue on other stimuli. This 281 
implies that V4 neurons, including those with strong hue modulation, respond to nonlinear combinations of hue and 282 
non-hue information. 283 

This finding is in line with data from a recent study in V4, which searched for an interaction between shape and color 284 
in the responses to a range of simple shapes (42). The authors observed that, in a linear model, there was a significant 285 
interaction between shape and color in the majority of cells (51/60), and that when modeling this interaction as a color-286 
dependent gain on shape tuning, most cells (44/60) showed nontrivial gain. In those cells, as well as ours, the 287 
stimulus/response function of V4 neurons could not be separated simply (e.g. multiplicatively) into a function of hue 288 
and a function of other stimulus variables. Accurately characterizing tuning curves that are applicable to natural images 289 
thus requires considering nonlinear interactions between features. 290 

Known sources of modulation in visual responses 291 

The V4 response is modulated by a number of factors that change with visual context. These factors are divided in the 292 
manner of their relevance to our findings. First are those factors that could act as confounds upon the estimation of 293 
hue tuning on natural scenes but were not fully controlled for. These are possible reasons why we might have observed 294 
low tuning curve correlations even if, in fact, tuning did not change between contexts. The second category of factors 295 
are known interactions between hue and other features in the V4 response. These are possible explanations of why 296 
hue tuning in V4 changes with visual context. We will review both in turn. 297 

Of first concern as a potential confound upon hue tuning estimation is visual attention (43). A particularly relevant 298 
form of attention is feature-based attention, in which neurons tuned for a feature (say, red) increase their firing rate if 299 
that feature is attended to (as in the task, “find the red object”) (44, 45). While our task was free viewing and involved 300 
no instructions, it is likely that the monkey’s attention shifted during the task and that it was influenced by object 301 
salience. This effect may bias our results if object salience were correlated with hue. It is plausible, for example, that 302 
figures were more salient than ground (e.g. see (46)) and that certain hues were more common in the background than 303 
others. We have not directly controlled for attention, apart from trends in salience that might have been learned by the 304 
CNN model, but we believe that the size of the apparent change in hue tuning cannot be attributable to salience-hue 305 
correlations.  306 

Neurons in V4 are have been shown to preferentially respond to objects near the center of attention, even when 307 
attention falls away from fixation (47-49). This phenomenon of receptive-field remapping is most problematic for our 308 
GLM and nonlinear hue models, which required that we extract the hues lying within the receptive field. If the 309 
monkeys’ attention frequently strayed away from fixation, we would have extracted hues from an irrelevant image 310 
portion. This would introduce some noise in the hue covariates, and therefore some smoothing of hue tuning curves. 311 
The CNN model learned any spatial sensitivity directly from the natural scene responses instead of from previous 312 
characterizations with sparse noise stimuli. However, the effect of attention upon receptive fields could not be modeled 313 
and it is likely that some smoothing of the hue tuning curve occurred for this technique as well. Smoothing would 314 
obscure fine-scale structure in the tuning curves. As the curves were already smooth, however, the natural 315 
scene/uniform field correlations should not be much diminished. The smoothing effect is furthermore not consistent 316 
with our finding that many neurons have natural scene hue tuning with zero, or even negative correlation with their 317 
uniform field tuning while still showing strong hue-dependent modulation. The dependence of receptive fields upon 318 
attention may explain some decrease in correlation, but cannot explain the entire difference in the estimated effect of 319 
hue across contexts.  320 

We now turn to potential descriptions of the interactions that might have led to a shift in hue tuning across contexts. 321 
One possibility is color constancy, in which neurons respond to the inferred surface color of objects rather than their 322 
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apparent color (which reflects the color of ambient light) (34). This is a clear example of the nonseparability of the V4 323 
response to hue, and a reason hue tuning might change between any two, single stimuli. It is less obvious, however, 324 
that color constancy would cause the average effect of hue over all natural images to be different than on uniform 325 
hues. It would be expected that over tens of thousands of images with broad range of lighting conditions, color 326 
constancy would result in some smoothing of the estimated tuning curve due to the difference between the pixels’ hue 327 
and the inferred hue, and of the same characteristic scale as the typical difference. More concerning is the bias that 328 
would result from the discrepancy between pure white and the average lighting condition. We expect this discrepancy 329 
to be small, and therefore natural scene tuning curves would still be strongly (though not perfectly) correlated with 330 
the uniform field tuning curves. Though color constancy would affect hue tuning on natural scenes, it cannot account 331 
for the entire difference we observed, and it is likely that there exists other undocumented sources of nonseparability. 332 

A subpopulation of neurons in V4, so-called equiluminance cells, respond to object boundaries defined solely by 333 
chromatic boundaries (50). Such shapes are defined by changes in hue or saturation, and so it is worth asking whether 334 
the response function of equiluminance cells includes interactions between hue/saturation and spatial arrangement. 335 
However, it was not originally determined if the responses were actually separable in this way, as neurons’ hue tuning 336 
curves were characterized with a fixed shape. It is possible that equiluminant cells had fixed hue tuning that was then 337 
modulated by shape. Thus, it is plausible but undetermined that equiluminance cells would show different hue tuning 338 
across shape and explain our results. 339 

Implications for V4 and for the tuning curve approach 340 

Color responsivity has long been a defining feature of V4 (20, 51). Recent studies have shown that localized areas in 341 
V4 are strongly responsive to color (29), and furthermore that the anatomical organization of color preference on the 342 
neocortex is similar to perceptual color spaces (31-33). These findings have been taken as evidence that areas within 343 
V4 are specialized for the perception of color. However, each of these studies characterized hue tuning by changing 344 
the color of simple shapes. Since the color tuning of V4 neurons changes with visual context, as we show here, it is 345 
possible that previous conclusions about the functional organization of V4 do not accurately describe how V4 346 
processes more naturalistic stimuli. Studies of the spatial organization of hue tuning should be re-evaluated using 347 
multiple classes of stimuli.  348 

Some previous studies, based on the discovery of robust tuning for the color of simple visual stimuli, have concluded 349 
that the role of color-responsive areas in V4 is to represent color. Our results do not rule this out; for example these 350 
areas might represent color but be modulated by what colors are likely given the surroundings. This would complicate 351 
a read-out of color from V4, but may have other advantages like efficiency. However, it could also be that the color-352 
sensitive areas of V4 are not specialized to represent color, per se, but rather serve a more complex role within 353 
recognition and perception. This is analogous to how V2 appears tuned to orientation, but can perhaps be better 354 
described as processing naturalistic texture (52). Furthermore, this role aligns with the suggestion that the ventral 355 
temporal cortex at large decomposes scenes into neural activity such that object categories are linearly separable (53). 356 
Thus, the color-responsive areas of V4 may represent how color informs an inference of object identity. Whether the 357 
color responses of V4 are an end to themselves (i.e. representing color) or intermediate computations in a larger 358 
assessment of object identity, or both, cannot be decided from this study; both are consistent with the data.  359 

Our study joins a longer history of literature observing that, across many brain areas, tuning curves previously 360 
characterized with simple stimuli in fact change with context. In V1, for example, researchers found that receptive 361 
fields change with certain visual aspects that were not varied within previous stimuli sets, such as the presence of 362 
competing orientations in the classical receptive field (54) or outside of the classical receptive field (55-57). Even 363 
sound has been shown to modulate V1 receptive fields, at least in mice (58). More recently, it was observed that 364 
receptive fields are different in the contexts of dense versus sparse noise for neurons in layer 2/3 of V1, though are 365 
similar in layer 4 (59). Spatio-temporal receptive fields of V1 neurons also appear different when estimated on natural 366 
movies versus drifting gratings (10, 12) (though note that orientation tuning is similar for static natural scenes versus 367 
gratings (11)). In other areas, such as for retinal ganglion cells (60, 61) and in macaque M1, S1, and rat hippocampus 368 
(62), contextual modulation in the form of nonlinear feature interactions have been identified by comparing the 369 
performance of a model that assumes separability (such as a GLM) with a nonlinear model that does not. Thus, while 370 
tuning curves generalize in some situations (e.g. (11)), it is common that they do not, and any assumption of 371 
separability of the neural response should be verified. Furthermore, as discussed in Results and the Supplementary 372 
Information, feature interactions are likely optimal for visual processing when the full visual scene is represented in 373 
neural activity and should be expected. Unless specifically investigated, it might not be correct to assume that a tuning 374 
curve accurately describes the neural response on different stimuli than used to create it.  375 
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This conclusion has a concerning consequence for visual neurophysiology. If it cannot be assumed that neural tuning 376 
is separable, it becomes necessary to test prohibitively many stimuli or else make an alternative simplifying 377 
assumption. This is because the stimuli must scatter the entire space of relevant features, rather than be systematically 378 
varied along just one feature at a time. Since the number of tested stimuli must follow the number of potential feature 379 
combinations, the overall number of stimuli will grow exponentially with the number of features. When there are very 380 
many features, even very large recording datasets by today’s standards may be insufficient.  381 

One possible way forward is to make simplifying assumptions, i.e. to set strong priors of the kinds of tuning curves 382 
that could be expected. This is the approach taken, for example, when modeling neurons using the activations of deep 383 
neural networks pre-trained on image classification tasks (5, 63) or considering neural responses as implementing a 384 
sparse code (9, 64). To compare with the previous literature, single dimension experiments can then be performed on 385 
these complex encoding models, as we demonstrate here, or alternatively performed directly on artificial neural 386 
networks to gain intuition about what tuning curves say about information processing (65, 66). In general, finding 387 
suitable priors will require the use of strong theoretical ideas and mechanistic hypotheses. To estimate tuning without 388 
assuming separability, then, neurophysiology must embrace and develop theories of neural processing. 389 

 390 

METHODS 391 

Experimental setup: recordings 392 

In each of two monkeys, we recorded from 96-electrode Utah arrays (1.0 mm electrode length) implanted in visual 393 
area V4. Surgical details describing the implantation method can be found in previous publications (67, 68). The array 394 
was located in the left hemisphere for monkey M1 and in the right hemisphere for M2. Spikes were sorted off-line 395 
first with an automated clustering procedure (69) and then refined by hand using custom MATLAB software 396 
(https://github.com/smithlabvision/spikesort) taking into account waveform shape and interspike interval distributions 397 
(70).  398 

All experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of 399 
Pittsburgh.  400 

Gaze tracking and fixation segmentation 401 

We employed a free-viewing paradigm for one monkey (M1) and a fixed-gaze paradigm for the other (M2). The 402 
location of each monkey’s gaze on the screen was tracked with an Eyelink 1000 infrared tracker (SR Research, Ottawa, 403 
Ontario, Canada). Visual stimuli were presented and the experimental trials were controlled by custom Matlab 404 
software in conjunction with the Psychophysics Toolbox (71). For monkey M1, we segmented each fixation as a 405 
separate event based on thresholding the position and velocity of the gaze coordinates. We did not analyze activity 406 
occurring during eye movements. Once each fixation was separated, the average location of the fixation was recorded 407 
and matched to image coordinates. Monkey M2 was trained to fixate on a dot positioned at the center of each image. 408 
The gaze was tracked as for M1, but this time only to enforce fixation and terminate the trial if the gaze shifted away 409 
from center. 410 

Artificial stimuli 411 

Both monkeys viewed uniform images of a single hue on a computer screen at 36 cm distance, with a resolution of 412 
1024x768 pixels and a refresh rate of 100 Hz on a 21” cathode ray tube display. The full monitor subtended 55.5 413 
degrees of visual angle horizontally and 43.1 degrees vertically. The monitor was calibrated to linearize the 414 
relationship between input luminance and output voltage using a lookup table. This calibration was performed for 415 
grayscale images, and the color profile of the monitor was not separately calibrated. The hues were sampled from the 416 
hue wheel in CIELUV color space at increments of 1 degree, and were presented in random sequence. Monkey M1 417 
freely viewed the stimuli, and was rewarded periodically for maintaining eye position on the screen for 4 seconds, 418 
after which time the static image was refreshed. The trial was ended if the monkey looked beyond the screen during 419 
this duration. Monkey M2 was trained to fixate a small dot at the center of the screen for 0.3 seconds, during which 420 
three images were flashed for 100ms each. A 0.5 second blank period interspersed each fixation. Monkey 1 viewed 421 
7,173 samples of the uniform hue stimuli over 10 sessions, while Monkey 2 viewed 1,119 samples during a single 422 
session. 423 

Natural images 424 
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Both monkeys viewed samples from a dataset of 551 natural images, obtained from a custom-made Google Images 425 
web crawler that searched and downloaded images based on keywords such as cities, animals, birds, buildings, sports, 426 
etc. Monkey M1 viewed images over 15 separate sessions, for a total of 77961 fixations. Monkey M2 viewed images 427 
over two sessions on a single day, for a total of 6713 fixations.  We then extracted the features from the image patch 428 
centered around each fixation that would serve as model inputs. The image patch around fixation corresponded to the 429 
200 x 200 pixel block surrounding the center of gaze. This corresponds to a region subtending the central 11.7 square 430 
degrees of visual angle. 431 

For the nonlinear methods we included a small number of features unrelated to the images as additional controls. To 432 
account for possible stimulus adaption, we included the trial number in the session and also the number of times the 433 
monkey previously fixated on that image. While all models predict the spike rate, which is already normalized by the 434 
fixation duration, we included the fixation duration as an input to control for possible nonlinearities of rate with fixation 435 
duration. We also included the duration of the saccade previous to the current fixation, the duration of the saccade 436 
after fixation, the maximum displacement of the gaze position during the entire duration of the fixation, and whether 437 
the pupil tracking was lost (often due to a blink) in the saccade before or after fixation. Including these inputs allowed 438 
the nonlinear methods to control for factors which also may affect spike rate. 439 

Receptive field estimation 440 

To estimate hue tuning on natural scenes with the hue models, we needed to know which hues were present within the 441 
RF on each fixation. We mapped the RFs by presenting sinusoidal gratings at four orientations, which were flashed 442 
sequentially at the vertices of a lattice covering a portion of the visual field suggested by anatomical location of the 443 
implant. We then extracted the hues present in the 50x50 pixel block surrounding the centroid of the RFs of each 444 
monkey. The location of the RF was confirmed in the natural scene presentations as the pixel block that allowed the 445 
best predictions on held-out trials.  446 

We did not use this RF information in the CNN model, which took as input the entire image region around the fixation. 447 
Since information about spatial location preserved in the lower and intermediate layers of the CNN, the RF for any 448 
neuron can be learned. This addressed any worry that the RF specification might systematically change for natural 449 
images.  450 

Session concatenation 451 

Although all recordings in M1 were performed with the same implanted Utah array, they were recorded over several 452 
sessions. The recordings for M2 were made in a single session. In M1, this introduced the possibility that the array 453 
might have drifted, and that a single channel might have recorded separate neurons in different sessions. To address 454 
this possibility, we noted that spikes identified in a channel in one session will be less predictive of another session’s 455 
activity if the neurons are not the same, as we expect tuning to be relatively static across days (72, 73). We thus filtered 456 
out neurons whose uniform hue tuning changed across sessions. We trained a gradient boosting regression model with 457 
Poisson targets to predict spike counts in response to the hue of the stimuli. Nuisance parameters, such as duration of 458 
stimulus, gaze position, inter-trial interval, etc., were also included as model covariates to increase the predictive 459 
power even for neurons that were not hue-tuned. We then labeled a neuron as having static tuning as follows. First, 460 
we trained the model on each single session in a 10-fold cross-validation procedure and recorded the mean pseudo-R2 461 
score. This score reflected how well the model could predict held-out trials on the same session. Then, we re-trained 462 
the model on each session and predicted on a different session, for all pairs of sessions. This resulted in a cross-463 
prediction matrix with diagonal terms representing same session predictability (the 10-fold CV score), and off-464 
diagonal terms representing generalization between sessions. We did not concatenate sessions if there was not 465 
significant generalization between them. 466 

The natural image sessions were interspersed with the artificial sessions. If a natural image session occurred between 467 
two artificial sessions, and a neuron showed static tuning both artificial sessions as identified in the above manner, 468 
then that natural image session was included for the hue tuning comparison and model fitting. The recordings of units 469 
from other natural image sessions were not used. This procedure improved our confidence that the neurons recorded 470 
in different sessions were the same. 471 

Uniform hue tuning curve estimation 472 

Hue tuning curves were built for each neuron by plotting its spike rate on each fixation against the observed hue. For 473 
the visualizations in the figures, we performed LOWESS smoothing, in which each point of the curve is given by a 474 
locally-weighted linear regression model of a fraction of the data. The error envelope of the curve represents the 95% 475 
confidence interval given by bootstrapping over individual fixations. To calculate the correlation between tuning 476 
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curves, we did not correlate the LOWESS-smoothed curves but rather the simple binned averages. We created 16 bins 477 
of hues and calculated the average spike rate for all stimulus presentations of those hues, then correlated the 16-478 
dimensional tuning curve vector with the natural image tuning curves. 479 

Natural scene models 480 

Model scoring and cross validation:  481 

We quantified how well the regression methods described neural responses by calculating the pseudo-R2 score. This 482 
scoring function is applicable to Poisson processes, unlike a standard R2 score (74). The pseudo-R2 was calculated in 483 
terms of the log likelihood of the true neural activity 𝐿(𝑦), the log likelihood of the predicted output 𝐿(𝑦%), and the log 484 
likelihood of the data under the mean firing rate 𝐿(𝑦&). 485 

𝑅( = * −
log 𝐿(𝑦) − log 𝐿(𝑦%)
log 𝐿(𝑦) − log 𝐿(𝑦&) = 	

log 𝐿(𝑦%) − log 𝐿(𝑦&)
log 𝐿(𝑦) − log 𝐿(𝑦&) 486 

The pseudo-R2 is, at left, one minus the ratio of the deviance of the tested model to the deviance of the null model. It 487 
can be also be seen, at right, as the fraction of the maximum potential log-likelihood. It takes a value of 0 when the 488 
data is as likely under the tested model as the mean rate, and a value of 1 when the tested model perfectly describes 489 
the data.  490 

We used 8-fold cross-validation (CV) when assigning a final score to the models. The input and spike data were 491 
segmented randomly by fixation into eight equal partitions. The methods were trained on seven partitions and tested 492 
on the eighth, and this was repeated until all segments served as the test partition once. We report the mean of the 493 
eight scores.  If the monkey fixated on a single image more than once, all fixations were placed into the same partition. 494 
This ensures that the test set contains only images that were not used to train the model.  495 

Hue models 496 

The uniform field linear model, the generalized linear hue model, and the nonlinear hue model all describe neural 497 
activity as a function of the hues present in the receptive field on each fixation. To build the histograms, we calculated 498 
the hue angle of each pixel in CIELUV space, and then calculated the number of pixels in each of 16 bins of hues. 499 
Note that a hue is defined for a pixel even if it is quite desaturated. To ensure near-gray pixels would not affect the 500 
results, we weighted the contribution of each pixel to the histogram by its saturation (defined as the distance of the 501 
color from the L axis). Since the hue histograms have 16 bins, the base regression problem to describe neural activity 502 
from hue is 16-dimensional.  503 

The uniform field model, presented in Figure 1F, is a linear model whose coefficients are set from the uniform field 504 
tuning curve. Inference is performed via a dot product of the coefficients with the hue histogram. This is, we multiplied 505 
the mean firing rate observed for a bin of hues by how much that hue bin is present in the receptive field, and then 506 
summed across hue bin. We then added a constant term to account for the difference in mean firing rate across contexts. 507 

The generalized linear model (GLM) was a linear-nonlinear model with an exponential link function and a Poisson 508 
loss. We included elastic net regularization, and selected the regularization coefficient for each neuron using cross-509 
validation in an inner loop. We implemented this with the R package r-glmnet (75). For our nonlinear model, we 510 
selected the machine learning method of gradient boosted decision trees as implemented by XGBoost, an open-source 511 
Python package (76). This method allows a Poisson loss function and has previously been shown to be effective in 512 
describing neural responses (62). Briefly, XGBoost trains multiple decision trees in sequence, with each trained on 513 
the errors of the previous trees. We chose several regularization parameters using Bayesian optimization for a single 514 
neuron. These parameters included the number of trees to train (200), the maximum depth of each decision tree (3), 515 
the data subsampling ratio (0.5), the minimum gain (0.3), and the learning rate (0.08).  516 

To build tuning curves from the fit GLM and XGBoost models, we predicted the response to a vector indicating which 517 
color was present (that is, a “one-hot” vector with one entry per hue that is all zeros except for the hue that is present). 518 
Then, to estimate the measurement error of the tuning curves, we refit the models to the original neural responses 519 
resampled with replacement. This resulted in tuning curves from hundreds of bootstrapped model fits. In figures in 520 
which we display the tuning curves, the lower and upper error bounds represent the 5th and 95th percentiles of the 521 
tuning curves observed when refitting the models to the resampled data. 522 

CNN model 523 
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Our convolutional neural network (CNN) encoding model was based on previously published studies in which it was 524 
shown that the intermediate layers of pretrained networks are highly predictive of V4 responses (5). Ours was built 525 
from the VGG16 network, which is a large convolutional network trained to classify the images from the ImageNet 526 
dataset (77). It contains 13 convolutional layers and 3 fully connected layers. We built an encoding model for each 527 
neuron from the activations of layer 14 (the first fully-connected layer). Layer 15 but not the output layer yielded 528 
similar predictive power. We did not modify or refit this CNN to predict neural responses. Instead, we ran nonlinear 529 
Poisson regression (XGBoost) to predict each neuron’s response to an image from the values of layer 14 when the 530 
VGG network was given the same image. We found XGBoost to offer better predictions than other Poisson regression 531 
models. The final model thus takes a fixation image as input, runs the image through 14 layers of the VGG16 CNN, 532 
and then through a trained instance of XGBoost to predict the spike rate of a neuron. We call the combination of the 533 
CNN model and the trained XGBoost for each neuron the “CNN model”. 534 

The CNN model could then be used to build tuning curves. We conceptualized this as extracting the average first-535 
order effect of hue upon the responses of this model to natural images. We perform the following cross-validated 536 
procedure for each of 8 bins of hues. First, we train the CNN model (i.e. train the XGBoost regressor) on the training 537 
set of the natural image dataset. We then modify the test set images by slightly desaturating all pixels whose hue lies 538 
within the current hue bin. The bins were chosen to be large (8 in instead of 16) to so as to be less affected by pixel 539 
noise and to speed computation. We desaturated by moving along the L axis of the LUV color space, the same color 540 
space in which we define hue. For robustness, we modified images at each of many desaturation levels, ranging from 541 
5% to 100% desaturation. We then obtained the predictions of the CNN model to the original test set and also for each 542 
modified, desaturated test set, and take the average difference of these two predictions across all images. This process 543 
is repeated in an 8-fold cross-validation procedure, so that each image serves as the test set once. The resulting series 544 
of average differences can be plotted against the desaturation. The slope of this line represents the average first-order 545 
contribution of that bin of hues to the images in the dataset. Note that the value of slope reflects the scale the x-axis, 546 
which represents the parameterization of the desaturation percentage. It is best to think of the units of slope as arbitrary; 547 
the important result is the relative value of the slope between hues. Finally, the process was repeated for each bin of 548 
hues, resulting in the tuning curve to hue. 549 

We sought to validate this procedure on simulated data. One important aspect is that predictions are made on images 550 
that are as close to the distribution of images in the training set as possible. Since images in which a single bin of hues 551 
are desaturated by 5% are visually indistinguishable from the originals, this is not likely to be a concern. Nevertheless, 552 
we observed whether this method would be able to reconstruct the hue tuning of simulated neurons. We constructed 553 
20 simulated neurons that responded linearly to the hues present in a receptive field. Each neuron was cosine tuned 554 
with a randomly selected hue angle. Linear regression could perfectly reconstruct the hue tuning of these simulated 555 
neurons, as expected. The CNN method could also reconstruct the tuning curves, though less well than linear 556 
regression (as indicated by the spread of cross-validated pseudo-R2 values, Supp. Fig. 3). If linear tuning curves do 557 
exist, then, the CNN method would be able to reconstruct them. 558 

Calculation of error bounds 559 

Each estimate of a tuning curve represents, in essence, a summary statistic of noisy data. To estimate error bounds on 560 
tuning curves, we relied on the nonparametric method of bootstrapping across trials, or for summary statistics of the 561 
entire neural population, additionally bootstrapping across neurons. Since the uniform field hue tuning curves used 562 
for correlations were simple averages of spike rates, binned over hue, we bootstrapped across trials to compute the 563 
confidence intervals. The natural scene tuning curves for the GLM and nonlinear methods represented the predicted 564 
response to single hues. For these methods, we computed uncertainty bounds on their predictions to single hues by 565 
retraining the methods on resampled datasets (with replacement) and selecting the 5th and 95th percentiles of the 566 
predicted output for each bin. For the CNN method, the tuning curves were calculated from linear fits of the difference 567 
in test set predictions as a function of hue bin desaturation. The difference in predictions was noisy across images, 568 
with large changes predicted for some images but small changes predicted for other images. This noise presented as 569 
uncertainty in the linear fit to the data. The error on the CNN tuning curve, then, represented the uncertainty in the 570 
linear fit to the test set predictions.  571 

The uncertainty on each of the tuning curves was then propagated into the correlation between the natural scene and 572 
uniform field tuning curves. This was again done through bootstrapping. For a given natural scene/uniform field 573 
correlation, we correlated the natural scene and uniform field tuning curves from hundreds of model fits upon 574 
resampled data, yielding a large distribution of correlations. We then reported the mean, 5th, and 95th percentiles of 575 
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this distribution. The uncertainty of the mean across neurons included a bootstrap across the trials used to build the 576 
tuning curves for each neuron, followed by a bootstrap across neurons. 577 

 578 

 579 
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Supplementary information 732 

 733 

 734 
Figure S1. Our ability to estimate hue tuning can be captured by the correlation of the tuning estimated on two non-735 
overlapping halves of the trials. This correlation would be 1 in the no-noise or infinite-data condition. For a single 736 
neuron, the half-trial correlation represents an estimate of what natural scene/uniform hue tuning curve correlations 737 
we would observe if hue tuning did not change between conditions. (Note that by fitting models on only half of the 738 
data, the estimate of hue tuning is noisier than in the full-data tuning estimation. Our actual ability to measure hue 739 
tuning is thus better than communicated by this control. For this reason these plots show a lower bound of the 740 
correlation we would expect if hue tuning were the same across conditions.) A) For the GLM hue model (green), the 741 
nonlinear hue model (red) and the CNN model (blue), these plots display the correlation of the tuning estimated on 742 
two non-overlapping halves of the trials. One can also consider this test as running 2-fold cross-validation and 743 
comparing the tuning curves estimated on both splits of data. Like in the main analysis, we split the data such that all 744 
trials (fixations) on the same image were placed in the same fold of data. In this plot the neurons are again ordered 745 
by their correlation to produce a cumulative distribution (the order of neurons is not the same as in Figures 2C and 746 
4A). Errors show 5th and 95th percentiles of this procedure repeated on the original data resampled with replacement. 747 
The smoothed distributions projected below are reproduced in Figures 2C and 4A. B) The half-trial control for the 748 
uniform hue condition. This communicates how precisely we can estimate uniform hue tuning. The errors again 749 
derive from repeating the cross-half correlation when resampling the trials and re-splitting the data in half. C) The 750 
estimation error as communicated by these half-data control captures the same sources of variability that were 751 
incorporated into the principle uncertainty measure of the correlation between tuning curves (e.g. Figure 2Bii). That 752 
uncertainty was measured by resampling the trials, then re-calculating and re-correlating the tuning curves. To 753 
demonstrate this, here we show the relation between the half-data correlation and the size of the uncertainty bars 754 
from the main figures (Figures 2C and 4A). As expected, there is a strong negative correlation. Higher half-data 755 
correlations for a neuron correspond to smaller bounds of the natural scene/uniform hue correlation. D) Here we 756 
compare, neuron-by-neuron, the relationship between the half-data correlation and the natural scene/uniform hue 757 
correlation. (Panel A only communicates the difference in overall distributions.) Importantly, there is little relation 758 
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between the half-data correlation (i.e. our ability to estimate natural scene hue tuning) and the natural scene/uniform 759 
hue correlation (i.e. whether we observed that neuron to shift tuning). This shows when we observe a shift in hue 760 
tuning, it is not simply because for that neuron we poorly estimated the natural scene hue tuning. Another key 761 
takeaway is the number of neurons that lie in the region below the dotted red line, where the split-trial correlation is 762 
higher than the natural scene/uniform hue correlation. For all three estimation methods (nonlinear hue, GLM hue, 763 
and CNN model), significantly more neurons lie below this line than above it.  764 
 765 
 766 

 767 
Figure S2: Collected data for Monkey 2. M2 differed from M1 in that its gaze was fixed at image center, rather than 768 
free viewing. The data for M2 was recorded in a single session and included significantly fewer trials than M1. A) 769 
Most neurons in M2 showed poor hue tuning, and we were not able to consistently estimate uniform hue hue tuning 770 
nearly as well as for M1. Displayed here is the split-trial control, in which for each of 80 neurons we correlate the 771 
uniform hue tuning curves estimated on non-overlapping halves of trials (compare to Fig. S1b for M1). For later 772 
analysis, we only selected neurons for which we could consistently estimate hue tuning, i.e. the tuning curves built 773 
from non-overlapping halves of trials significantly correlated (95% CI non-inclusive of 0). B) Like for M1, the uniform 774 
hue tuning curves were worse at predicting natural scene responses than the mean firing rate on natural scenes. 775 

C-E) Analysis of the natural scene tuning curves estimated by the nonlinear hue model was inconclusive. Note that 776 
we did not analyze the GLM hue model for M2 because it could poorly explain responses on held-out trials (Supp. 777 
Fig. S3c). C) The split-trial control for tuning curves estimated from the nonlinear hue model (i.e. the correlations of 778 
natural scene tuning curves estimated on non-overlapping halves of trials). The natural scene tuning curves could not 779 
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be estimated as consistently as for M1 (in Fig. S1a). D) The natural scene/uniform hue tuning curve correlations as 780 
estimated by the nonlinear hue model. Like for M1 (Fig. 2c) we overlay the split-trial distribution and the null 781 
distribution expected with random reshuffling of hue tuning. The arrows indicate the two neurons for which the split-782 
trial control was significantly above 0. E) Neuron-by-neuron comparisons for the hue model of the natural 783 
scene/uniform hue correlations and the split-trial correlations. A neuron has a lower natural scene/uniform hue 784 
correlation than the split-trial correlation (which is a lower bound of what the natural scene/uniform hue correlation 785 
would be if hue tuning did not change) when it lies below the dotted red y=x line. While some neurons lie below, 786 
nearly an equal number lie above. By a Wilcoxon signed rank test, we were unable to reject the null hypothesis that 787 
natural scene/uniform hue correlations are lower than the split-trial correlations (p=0.65). Overall, it was not clear 788 
from the hue model on M2 neurons whether hue tuning does or does not change. 789 

F-J) Parallel analysis of the natural scene tuning curves estimated with the CNN method. F) Like for the hue model, 790 
our estimation ability was much poorer than for M1, but the distribution of correlations of hue tuning estimated of 791 
non-overlapping halves of trials was skewed towards positive correlations. G) Natural scene/uniform hue correlations. 792 
Like for M1 (Fig. 4a) we overlay the split-trial distribution. Inserted is the distribution of natural scene/uniform hue 793 
correlations of simulated neurons with cosine hue tuning. (Since M2 saw 10x fewer trials than M1, we re-calculated 794 
our estimation ability on this smaller dataset. For 10 simulated neurons, the method could indeed reconstruct tuning 795 
curves, though less well than with the trials for M1 (Fig. S5).)  H) Neuron-by-neuron comparisons for the CNN model 796 
of the natural scene/uniform hue correlations and the split-trial correlations. This time, among the neurons for which 797 
we could consistently estimate hue tuning (i.e. with a positive correlation of tuning curves estimated on split data), all 798 
neurons had a higher split-trial natural scene curve correlation than a natural scene/uniform hue correlation. This was 799 
significant under a Wilcoxon signed rank test at p=0.003. Note additionally that there was little relation between the 800 
half-data correlation (i.e. our ability to estimate natural scene hue tuning) and the natural scene/uniform hue correlation 801 
(i.e. whether we observed that neuron to shift tuning). Thus, among neurons for which we could consistently estimate 802 
both uniform hue tuning and natural scene tuning (i.e. both split-trial correlations significantly above 0), hue tuning 803 
changed across conditions. I) The cross-validated pseudo-R2 scores captured how well the natural scene models can 804 
explained data on held-out trials. In general the scores were much lower than for M1 (Fig. 3b). There were some 805 
neurons the hue model explained better (lying below the y=x line), and many neurons quite poorly predictable from 806 
hue were better predicted by the CNN model (those near the origin, which lie above the y=x line). J) As for M1 (Fig. 807 
3e), the pseudo-R2 score of the CNN model on a given neuron was not predictive of the natural scene/uniform hue 808 
correlation.  809 

 810 

 811 
Figure S3. The response of V4 neurons to hue is nonlinear and contains interactions between bins of hues. A) The 812 
correlation matrix of hues on the natural image dataset observed by M1. Since the off-diagonal terms are not zero, 813 
there are correlation between hues (especially of similar colors). These correlations could bias the tuning curve of a 814 
linear fit if nonlinear hue interactions exist in the neural response. As shown in (B) and in (C), these interactions do 815 
indeed exist. This can be seen by the fact that the nonlinear model (gradient boosted trees, XGB) predicts neural 816 
activity better than the generalized linear model (GLM) when both are fed the (saturation-weighted) histograms of 817 
hues present within the receptive field during each fixation.  818 
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 819 
Figure S4. Correlation of the tuning curves (TCs) constructed from natural stimuli across methods. A) Correlations 820 
between the TCs found via the linear and nonlinear hue models. B) Correlations between the TCs found via the linear 821 
hue model and the VGG CNN curve construction method. C) Correlations between the TCs found via the nonlinear 822 
hue model and the VGG CNN curve construction method.  823 

  824 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 24, 2019. ; https://doi.org/10.1101/780478doi: bioRxiv preprint 

https://doi.org/10.1101/780478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

 825 
Figure S5. Reconstructing simulated neural responses shows that the CNN method can in principle observe hue 826 
tuning. A) As for the main model, we fit a nonlinear Poisson regression model to predict ‘neural’ responses from the 827 
intermediate activations of the VGG16 model when given image segments. Instead of the actual neural response, here 828 
we fit to a simulated neural response, which comprised of a random (fixed) cosine filter applied to the distribution of 829 
hues in each fixation. B) The model could predict these simple responses well, but not perfectly, with typical pseudo-830 
R2 scores less than 0.4. C) Once again we calculated the average difference in predictions between held-out images 831 
and those same images but with each of 8 bins of hues desaturated by some percentage. We plot the difference in 832 
response as a function of desaturation. It can be seen that the line is somewhat sub-linear, like for actual neural 833 
responses. This plot proves that some of this sub-linearity is not neural in origin, but rather a function of both our 834 
choice of color space (CIELUV) and the way that the VGG model incorporates color into the response. D) Tuning 835 
curves constructed in this way (from the slopes of the saturation dependencies) closely resemble the original filters, 836 
with some noise. E) The typical noise of this method’s reconstruction of tuning curves can be summarized as a 837 
distribution of tuning curve correlations. This distribution is the point of comparison, representing what distribution 838 
we would expect if hue tuning were unchanged between categories of stimuli. 839 

  840 
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 841 
Figure S6: We calculated a modulation index measuring how drastically hue affected the V4 response on either 842 
uniform hues or natural images. In uniform hues, the modulation index was defined as the maximum of the uniform 843 
hue tuning curve, minus the minimum, and divided by the mean spike rate. In natural scenes, we examined how 844 
strongly various hues affected the CNN model response. This was measured by the difference between the maximum 845 
and the minimum of the CNN model tuning curve, which, measuring a difference in the predictions rather than the 846 
absolute value, is already mean-normalized. There was a weak correlation (p=0.003) between these two indices.  847 
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Appendix: why mixed selectivity? 849 
 850 

The visual cortex is faced with the task of representing aspects of the visual world in the activity of its neurons. Visual 851 
information can be broken down into separate features, with potentially overlapping information content. These 852 
features might be hue, shape, or other visual aspects. What is the optimal way of representing M features in a single 853 
population of N neurons? Here we argue that, under certain reasonable assumptions, each neuron within a population 854 
should respond to multiple features. 855 

Denote the features describing behaviorally-relevant aspects of the world as 𝜽 = {𝜃3, 𝜃5, … , 𝜃7}. We are interested in 856 
how well 𝜽 can be decoded from the population activity of N neurons 𝒙 = {𝑥3, 𝑥5, … , 𝑥;}, given the quality of the 857 
neural representation. To this end, we seek to bound the error of the best possible decoder. We will quantify the error 858 
as the mean-squared error over all features 𝜃<: 859 

𝜎5 = >?𝜽 − 𝜽@A
5
B = 	C>?𝜃< − 𝜃D<A

5
B

7

<

 860 

where ⟨⋅⟩ denotes the expectation over the stimulus distribution, and 𝜽@ are the decoded features.  861 

A common way to bound this error is to invoke the Cramer-Rao inequality (38): 862 

>?𝜽 − 𝜽@A
5
B ≥ 𝑡𝑟(𝑭(𝜽)L3). 863 

This states that the reconstruction error is lower-bounded by the inverse of the Fisher information of the neural 864 
population with respect to 𝜽. The Fisher information at a given value of 𝜽	is defined as 𝑭(𝜽) = ⟨𝛁𝛉(𝒙)𝛁𝛉(𝒙)P⟩, or 865 
element-wise for each pair of features 𝑖, 𝑗 as: 866 

𝐹(𝜃)<,T = UV
𝜕
𝜕𝜃<

ln 𝑝(𝒙|𝜃<)[ ⋅ \
𝜕
𝜕𝜃T

ln 𝑝?𝒙|𝜃TA]^
𝒙

. 867 

Thus, maximizing the Fisher information minimizes the mean error of a good decoder (i.e. one that saturates the 868 
Cramer-Rao bound). The Fisher information also serves as a bound upon the mutual information between 𝜃 and 𝒙 869 
(39). 870 

When the noise on neurons is Gaussian with equal variance, the Fisher information simplifies and can be written in 871 
terms of the variance 𝜎 of the noise and the individual activation functions 𝑓: 872 

𝐹(𝜽) =C𝜎L3
;

<

∇a𝑓<(𝜽)	∇a𝑓<(𝜽)P. 873 

If the neural response is Poisson, with mean rate given by the activation, the Fisher is the related quantity 874 

∇𝐹(𝜽) =C𝑓<(𝜽)L3
;

<

∇a𝑓<(𝜽)	∇a𝑓<(𝜽)P. 875 

Now, given this Fisher, what distribution of response selectivity minimizes the Cramer-Rao bound? For any one 876 
parameter 𝜃b, the 𝑘th diagonal element of the Fisher (which limits the variance of the error on 𝜃b) is proportional to 877 

∑ efgh(𝜽)
fij

k
5

;
< 	in the case of Gaussian noise and ∑ 3

gh(𝜽)
	efgh(𝜽)

fij
k
5

;
<  in the case of Poisson neurons. To say precisely what 878 

𝑓<(𝜽) maximizes this term requires making some assumptions about both allowable 𝑓< and the distribution of 𝜽. We 879 
will review a handful of settings below. However, it is clear that this sum will be larger if many neurons are sensitive 880 
to 𝜃b. This is, intuitively, why mixed selectivity helps.  881 
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Depending on the form of the tuning curves 𝑓<, however, a neuron may face a tradeoff between having high  fgh(𝜽)
fij

 for 882 

different 𝜃b. This is plausible, especially if we consider that the total magnitude of the gradient is bounded to some 883 
finite value. Thus, it is theoretically possible that coding for other variables decreases one’s sensitivity to a first 884 
variable to a prohibitive degree. We are interested here in determining which distributions over 𝜽  have this property, 885 
given some assumptions about the form of 𝑓<(𝜽). In general, if the 𝑓< are neural tuning functions parameterized by 𝝀, 886 
a neural population will not have mixed selectivity when, even at the point when all neurons only tune for one variable, 887 
the gradient (with respect to the tuning parameters) of the kth diagonal element of the inverse Fisher (corresponding 888 
to a single variable) is larger than the magnitude of the gradient of all other elements corresponding to the other 889 
variables: 890 

|∇m[𝐹(𝜽)L3]bb| > q∇m C[𝐹(𝜽)L3]rr

7

rsb

q 891 

When this condition is met, one can increase decoding accuracy by making neurons more tuned to single features. If 892 
this condition is met even when neurons already tune to just one feature each, then no neuron will have mixed 893 
selectivity. We posit that this is extremely unlikely; a great number of neurons coding with small sensitivity to a 894 
feature is generally going to have higher Fisher information than just one neuron coding strongly for that feature, if 895 
the number of neurons is large. 896 

The exact conditions will depend on the form of 𝜽  and 𝑓<(𝜽). Other papers have taken a similar approach in various 897 
circumstances. (78) demonstrated that if neurons are linear, then mixed selectivity is empirically optimal, but the 898 
assumptions about the data distribution are not clearly stated. (41) show that for uniform distributed circular variables 899 
and von Mises tuning curves, mixed selectivity yields higher Fisher information. (39) investigated the situation in 900 
which M neurons encode M variables, and furthermore each neuron is a linear-nonlinear map with non-decreasing 901 
scalar link h and linear weight matrix W: 𝑓<(𝜽) = ℎ(𝑾𝑻𝜽)	. In this circumstance, the authors found that in the optimal 902 
mapping of Gaussian 𝜽 the weight vectors are projections in the distribution of 𝜽 with small variance, with some 903 
repulsion between weight vectors. Thus, in order for mixed selectivity to not be optimal in this circumstance, the 904 
variables should entirely decorrelated and mutually orthogonal. This is not the case for typical visual descriptors; color 905 
and hue correlate with objects and scenes in many ways. 906 

It is interesting to contrast this approach to a different approach justifying nonlinear mixed selectivity. One line of 907 
reasoning from the behavior literature is that nonlinear mixed selectivity allows a greater diversity of linear readouts, 908 
and thus behaviors (79). Thus, while here we maximize the potential quality of the readout, one also finds a benefit 909 
for nonlinear mixed selectivity when considering only the overall number of potential readouts. 910 

 911 
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