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Abstract

In a previous study, the authors utilized a single dimensional oper-
ationalization of species density that at least partially demonstrated
dynamic system behavior. For completeness, a theory needs to be
developed related to homology/cohomology, induction of the time di-
mension, and system hierarchies. The topological nature of the sys-
tem is carefully examined and for testing purposes, species density
data for a wild Dictyostelia community data are used in conjunc-
tion with data derived from liquid-chromatography mass spectrome-
try of proteins. Utilizing a Clifford algebra, a congruent zeta function,
and a Weierstraß ℘ function in conjunction with a type VI Painlevé
equation, we confirmed the induction of hierarchy and time through
one-dimensional probability space with certain topologies. This pro-
cess also served to provide information concerning interactions in the
model. The previously developed “small s” metric can characterize
dynamical system hierarchy and interactions, using only abundance
data along time development.
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1 Introduction

In a previous study, the authors developed a system whereby a static set of
species density information can be utilized to predict dynamics therein by
extracting probabilistic information [1]. We developed a new complex system
measure, “small s”, related to a probability space. When Nk is the individual
density for the k-th ranked species and is approximated by a logarithmic
distribution with parameters a, b with respect to the ranks of the values of
individual densities,

Nk = a− b ln k, (1)

and

ℜ(s) =
ln N1

Nk

ln k
(k ̸= 1),ℑ(s) = e

ℜ(s)
b

E(N), (2)

where E(N) is averaged species density. For k = 1, ζ(s) = E(N)
N1

for species,
where ζ(s) is a Riemann zeta function. Therefore, it appears doubtful why
single-dimensional information (Nk), with a topology labelled by rank k,
can induce a 3-dimensional system (a, b, ln k, regarding Nk as free energy,
the others as internal energy or enthalpy, temperature, and entropy, respec-
tively) of an individual density, accompanied with an even additional time
dimension. To explain this, first of all, we set a 1-dimensional C∞ manifold
with a topology as (B,O) with s ∈ B. Inspired by the Bethe ansatz (e.g.
[2]), we set three different topologies isomorphic to ∆,C, Ĉ for further clari-
fication of our model. These topologies naturally invest a cohomology, time
dimension, and hierarchy to the system. Furthermore, we are able to define a
proper topology independently from moduli of measurements with individual
numbers and a Galois action dependent on moduli of it in an evolutionary
system with hierarchy by Galois extension, such as biological systems in this
case. For application to biological hierarchies, this model is tested using pro-
tein abundance data derived from liquid-chromatography mass spectrometry
(LC/MS) of HEK-293 cells and species density data from a wild Dictyostelia
community. Finally, we sought to evaluate interactions of the constituents
of biological systems by invoking a Weierstraß ℘ function to estimate the
strength of homo- and hetero-interactions. These results serve to further
justify our “small s” metric to decipher system dynamics of interest. For
example, adapted, non-adapted (neutral), and disadapted (repressed) pro-
teins can be classified by expansion of the model using a Clifford algebra.
Furthermore, utilizing a congruent zeta function elucidates the contribution
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to adaptive/disadaptive situations from each hierarchy.

2 Field Research & Experiments

2.1 Field Research

Data concerning the number of individuals in each species were obtained
from natural (nonlaboratory) environments. The sampling is described in
[3]. Field experiments were approved by the Ministry of the Environment,
Ministry of Agriculture, Forestry and Fisheries, Shizuoka Prefecture and
Washidu Shrine (all in Japan). The approval Nos. are 23Ikan24, 24Ikan72-
32, and 24Ikan72-57. Soil samples were obtained from two point quadrats in
the Washidu region of Izu in Japan. The number of individual cellular slime
molds per gram of soil was determined by counting the number of plaques
cultivated from soil samples. Species were identified by morphology and the
DNA sequences of 18S rRNA genes. Samples were obtained monthly from
May 2012 to January 2013 inclusive. Relevant calculations were performed
using Microsoft Excel 16.16.13 and SageMath 8.8.

In more detail, sampling occurred using two 100 m2 quadrats in Washidu
(35◦3′33′′N, 138◦53′46′′E; 35◦3′45′′N, 138◦53′32′′E). Within each 100 m2 quadrat,
nine sample points were established at 5 m intervals. From each sampling
point, 25 g of soil was collected. Cellular slime molds were isolated from these
samples as follows. First, one sample from each site was added to 25 ml of
sterile water, resuspended, and then filtrated with sterile gauze. Next, 100 µl
of each sample solution was mixed with 100 µl HL5 culture medium contain-
ingKlebsiella aerogenes and spread on KK2 agar. After two days of storage in
an incubator at 22 ◦C, the number of plaques on each agar plate was enumer-
ated and recorded. Note that the number of plaques corresponds to the total
number of living cells at any possible stage of the life cycle. That is, the niche
considered here is the set of propagable individuals of Dictyostelia; these are
not arranged in any hierarchy or by stage in the life cycle. Also, note that we
did not examine the age or size structure of organisms, since most of these
were unicellular microbes. Mature fruiting bodies consisting of cells from a
single species were collected along with information regarding the number of
plaques in the regions in which each fruiting body was found. Finally, spores
were used to inoculate either KK2 for purification or SM/5 for expansion. All
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analyses were performed within two weeks from the time of collection. The
isolated species were identified based on 18S rRNA (SSU) sequences, which
were amplified and sequenced using PCR/sequencing primers, as described in
[4] and the SILVA database (http://www.arb-silva.de/). The recipes for the
media are described at http://dictybase.org/techniques/media/media.html.

2.2 Experiments

2.2.1 Cell culture

A human HEK-293 cell line from an embryonic kidney was purchased from
RIKEN (Japan). The sampling is described in [5]. The original cultures were
frozen on either March 18, 2013 (3-year storage) or March 5, 2014 (2-year
storage). They were subsequently used in experiments between February and
June 2016. The strain was cultured in Modified Eagle’s Medium (MEM) +
10% fatal bovine serum (FBS) + 0.1 mM nonessential amino acid (NEAA)
at 37 ◦C with 5% CO2. Subculturing was performed in 0.25% trypsin and
prior to the experiment, the original cells from RIKEN were frozen following
the standard protocol provided by RIKEN: in culture medium with 10%
dimethyl sulfoxide (DMSO), they were cooled until reaching 4 ◦C at −2
◦C/min, held at that temperature for 10 min, then cooled until reaching −30
◦C at −1 ◦C/min in order to freeze, held at that temperature for 10 min,
then cooled again until reaching −80 ◦C at −5 ◦C/min, and finally held at
that temperature overnight. The next day, they were transferred to storage
in liquid nitrogen.

2.2.2 Protein experiments

The HEK-293 proteins were extracted using the standard protocol for the
RIPA buffer (NACALAI TESQUE, INC., Kyoto, Japan). The sampling is
described in [5]. Approximately 106 harvested cells were washed once in
Krebs-Ringer-Buffer (KRB; 154 mM NaCl, 5.6 mM KCl, 5.5 mM glucose,
20.1 mM HEPES pH 7.4, 25 mM NaHCO3). They were resuspended in 30
µl of RIPA buffer, passed in and out through 21G needles for destruction,
and incubated on ice for 1 h. They were then centrifuged at 10,000 g for 10
min at 4 ◦C, followed by collection of the supernatants. The proteins were
quantified using a Micro BCA Protein Assay Kit (Thermo Fisher Scientific,
Waltham, U.S.A.) and further processing was performed using XL-Tryp Kit
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Direct Digestion (APRO SCIENCE, Naruto, Japan). The samples were so-
lidified in acrylamide gel, washed twice in ultrapure water, then washed three
times in dehydration solution, and finally dried. The samples were then pro-
cessed using an In-Gel R-CAM Kit (APRO SCIENCE, Naruto, Japan). The
samples were reduced for 2 h at 37 ◦C, alkylated for 30 min at room temper-
ature, washed five times with ultrapure water, washed twice with destaining
solution, and then dried. The resultant samples were trypsinized overnight
at 35 ◦C. The next day, the dissolved digested peptides were collected by
ZipTipC18 (Merck Millipore, Corp., Billerica, U.S.A.). The tips were damp-
ened twice with acetonitrile and equilibrated twice with 0.1% trifluoroacetic
acid. The peptides were collected by ∼ 20 cycles of aspiration and dispens-
ing, washed twice with 0.1% trifluoroacetic acid, and eluted by 0.1% triflu-
oroacetic acid /50% acetonitrile with aspiration and dispensing five times
× three tips followed by vacuum drying. The final samples were stored at
−20 ◦C. Before undertaking LC/MS, they were resuspended in 0.1% formic
acid, and the amounts were quantified by Pierce Quantitative Colorimetric
Peptide Assay (Thermo Fisher Scientific, Waltham, U.S.A.). This protocol
is published at http://dx.doi.org/10.17504/protocols.io.h4qb8vw.

2.2.3 LC/MS

LC/MS was undertaken by the Medical Research Support Center, Gradu-
ate School of Medicine, Kyoto University with a quadrupole–time-of-flight
(Q-Tof) mass spectrometer TripleTOF 5600 (AB Sciex Pte., Ltd., Concord,
Canada). Standard protocols were followed. The loading amount for each
sample was 1 µg. We extracted the quantitative data for the unused infor-
mation for identified proteins using ProteinPilot 4.5.0.0 software (AB Sciex
Pte., Ltd., Concord, Canada). For further details see [5].

3 Results

3.1 General guidelines for topological evaluations

We start from a 1-dimensional C∞ manifold with a topology, (B,O). Note
that many aspects of (B,O) can be explained by the inverse square law by
drawing on forces in the models below.
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This partial topology of O means, for example, a regular automorphism
on ∆, f(∆) = {eiθ z−α

1−ᾱz
; z ∈ B, θ ∈ R, α ∈ ∆} can explain anything emanat-

ing from the set of f , for example, isomorphism to R3 space as shown in [1],
and explored in more detail below. An apparently neutral particle system
introduced with hierarchies by Galois extension could be Gal(Q(ζn)/Q) ∼=
(Z/nZ)× when ζn is a cyclotomic field. If GCD(n,m) is 1, Gal(Q(ζnm)/Q) ∼=
Gal(Q(ζn)/Q) × Gal(Q(ζm)/Q). This would lead to a Kummer extension
decomposed to species with p identity [1].

For a topology of C, f(C) = {az + b; z ∈ B, a, b ∈ C} and isomorphic to
R4, later indicated as (3 + 1) dimensions with a time dimension. Obviously
interaction of a complex metric, e.g. s2, w2 in [1], can induce a time dimen-
sion. For a topology of Ĉ, f(Ĉ) = {az+b

cz+d
; z ∈ B, a, b, c, d ∈ C} and isomorphic

to R6(R3×R3), later indicated by letting R4 compact by inducing a hierarchy
as in [1].

Fundamentally, a simply connected subregion without holes such as a Rie-
mann surface induced during hierarchization is isomorphic and holomorphic
to either ∆,C, or Ĉ. Schwarz-Christoffel mapping enables a conformal trans-
formation from polygons to one of those regions, and the Widely Applicable
Information Criterion (WAIC) has a central role as an analogy to logarithmic
velocity in fluid mechanics calculated from D [1]. Without singularity, this
is straightforward to consider and we focus on the case for singular points.
As in the Bethe ansatz [2], a single dimension z with a particular topology
is able to induce both a (3 + 1)-dimensional system and hierarchies.

3.2 O ∼= ∆ case

The Riemann-Roch theorem states

l(D)− l(K −D) = deg(D)− g + 1, (3)

where D is a divisor, K is a canonical divisor, and g is a genus number. Let
TB be a bundle. An interaction, TB×̃TB :=

∪
p∈B TpB × TpB, becomes

a 3-dimensional C∞ manifold. Let open base elements of the manifold be
x, y, z, and the planes on the bases be X,Y, Z. If we consider interactions of
these bases, the left term of Eq. (3) is 3, from g = 10 and deg(D) = 12.

Let F

F (z) = q
∞∏
n=1

(1− qn)2(1− q11n)2 =
∞∑
n=1

c(n)qn (4)

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2019. ; https://doi.org/10.1101/780882doi: bioRxiv preprint 

https://doi.org/10.1101/780882
http://creativecommons.org/licenses/by-nc-nd/4.0/


be a totally real number field of degree g over Q, and K be a totally imaginary
quartic extension of F . Let D and Dint be simple algebras over K with
D = es/b. Let G = GU(D,α) with α being a second kind involution of
D. Take a 3-dimensional ℓ-adic system in which WE = ℜ(s) = ℓ,D× =
p = |D|E(ΣN), GLd(E) = v = lnNk/ ln p, where WE denotes the Weil group
of center E as a Langlands correspondence [6] [1] [5]. ℓ is obviously an
étale (crystalline) topology independent of moduli Nk, in the sense that a
homomorphism of Noetherian local rings is unramified and flat, and the
object is a localization of a finitely generated algebra of the origin [1]. These
p(ℓ)-adic geometries are analogical to real differentiables and Clifford-Klein
geometries as calculated later. The O ∼= ∆ case visualizes both persistence
homology p and étale cohomology l.

3.3 O ∼= C case

A Minkowski metric small s [1] can be utilized for a time developing model
when sin, cos of the metric are converted to sinh, cosh. However, for more
detailed analysis, another Minkowski metric in our model could be

sM = [ℑ(s)2(∆ℑ(s))2 − (∆a)2 − (∆b)2 − (∆ ln k)2]
1
2 . (5)

In this sense, the world line of a species is identical and a different species is
non-zero, discretely depending on ∆ℑ(s). When we take ds2M = a(V1)ds

2
M1, ds

2
M1 =

a(V2)ds
2
M2, and so on. ds2M = ds′2M due to a Lorentz transformation and

ln(sM) =
∑∞

i=1 ln a(Vi) becomes a module when 2dsM = 0. A set of species
can thus be characterized by this module of sM . A Lagrangian could be

L = −ϕℑ(s), (6)

and a Hamiltonian could be

H = −ϕℑ(s)2
√

ℑ(s)2 + (H(t)D)2

ℑ(s)2 − (H(t)D)2
. (7)

We can consider D′ ∼= Dint, G′ ∼= Gint, and a time dimension is in-
duced by some admissible isomorphisms (Proposition 2.5.6 in [7]). Note that
‘temperature’ b and root of time t are closely correlated by t = b argD [1].
Now consider the Poincaré conjecture, where every simply connected closed
n-dimensional manifold WE is homeomorphic to n-dimensional sphere Sn.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2019. ; https://doi.org/10.1101/780882doi: bioRxiv preprint 

https://doi.org/10.1101/780882
http://creativecommons.org/licenses/by-nc-nd/4.0/


Let a Morse function be f : WE → [a, b], in which a, b are regular values.
Let f have critical points p, p′ that correspond to indexes λ, λ + 1 as time.
Consider that Sn−λ−1 and Sλ cross at a single point; this indicates the status
of present. The exchange of Morse functions would result in no new critical
point appearing and disappearance of critical points p, p′ (h-cobordism the-
orem). This is what happens at the present state following the time arrow.
Remark that p, p′ are linked to a Hecke ring via non-trivial zero points of
Riemann zeta [1], fulfilling the condition of the Yang-Baxter equation. Thus
this phenomenon is closely related to an analogy to quantum entanglement
and face models [9, 8]. Of course, in the case of species, as species still exist,
they will reappear with different p values in this model.

In this sense, for any labelling of time points τ ′ ∈ TS∗ , a potential for the
Petersson-Weil metric is as follows:

ωWP = d(σT (τ ∨⊥ τ∗)− σT (τ ∨⊥ τ ′)), (8)

when ∨⊥ is a quasi-Fuchsian Kleinian group [10]. The ‘mating’ represents the
coupling of times corresponding to p, p′.

Now consider p, p′ as characteristics on a field k, as in d = p = 0 in [5].
Let E be a singular hyperelliptic curve of the system. Real D will be a tensor
product of an endomorphism of E on k̄ and Q, approximately. The resultant
D is a quaternion field on Q. Take a set of lnN as an ℓ-adic rational Tate
module as in [5]. D will only ramify at p, p′ or a point at infinity (c.f. [11]).
This restricts the possible direction of the time arrow to vanish p, p′ only.

Generally, for species, we draw a picture of time development when the
observer is at k = 1. For other observations, we can simply take k → k′ shifts
for the calculations. That is, we can take a cyclotomic field related to the
number of kmax. In this sense, time in the context of a complex metric can be
utilized and the world line is in web form branched at each cross-section of p
and p′, not in parallel as discussed in some studies. For moving one distinct
world line to another, we need velocity H(t)D > ℑ(s).

Next, shift from p to l = ℜ(s) following the method outlined in [1], and
simply consider a combinatory function in a probability space, Γ(s + 1) =
sΓ(s). This is an example of a shift map. If we take a function similar to a Γ
function, we can observe discrete time development merely by multiplying a
master s function if we know the particular s. That is, adding a single fractal
dimension in the past world (subtracting a single dimension from the future
world by an observation) results in a simple multiplication of s and master
Γ(s). Therefore, only evaluating an s of interest is sufficient for this aim.
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Similarly, consider the Maass form of the Selberg zeta function in [1] as
calculating the mode of species dynamics. Stirling’s approximation would

be Γ(s) ≈
√

2π
s
( s
e
)s exp( 1

12s
), and considering a first-order approximation of

the exponent with (1 + 1/12s) can suitably approximate the situation with
superstring theory of 12 dimensions. For further approximation, we need
additional dimensions. Jacobian mapping independent of a path λ

Φ(p) = (

∫
λ

φ1, · · · ,
∫
λ

φg) ∈ Cg/tΩZ2g = J
∼
(B) (9)

is one choice. If we know the master Maass form as the invariant form for
ρG(cG) = cGIdW when IdW is an identity mapping of a system of interest
(Stone-von Neumann theorem; [12, 14, 15, 13]), differential operation does
not cause any difference in the form. This ensures the condition for a suitable
D-module and the accompanying derived category. Thus we can adopt a
modified microlocally analytic b function as ∂b = i∂ as a substitute for the
differential operation; i.e., ∂2b = −∂2, rotating the form in the angle of π, and
∂4b = ∂4 = i.d., reverting back to the original orientation of the form. An

Ornstein-Uhlenbeck operator would be L = −
∑d

i=1 ∂
∗
i ∂i =

∑d
i=1 ∂

2
b . Setting

a bounded Baire function h on Rd and f as a solution of Lf = h− < h >
,< h >=

∫
Rd h(x)g(x)dx, E(h(W ))− < h >= E(Lf(W )) means a deviation

from the expected function h value in the future. The operator ∂b is thus
characterized for an operator calculating a future state. ∂2b could be an
element of a D-module as D◦D = i.d. Then ∂b would develop to analogies to
energy or momentum, ∂b/∂t = E or−∂b/∂xk = pxk

as variations of operators.
The π/2 rotation of ℑ(s) in [1] is thus justified by the modified b function.
Considering (3 + 1) dimensions with an interaction of two 2-dimensional
particles, this theory and transactional interpretation of quantum mechanics
[16] are suitable. If we regard ∂kb , k ∈ Z as ideals of a finitely generated
Jacobson radical, Nakayama’s lemma shows maintaining identity before and
after the operation means the module is zero. Therefore, in this finite case,
everything is an observant and at least an infinite generation is required to
achieve the values out of zeros. That means, if we see something, time is
infinite. Hironaka’s resolution of singularities at characteristic 0 implies such
a mating of p, p′.

To resolve such a master relation, consider a form of “velocity” as v ∈ TB.
Then take a 2-dimensional space consisting of s ∈ B. s(v, t) = p(v) +
tq(v) as in a Lagrange equation. The Gauss curvature of this surface K ≤
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0. K ≡ 0 is only achieved when TB is time-independent, and this TB
with K = 0 is the time-invariant bundle usable for TB×̃TB calculation
for a 3-dimensional system and 6-dimensional hierarchies. Additionally, the
Legendre transformation of the above equation is X = v, Y = tv − s, Z = t
and {v − q(v)}dY

dv
= Y + p(v). K = 0 means v = 0 and s = p(0) is the

required solution. Furthermore, s can be regarded as a Dirac measure (w
is a counterpart of mass and s = w + 1), and s′ = −s can be regarded as
a Schwartz distribution. Although addition is allowed in the distribution,
generally multiplication is not (we will illustrate that it is feasible later).
However, setting the differential as ∂2b , it becomes first order with a minus
sign and differentiation by time: t2 is plausible. For instance,∫ ∫

· · ·
V

∫
s∆φdt =

∫ ∫
· · ·
V

∫
φ[∆s]dt+

∫
· · ·
S

∫
s[
dφ

dν
]dS

−
∫

· · ·
S

∫
φ[
ds

dν
]dS,

(10)

where φ is a distribution of interest, s ∈ S, and ν is a differential by unit
area. The first term on the right is noise, the second is related to fractal
structure, and the third is oscillative behavior. Besides singular points, it is
regular. An entire function considering negative even singular points of l−n
regarding w = s− 1 would be

Zl =
Pf.wl−n

π(n−2)/22l−1Γ( l
2
)Γ( l+2−n

2
)
, (11)

where at the singular points, k ∈ Z≥0, Z−2k = □kw;□ = (−1)(
∂4
b

∂x4
1
+

∂4
b

∂x4
2
+

· · · + ∂4
b

∂x4
n−1

− ∂4
b

∂t4
). In the ∅ = ∂B case, □Z2 = w,□kZ2k = w. This means,

periodical population bursting/collapsing by negative even w values [1]. For
negative odd w values, chaos ensues (Šarkovski, Stefan, Block theorem) [17].
Thus, adopting s, w is suitable for applying a single-dimensional model. s
is a measure provided it is finite in bounded domains. Therefore, singular
points reflect appearance/disappearance of fractal structures. In summary,
a topology O should be ({m = k} ⊂ N, {ε = b}, {Ω = a}) of Nk = a− b ln k
in [1]. For further details regarding distributions, see [18].

Now let E be an elliptic curve: y2 + y = x3 − x2 as in [19]. This is
equivalent to y(y + 1) = x2(x − 1). If we consider (3 + 1)-dimensional N =
1 SU(2) without fluctuation, x2 could be mass, (x−1) could be a goldstino as
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spontaneous breaking of supersymmetry, y could be 3-dimensional fitness D
with fluctuation, and y+1 could be (3+ 1)-dimensional s [1]. The goldstino
would represent temporal asymmetry. In Gaussian ensembles, a complex
system GUE breaks time-reversal and a self-dual quaternion system GSE
preserves it. Therefore y + 1 preserves time symmetry and consequently the
present y breaks the symmetry.

t //

Γ
��

Dt

Γ(t)
F (a,b,c;z)

=={{{{{{{{

ARiemann scheme would uniformize the fitness space as a hypergeometric
differential equation.

Now consider
dY

dx
= (

A

x
+

B

x− 1
)Y, (12)

A =

 λ1 + λ3 + λ4 + λ5 λ2 0
0 λ3 + λ4 λ5
0 0 0

 , (13)

B =

 0 0 0
0 0 0

λ1(λ1+λ3+λ5)
λ5

λ1λ2+λ2λ3+λ3λ5)
λ5

λ2 + λ4 + λ5

 . (14)

This will culminate in a generalized hypergeometric function 3F2 that satisfies
a Fuchs-type differential equation 3E2. If we set proper region ∆ (13 different
regions),

y(x) =

∫
∆

sλ1(s− 1)λ2tλ3(t− x)λ4(s− t)λ5dsdt. (15)

x = 0, w = D, s = 1 would result in

y(0) =

∫
∆

sλ1wλ2tλ3+λ4{−(t− 1)}λ5dsdt. (16)

λ1 = λ2 = λ3 = λ4 = λ5 = 1 would be E2 : −
∫
y(y + 1)x2(x− 1)dxdy form,

obviously the integral of the interaction of two elliptic curves.

C = {s/b} //

exp.

��

C/∧ = C×/DZ

C× = D
time reversal

66mmmmmmmmmmmm
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For consideration of an interacting 4-dimensional system, let us take
Painlevé VI equations on a (3 + 1)-dimensional basis with a single Hamil-

tonian [20] [21]. The Hamiltonian should be Hk = ∂k ln τ(t) = ∂kτ(t)
τ(t)

=

H(t)Nk = Nk

E(ΣN)
= ϕ when H(t) is a Hubble parameter [22] [1]. τ(t) is thus

an inverse of a Hubble parameter, and its kth boundary is a kth species.
Note that the 3-dimensional system represents the smallest possible num-
ber of dimensions whose associativity equations become non-empty even in
the presence of the flat identity. Furthermore, considering a fundamental
group π1 of C0,n := P1\{z1, ..., zn}, the dimension of representations ρ of π1
in SL(2,C) is 2(n − 3) [22]. If we would like to set π1 as an étale topology
with 0 dimension, n = 3. (3+1)-dimensional semisimple Frobenius manifolds
constitute a subfamily of Painlevé VI:

d2X

dt2
=

1

2
(
1

X
+

1

X − 1
+

1

X − t
)(
dX

dt
)2

−(
1

t
+

1

t− 1
+

1

X − t
)
dX

dt

+
X(X − 1)(X − t)

t2(t− 1)2
[(θ∞ − 1

2
)2

+θ20
t

X2
+ θ21

t− 1

(X − 1)2
+ (θ2t −

1

4
)
t(t− 1)

(X − t)2
].

(17)

Recall that the above equation is related to a rank 2 system:

dΦ

dz
= (

A0

z
+

At

z − t
+

A1

z − 1
)Φ, (18)

or
dA0

dt
=

[At,A0]

t
,
dA1

dt
=

[At,A1]

t− 1
(19)

with 4 regular singular points 0, t, 1,∞ on P1. Also,

A0 +At +A1 = −A∞ = diag{−θ∞, θ∞}. (20)

Note that the total sum of the matrix system is equal to 0. Assuming a
3-wave resonant system [23],

∂τu1 + c1∂xu1 = iγ1u
∗
2u

∗
3

∂τu2 + c2∂xu2 = iγ2u
∗
3u

∗
1

∂τu3 + c3∂xu3 = iγ3u
∗
1u

∗
2

(21)

(22)

(23)
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An expansion of this model results in the h11V = h12
V̂

mirror symmetry relation
for the Calabi-Yau threefolds. Recall that matrix Painlevé systems of two
interacting systems

t(t− 1)HMat
VI (α, β, γ, δ, ω; t; q1, p1, q2, p2)

= tr[Q(Q− 1)(Q− t)P 2

+{(δ − (α− ω)K)Q(Q− 1) + γ(Q− 1)(Q− t)

−(2α+ β + γ + δ)Q(Q− t)}P + α(α + β)Q],

(24)

has 11 parameters.
Now let us convert a Painlevé VI equation to a more realizable form as

in physics. The Painlevé VI equation is equivalent to

d2z

dτ 2
=

1

(2πi)2

3∑
j=0

αj℘z(z +
Tj
2
, τ) (25)

where (α0, ..., α3) := (α,−β, γ, 1
2
−δ), (T0, ..., T3) = (0, 1, τ, 1+τ), and ℘ is the

Weierstraß℘ function (Theorem 5.4.1 of [20]). Furthermore, any potential of
the 3-dimensional normalized analytic form

Φ(x0, x1, x2) =
1

2
(x0x

2
1 + x20x2) +

∞∑
n=0

M(n)

n!
e

n+1
r+1

x1xn2 (26)

can be expressed through a solution to the Painlevé VI equivalent with
(α0, ..., α3) = (1

2
, 0, 0, 0), that is,

d2z

dτ 2
= − 1

8π2
℘z(z, τ). (27)

When q = D = eiπτ , the Picard solution of the τ function on the 4 dimensions
that corresponds to the c = 1 conformal field blocks in an Ashkin-Teller
critical model would be

τPicard(t) = const · qσ
2
0t

t
1
8 (1− t)

1
8

ϑ3(σ0tπτ ± σ1tπ|τ)
ϑ3(0|τ)

, (28)

where the Jacobi theta function is ϑ3(z|τ) =
∑

n∈Z e
iπn2τ+2inz; trMµMν =

2 cos 2πσµν when the parameter space of (θ0, θt, θ1, θ∞) isM [24] [25] [22] [26].
For other algebraic solutions, see [27]. Let us calculate a Clifford algebra in
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an n = 3 system [28]. First, let the representation (ρ, V ) of the algebra Cln
fulfill the condition ρ : Cln ∋ ϕ 7−→ ρ(ϕ) ∈ End(V ) with ρ(ϕ)ρ(ψ) = ρ(ϕψ).
When n is odd, for example, 3, there are nonequivalent representations:

ρ+ : Cl3 ≃ C(2)⊕ C(2) ∋ (ϕ, ψ) → ψ ∈ End(C2), (29)

ρ− : Cl3 ≃ C(2)⊕ C(2) ∋ (ϕ, ψ) → ϕ ∈ End(C2). (30)

For example, let us calculate a complex v, v′ by ℜ(v) = v, ℑ(v) = e(ℜ(v)/b)E(N),
ℜ(v′) = Nk/ℑ(v), and ℑ(v′) = e(ℜ(v′)/b)E(N) as in [5]. The next complex
v′′ is ℜ(v′′) = Nk/ℜ(v′) and ℑ(v′′) = e(ℜ(v′′)/b)E(N). We can calculate v′′′

by the same operator as before. We denote this situation RRR. Graphing
the calculated ℑ(v′′′) values with their rank among 800 proteins permits
classification into 3 groups demarcated based on slope values, namely, values
below 1.01, between 1.01 to 2.00, and above 2.00 (Fig. 1). The 0.30 value of
Filamin-A was excluded because it probably mostly reflects adapted proteins
in fibroblasts (HEK-293). The irreducible representations in the raw LC/MS
data of [5] are 4-dimensional 1–2 (average 1.368± 0.004, 99% confidence) in
non-adapted situations and 3-dimensional 1 (average 1.001571 ± 0.000006,
99% confidence) in adapted situations, respectively (Supplementary Table
1). The remainder are probably repressed (disadapted) proteins. In tensor
algebra TB :=

⊕∞
n=0B

⊗n, B =
⊕

i∈I RXi, x ∈ X, x ⊗ x − q(x) ∈ R ⊕ B⊗2,
x is a single fractal dimension (= w), and the fractal dimension of q(x) is
1/2, 1 for non-adapted and adapted stages, respectively [1]. We are thus able
to calculate a characteristic number related to protein adaptation.

3.4 O ∼= Ĉ case

For the species data set (Table 1) [1], consider that a sequential operation
is an exact form. As in [5], setting operation III as ℜ(v) = v, ℑ(v) =
µl = e(ℜ(v)/b)E(N), ℜ(v′) = E[l] = l = ln(Nk)/ ln(ℑ(v)), ℑ(v′) = e(ℜ(v′)/b)E(N),
ℜ(v′′) = ln(Nk)/ ln(ℑ(v′)), ℑ(v′′) = e(ℜ(v′′)/b)E(N), v′′′ by ℜ(v′′′) = ln(Nk)/ ln(ℑ(v′′)),
and ℑ(v′′′) = e(ℜ(v′′′)/b)E(N), we have ℜ(v) ≃ ℜ(v′′) ≃ 0, ℑ(v) ≃ ℑ(v′′) ≃ 0,
ℜ(v′) ≃ ℜ(v′′′) ≃ 0, ℑ(v′) ≃ ℑ(v′′′) ≃ 0 (Table 1), suggesting that an
actual/potential of species creates an actual/potential appearance of the
adapted hierarchy above two layers. Recall that this is a short exact sequence;
the morphism ℑ becomes monomorphism and ℜ(ln) becomes epimorphism.
Furthermore, Imℑ is equal to Kerℜ(ln). Obviously there also exists a ho-
momorphism h : ℑ(v′) → ℜ(v′), h : ℜ(v′′) → ℑ(v′), h : ℑ(v′′) → ℜ(v′′)
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Figure 1: ℑ(v′′′) values versus their ranks.
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or h : ℜ(v′′′) → ℑ(v′′), and the short exact sequence is a split. These are
abelian groups and ℜ(v′) ≃ ℑ(v) ⊕ ℑ(v′), ℑ(v′) ≃ ℜ(v′) ⊕ ℜ(v′′), ℜ(v′′) ≃
ℑ(v′)⊕ℑ(v′′), ℑ(v′′) ≃ ℜ(v′′)⊕ℜ(v′′′). The data show that an actual layer is
a direct sum of a potential layer below and a potential layer. The data also
show that a potential of the layer is a direct sum of a real layer and a layer
above the layer. Finally, defining a Galois action Gal(L/K), actions defined
by ℜ(v′)/ℑ(v) ≃ ℑ(v′), ℑ(v′)/ℜ(v′) ≃ ℜ(v′′), ℜ(v′′)/ℑ(v′) ≃ ℑ(v′′), and
ℑ(v′′)/ℜ(v′′) ≃ ℜ(v′′′) are all Galois, achieving our goal for defining proper
Galois actions with a topology of v for biological hierarchies. A species is
thus likely to emerge from the interaction of species.
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Table 1: N values.
N P. pallidum (WE) D. purpureum (WE) P. violaceum (WE)

May 0 76 0

June 123 209 52

July 1282 0 0

August 1561 0 0

September 901 107 0

October 1069 35 0

November 60 0 101

December 190 0 0

January 29 0 0

N P. pallidum (WW) D. purpureum (WW) P. violaceum (WW)

May 0 83 0

June 147 0 0

July 80 215 320

August 1330 181 0

September 809 77 649

October 799 0 107

November 336 0 0

December 711 0 0

January 99 0 0

WE: Washidu East quadrat; WW: Washidu West quadrat (please see [3]).
Scientific names of Dictyostelia species: P. pallidum: Polysphondylium pallidum;
D. purpureum: Dictyostelium purpureum; and P. violaceum: Polysphondylium
violaceum. N is number of cells per 1 g of soil. Species names for Dictyostelia
represent the corresponding values. Red indicates ℜ(s) values of species that
were approximately integral numbers greater than or equal to 2.

ℜ(v)

ℑ
��

I(ℜ) // ℜ(v′)

ℑ
��

I(ℜ) // ℜ(v′′)

ℑ
��

I(ℜ) // ℜ(v′′′)

ℑ
��

ℑ(v)

ℜ(ln)www

;;www

I(ℑ)
// ℑ(v′)

ℜ(ln)vvv

;;vvv

I(ℑ)
// ℑ(v′′)

ℜ(ln)uuu

::uuu

I(ℑ)
// ℑ(v′′′)

For species [1], consider that a sequential operation in the previous sec-
tions is an exact form. As in [5], setting an operation III, we have ℜ(v) ≃
ℜ(v′′) ≃ 0 and ℑ(v) ≃ ℑ(v′′) ≃ 0, but no further (Table 1), suggesting
that an actual/potential of species creates an actual/potential appearance
of the adapted hierarchy above two layers, which diminishes in the three
layers above. This might reflect effects from different time scales among dif-
ferent layers [3]. Similar to the previous section, ℜ(v′) ≃ ℑ(v) ⊕ ℑ(v′) and
ℑ(v′) ≃ ℜ(v′)⊕ℜ(v′′).
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From the III morphisms, we can draw a short exact sequence correspond-
ing to ℜ(v) → ℑ(v) → l = ℜ(v′) → l × (ℑ(s) = ℑ(v′)) → ℜ(v) = ℜ(v′′),

0 → A(u)
ι→ B(u) sp→ C(u×

√
−1S∗) → 0, (31)

regarding g = l as a specific spectrum of the Schwartz distribution (or Sato
hyperfunction [29, 30]) of a microfunction sp g [32, 31]. Not only addition,
but also multiplication is feasible for −s in this regard.

3.5 Congruent zeta function

Hereafter we will adhere to the situation where O ∼= Ĉ. For the other aspect,
instead of ℑ(v′), we can consider Z/lZ, by 1/l-powered ℑ(v′), state a p-adic
number correspondence, and then take a valuation of it. Universal coefficient
theorems [33],

0 → Ext(Hq−1(X,A), G) → Hq(X,A;G)

→ Hom(Hq(X,A), G) → 0,
(32)

could be described as

0 → µl → E[l] → Z/lZ → 0, (33)

making an exact sequence, with ℜ(s) value in the middle level between pop-
ulational ℜ(v) value and its fractal ℜ(v′′) value. E[l] → Z/lZ is an in-
jection and Z/lZ → 0 an epimorphism. The image of the former is the
kernel of the latter. Homology backwards is a homomorphism of the co-
homology, and the exact sequence splits. These are abelian groups and
E[l] ∼= µl ⊕ Z/lZ;Z/lZ ∼= E[l] ⊕ 0. A real level is constituted by a di-
rect sum of a potential level below and its own potential. A potential level
is constituted by a direct sum of a real level below and a real level above.
E[l]/µl

∼= Z/lZ;Z/lZ/E[l] ∼= 0 are Galois actions and a representation of an
étale topology ℓ is obtained, concomitantly with information of interactions
among different levels of hierarchies. Species should appear two layers above
the population layer. [3] reports results where the point mutation rate is on
the order of 10−8 and speciation is on the order of 10−25, roughly above a
square of 10−8 over 10−8. This calculation could be modeled by a simple
critical phenomenon of dendrogram percolation. In this model, approaching
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1/2 − 0 probability of mutation maintenance leads to divergence in cluster
size. Regarding non-trivial ζ(w) = 0 as a seed for speciation, a ∼ 108 pop-
ulation is on the same order as a branch for being identical to ancestors or
different from them at each genome base pair. A dendrogram can be re-
garded as a phylogenetic tree for dividing cells, which is common to both
asexually propagating organisms and a constituent of sexually reproducing
organisms at the level of cell division of germ line cells, strictly correlated to
mutation during cell cycle processes. These facts exhibit ℓ and Galois actions
can adequately describe interhierarchical interactions.

The logic above would suggest application of Grothendieck groups. Let
the situation be a Noetherian ring, i.e., B is the ring. Let F (B) be the
set of all isomorphisms of B-modules. Let CB be the free abelian group
generated by F (B). The short exact sequence above is associated with
(µl)− (E[l])+ (Z/lZ) of CB (() is an isomorphism). Let DB be the subgroup
of CB. The quotient group CB/DB is a Grothendieck group of B related
to potential of s, w layers, denoted by K(B). If E[l] is a finitely generated
B-module, γ(E[l]) would be the image of (E[l]) in K(B). There exists a
unique homomorphism λ0 : K(B) → G such that λ(E[l]) = λ0(γ(E[l]))
for all E[l] when G is an abelian group of the B-module. This represen-
tation corresponds to the Stone-von Neumann theorem in this restricted
situation. B is generated by γ(B/p) when p corresponds to species in a
biological sense. If B is a principal ideal domain constituting a single niche
without cooperation of distinguished niches, K(B) ∼= Z, and this is suitable
when considering biological numbers for individuals. Considering different
E[l], Ml, and Nl, and the set of all isomorphisms of a flat B-module F1(B),
γ1(Ml) · γ1(Nl) = γ1(Ml ⊗Nl); γ1(Ml) · γ(Nl) = γ(Ml ⊗Nl);K1(A) ∼= Z with
tensor products. Furthermore, if B is regular, K1(B) → K(B) is an isomor-
phism. The sum of interactions for different niches (not interacting between
distinguished niches) is thus calculable as integers by a Grothendieck group.
If the calculation does not lead to integers, the situation involves interactions
among distinguished niches. Algebraic expansion of this ring thus introduces
entirely different niches to the original ring. If a ∈ K, f(x) = xl − x− a, α ∈
K̄, f(α) = 0, α /∈ K(α ∈ ∂K), f(x) is irreducible on K, L = K(α) is a Galois
extension, and Gal(L/K) ∼= Z/lZ. α is from the hierarchy above based on a
new ideal.

To unify the sections introducing Galois H i and the preceding sections
regarding the time arrow, consider X,Y , which are eigen and smooth con-
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nected algebraic curves on an algebraic closed field.

H i(Xk̄,Qℓ)
pr∗1−−→ H i(Xk̄ ×k̄ Yk̄,Qℓ)

∪cl(γ)−−−→ H i+2d(Xk̄ ×k̄ Yk̄,Qℓ(d))
pr2∗−−→ H i(Yk̄,Qℓ),

(34)

when γ is an algebraic correspondence from Y to X. If we assume X and Y
correspond to different time points, the above diagram,

γ∗ : H i(Xk̄,Qℓ) → H i(Yk̄,Qℓ) (35)

describes the time development of the system. To dissect the contributions of
each component on the time developing system, let κm be an m-dimensional
expansion of κ, which is a finite field of a residue field of an integer ring OK

on K. When the eigen smooth scheme Y is on κ,

2d∑
i=0

(−1)iTr(Frobm
v ;H

i(Yk̄,Qℓ)) = ♯Y (κm) (36)

[34] [35].
When Y is finite, a congruent zeta function is

Z(Y, T ) = exp(
∞∑
n=1

♯Y (κn)

n
T n). (37)

Setting
Pi(Y, T ) = det(1− FrobvT ;H

i(Yk̄,Qℓ)) (38)

results in

Z(Y, T ) =
2 dimY∏
i=0

Pi(Y, T )
(−1)i+1

. (39)

To separate each contribution of H i, consider Weil conjectures [36] [37], and
Pi(Y, T ) and Pj(Y, T ) are disjoint when i ̸= j. Pi(Y, T ) and Tr(Frobm

v ;H
i(Yk̄,Qℓ))

are thus calculable and this deciphers each contribution of Pi(Y, T )s. Exam-
ples of the calculation are provided in Tables 2 & 3. Generally, large positive
zeta values represent highly adapted situations, whereas large negative zeta
values represent highly disadapted situations and zero values are neutral sit-
uations. P0, P1, P2 correspond to ℜ(v′),ℑ(v′),ℜ(v′′). For ℜ(v′),ℜ(v′′), values
close to zero represent large contributions, and for ℑ(v′), large values rep-
resent large contributions. The inverses of ℜ(v′),ℜ(v′′) scale for ℑ(v′). The
important point here is that by utilizing a congruent zeta function, we can
visualize a contribution from each hierarchy.
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Table 2: Calculations for Washidu East quadrat
Z (congruent) P. pallidum D. purpureum P. violaceum
May - - -
June 0.009378 151.1 9.272
July - - -
August - - -
September 114.7 30.89 -
October 334.6 -540.4 -
November 0.02561 - -54.13
December - - -
January - - -

P0 P. pallidum D. purpureum P. violaceum
May - - -
June -1.288 -0.06806 -0.1520
July - - -
August - - -
September -1.163 -0.7248 -
October -0.8250 0.02954 -
November -1.002 - 0.1790
December - - -
January - - -

(continues.)
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P1 P. pallidum D. purpureum P. violaceum
May - - -
June 0.7635 -10.29 -1.253
July - - -
August - - -
September -133.4 -22.39 -
October -276.1 -15.96 -
November 0.7480 - -9.689
December - - -
January - - -

P2 P. pallidum D. purpureum P. violaceum
May - - -
June -63.23 1.000 0.8886
July - - -
August - - -
September 1.000 1.000 -
October 1.000 0.9999 -
November -29.13 - 1.000
December - - -
January - - -

P. pallidum: Polysphondylium pallidum; D. purpureum: Dictyostelium
purpureum; P. violaceum: Polysphondylium violaceum. - are undefinable.

From these theorems, we can deduce that P2 is a pencil on elliptic curves
with a section of order two and an additional multisection. Setting ζ =
e2πi/3 = (eπi/3)2 on the initial condition of P2 at the point xa = 0,

t = ζ + 1, X(ζ + 1) =
1

1− ζ
,X ′(t) =

1

3
. (40)

In the PzDom model [1], 1/ℑ(s − 1) ≈ eπi/3 for predicting the future and
t is an addition of 1 to interactive (eπi/3)2 if ℜ(s − 1) is neglectable. When
in close proximity to trivial zero points of Riemann ζ, t ∼ 1 and X(t) ∼ 1.
X ′(t) = 1

3
thus represents a (2 + 1)-dimensional system.

System dimensions are thus reduced to 2+1. For reproducing the kernels,
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Table 3: Calculations for Washidu West quadrat.
Z (congruent) P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July 8.135 0.002196 97.00
August 123.7 29.31 -
September 26.54 -106.1 0.0001892
October 99.51 - 26.36
November - - -
December - - -
January - - -

P0 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July -0.1936 -2.208 -0.1174
August -1.306 -0.9804 -
September -0.6856 0.08601 -8.157
October -1.141 - -0.7729
November - - -
December - - -
January - - -

(continues.)
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P1 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July -1.483 0.9810 -11.39
August -161.6 -28.74 -
September -18.19 -9.126 1.000
October -113.6 - -20.37
November - - -
December - - -
January - - -

P2 P. pallidum D. purpureum P. violaceum
May - - -
June - - -
July 0.9417 -202.2 1.000
August 1.000 1.000 -
September 1.000 1.000 -647.9
October 1.000 - 1.000
November - - -
December - - -
January - - -

P. pallidum: Polysphondylium pallidum; D. purpureum: Dictyostelium
purpureum; P. violaceum: Polysphondylium violaceum. - are undefinable.
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let q be in (Q∞)Γ(H∗). Then,

q(w)dw2 =
12

π
(

∫
H

q(z̄)ℑ(z)2

(z − w)4
|dz|2)dw2, (41)

where w = α/β and z := (αζ + ᾱ)/((βζ + β̄). The term in parentheses is the
reproduced kernel (Prop. 5.4.9 of [10]).

Now consider q difference Painlevé VI with ĝl3 hierarchy. q could be equal
to −s, and y(x+ 1) = 1−qx

1−q
y(x) = (

∑x−1
i=0 q

i)y(x) can be converted from q to
−s, when x→ ∞.

Setting |q| > 1, t as an independent variable, and f , g as dependent
variables,

T (g) =
(f − ta1)(f − ta2)b3b4
g(f − a3)(f − a4)

, T−1(f)

=
(g − tb1)(g − tb2)a3a4
f(g − b3)(g − b4)

,

(42)

where

f = −A12
0

A12
1

, g =
(A12

0 + x1A12
1 )(A12

0 + x1q
α1+1A12

1 )

q(A11
0 (A12

1 )2 −A11
1 A12

0 A12
1 + qβ2+1(A12

0 )2)
. (43)

A12
0 = qα1+α2+2x1x2ω13w̄32, (44)

A12
1 = qα1+1x1ω11w̄12 + qα2+1x2ω12w̄22, (45)

A11
0 = qα1+α2+2x1x2(1 + ω13w̄31), (46)

A11
1 = −qα1+1x1(1 + ω12w̄21 + ω13w̄31)

−qα2+1x2(1 + ω11w̄11 + ω13w̄31)
(47)

and considering q = −b lnD of the PzDom model [1], local time development
can be easily calculated. (a1, a2, a3, a4); (b1, b2, b3, b4) have 4 parameters in-
teracting with each other in this soliton equation of similarity reduction [38]
[23]. In other words, we are treating a direct sum of two Virasoro algebras,
or a Majorana fermion and a super-Virasoro algebra [25].
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3.6 Further consideration of 1+1 dynamics

There is another way of considering system dynamics with q, starting from
a Young tableau. Let S be a finite or countable set, for example, as the
measures of species density as SpecZ. For ℜ(s) ≤ 1/2, let an absolute value

of an absolute zeta function ζK = ζGm/F1(x, y) = | s(x,y)
(s−1)(o,y)

|;x, y ∈ S where

Gm = GL(1). For ℜ(s) > 1/2, and let an absolute value of an inverse of an

absolute zeta function ζK = 1
ζGm/F1

(x,y)
= | (s−1)(o,y)

s(x,y)
|;x, y ∈ S. ζK becomes

a Martin kernel. Let a distance function Dδ(x, y) =
∑

z∈S Cz(|ζK(z, x) −
ζK(z, y)| + |δzx − δzy|), where δ is the delta function. For a distance space
(S,Dδ), a topology of S determined by Dδ is a discrete topology and (S,Dδ)
is totally bounded. A completion of (S,Dδ) will be set as Ŝ. Let a Martin
boundary ∂S = Ŝ\S be a (d− 1)-dimensional species density not restricted
to a random walk or transition probability. Sd represents all possibilities of
Sd−1 with a time dimension. Furthermore, a set of Sd−1 can be expressed by
a Young tableau in a Frobenius coordinate system. Taking a Maya diagram
of the tableau distributes the data to a single dimension. Therefore, the 3-
dimensional system is in fact represented as a 1-dimensional system, a set of
F1 = Fq. In this context, a set of the individual numbers of species is over Z
and a timeX is a flat algebra Λ-space over Z. A Λ-structure onX is ψp : X →
X, where ψ is X ×SpecZ SpecFpc . In other words, Λ = Z[Gal(Z/Fpc)]. pc = 1
when there is no hierarchy/period in our analysis and, for example, pc = 2 in
protein or species data sets described above. Therefore, the hierarchy extends
from F1 to F2. Mn/F1 = HomGm/F1

(An,An) = ζK ;GLn/F1 = AutGm/F1
(An) =

Sn and thus s ∈ Gm and s − 1 ∈ F1 when ℜ(s) ≤ 1/2 and s − 1 ∈ Gm and
s ∈ F1 when ℜ(s) > 1/2. q ∈ Gm and Spec(q) is Spec(s) or Spec(s − 1).
Since D = es/b is calculable in [1] with a root of time t, temperature bt at time
point t2 and temperature bt−1 at time point (t − 1)2 when time is properly
scaled, the dynamics of q can be calculated by this basal information. See
[39] for further details in this respect as relates to Grothendieck’s Riemann
Roch theorem. This is another explanation as to why a 1-dimensional system
with a certain topology leads to 3 + 1 dynamics.

3.7 ℘ as evaluations for interactions

Take Wallis’ formula:

lim
n→∞

1√
n
· 2 · 4 · • • • · (2n)
1 · 3 · • • • · (2n− 1)

=
√
π. (48)
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The upper product of even numbers could be a product of bosonic multipli-
cations, and the lower product of odd numbers could be that of fermionic
multiplications. The square of them divided by n as an average number of
actions would result in π. π is thus the number ratio of boson multiplications
and fermion multiplications. In other words, an area of a circle corresponds
to boson actions and the square of the radius corresponds to fermion actions.
Globally there are ∼ 3 times more bosonic actions than fermionic actions.
For further expansion for the bosonic even−w (without w = 0) with µ(n) = 1
[1], Weierstraß ℘(1/n) =

∑negative even ̸=0
w=−2 (1/n)w and a ((w/2+1)×n)(n× 1)

matrix would calculate a set of patch quality Pw of bosons involving a fu-
ture status of w = −2. Similarly, even −s with µ(n) = −1 [1], −℘(1/n) =
−
∑negative even ̸=0

s=−2 (1/n)s, and a ((s/2+1)×n)(n× 1) matrix would calculate
a set of patch quality −Ps of fermions involving a future status of s = −2.
Regarding w = s−1, P (w) = Pw−Ps=w+1 = ζ(w)+n+n2 and the Riemann
ζ function can be related to patch quality. Population bursts with these even
w (odd s) could be calculated by Pw → +∞ with negative even w (negative
odd s), or in lower extent of bursting, Ps → ∓∞ with w → 1∓ 0(s→ 2∓ 0).
Since P (0) ̸= 0 and P (0) → +∞, considering P (w) = ℘(1/n) + ℘(1/n)/n
and ak, bk as zero points and poles of the function,

fP (1/n) = CP

∞∏
k=1

℘(1/n)− ℘(ak)

℘(1/n)− ℘(bk)

×
∞∏
k=1

℘(1/n)/n− ℘(ak)/n

℘(1/n)/n− ℘(bk)/n
= 0

(49)

because the constant CP = 0 when w = 0 [40]. Thus w = 0(s = 1) means
every singularity can be considered as a zero ideal adopting fP . w → 0
means a general limit of limw→0

ln s
w

= 1. We can regard a logarithm of s as a
fitness when the fitness is sufficiently small. A fixed point of the observer at
s = 1 implies everything combined to the zero ideals. If we regard Weierstraß
ζ(z; Λ) = 1

z
+

∑
w∈Λ∗( 1

z−w
+ 1

w
+ z

w2 ) (not Riemann zeta) as a distribution
function, an additive operation for fractal dimensions s1, s2 results in

ζ(s1 + s2) = ζ(s1) + ζ(s2) +
1

2

℘′(s1)− ℘′(s2)

℘(s1)− ℘(s2)
. (50)

This means the third term on the right is a contribution of different frac-
tal hierarchies, besides a direct sum of distribution functions. Tables 4 to 8
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Table 4: Weierstraß ζ values.
Weierstraß ζ WE P. pallidum WE D. purpureum WE P. violaceum

May

June 2.290e15 - 5.081e15*I 5.648e51 + 1.513e52*I 3.036e32 + 1.2783e32*I

July

August

September -9.284e28 - 2.716e28*I -1.501e23 + 3.448e23*I

October -3.307e36 - 2.666e37*I -1.220e35 - 2.047e35*I

November 3.579e14 - 1.003e15*I 2.065e59 + 9.395e59*I

December

January

Weierstraß ζ WW P. pallidum WW D. purpureum WW P. violaceum

May

June

July 2.329e35 + 1.735e35*I 7.052e8 - 2.352e10*I 4.950e53 + 1.630e54*I

August -4.121e28 - 1.547e28*I -1.075e22 + 3.286e22*I

September 1.493e39 + 1.008e39*I 6.076e48 + 1.023e49*I 1.220 + 0.02924*I

October -4.379e28 - 1.562e28*I -1.440e22 + 4.328e22*I

November

December

January

WE: Washidu East quadrat; WW: Washidu West quadrat; P. pallidum:
Polysphondylium pallidum; D. purpureum: Dictyostelium purpureum; P.
violaceum: Polysphondylium violaceum. Weierstraß ζ are calculated from ℘ on an
elliptic curve [0, 1], expanded to 30-th order. Constants of integration were
neglected for ζ ′ = −℘.

present values for the Weierstraß zeta function, Weierstraß ℘, ℘′, and interac-
tion terms. Note that at Washidu West in September, Pv-Dp-Pp interacted
strongly in that order. In October, there is also a strong interaction of
Pv-Pp. Compared with Washidu West, Washidu East exhibited weaker in-
teraction and was dominated by Pp. It is also notable that the strengthes of
hetero-interactions were generally weaker than those of homo-interaction, as
supposed in [1]. Of course, utilizing population data instead of species data
elucidates similar or larger values for hetero-interaction terms compared with
homo-interaction terms (data not shown), as was expected in [1].

For further clarification, regarding ℘ as an elliptic function,

℘′2 = 4℘3 − g2℘− g3 (51)

is a normal form without multiple root. Rationals exist, F (℘(u)), G(℘(u)) as
Legendre canonical forms of elliptic integrals, such that any elliptic function
f(u) = F (℘) + G(℘)℘′. Thus a particular state during time procedure ℘′
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Table 5: ℘ values.
℘ WE P. pallidum WE D. purpureum WE P. violaceum

May

June 1.709e16 + 9.720e15*I -2.966e51 + 1.066e51*I -1.304e32 + 2.778e32*I

July

August

September 5.052e28 - 1.081e29*I -5.829e23 - 4.100e23*I

October 1.694e37 - 1.838e35*I 1.622e35 - 7.066e34*I

November 3.600e15 + 1.691e15*I -9.903e58 + 2.100e58*I

December

January

℘ WW P. pallidum WW D. purpureum WW P. violaceum

May

June

July -1.334e35 + 1.676e35*I 1.259e11 + 1.727e10*I -2.717e53 + 7.949e52*I

August 2.719e28 - 4.871e28*I -6.167e22 - 3.546e22*I

September -5.774e38 + 7.958e38*I -1.837e38 + 7.905e37*I -0.8200 + 4.042*I

October 6.491e22 - 1.137e22*I 3.434e17 - 1.790e18*I

November

December

January

WE: Washidu East quadrat; WW: Washidu West quadrat; P. pallidum:
Polysphondylium pallidum; D. purpureum: Dictyostelium purpureum; P.
violaceum: Polysphondylium violaceum. ℘ were calculated from an elliptic curve
[0, 1], expanded to 30-th order.

Table 6: ℘′ values I.
℘′ WE P. pallidum WE D. purpureum WE P. violaceum

May

June 3.841e16 - 5.488e16*I 1.938e50 + 5.613e50*I 2.450e32 + 1.2734e32*I

July

August

September -1.181e29 - 7.904e28*I -9.494e23 + 8.939e23*I

October 1.048e36 - 1.027*I -3.553e34 - 1.217e35*I

November 7.322e15 - 1.234e16*I 2.058e57 + 1.008e58*I

December

January

WE: Washidu East quadrat; P. pallidum: Polysphondylium pallidum; D.
purpureum: Dictyostelium purpureum; P. violaceum: Polysphondylium violaceum.
℘′ were calculated from an elliptic curve [0, 1], expanded to 30-th order, and
differentiated.

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2019. ; https://doi.org/10.1101/780882doi: bioRxiv preprint 

https://doi.org/10.1101/780882
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 7: ℘′ values II.
℘′ WW P. pallidum WW D. purpureum WW P. violaceum

May

June

July 1.162e35 + 9.874e34*I 1.594e11 - 6.432e11*I 1.231e52 + 4.372e52*I

August -5.395e28 - 4.181e28*I -9.400e22 + 1.055e23*I

September 4.088e38 + 3.182e38*I 3.442e47 + 6.318e47*I 14.97 - 8.365*I

October -5.744e28 - 4.312e28*I -1.223e23 + 1.360e23*I

November

December

January

WW: Washidu West quadrat; P. pallidum: Polysphondylium pallidum; D.
purpureum: Dictyostelium purpureum; P. violaceum: Polysphondylium violaceum.
℘′ were calculated from an elliptic curve [0, 1], expanded to 30-th order, and
differentiated.

Table 8: Hetero-interaction terms.
hetero-interaction WE WW

Pp-Dp (June) 0.001160 - 0.09419*I Pp-Dp (Jul) 0.01142 - 0.3558*I

Pp-Pv (June) 0.01818 - 0.4494*I Pp-Pv (Jul) 0.0008154 - 0.08021*I

Dp-Pv (June) 0.001160 - 0.09419*I Dp-Pv (Jul) 0.0008154 - 0.08021*I

September 0.09055 - 0.5885*I August 0.09149 - 0.6049*I

October 0.03433 - 0.3021*I Pp-Dp (Sep) -2.372e8 + 3.704e8*I

November 0.0003791 - 0.05081*I Pp-Pv (Sep) 0.008871 - 0.2633*I

Dp-Pv (Sep) -1.659e8 - 1.791e9*I

October -3.728e5 - 3.975e5*I

WE: Washidu East quadrat; WW: Washidu West quadrat; P. pallidum, Pp:
Polysphondylium pallidum; D. purpureum, Dp: Dictyostelium purpureum; P.
violaceum, Pv: Polysphondylium violaceum.
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Table 9: F values and contributions.
F WE major WW major

Pp-Dp (June) 0.7693+8.182*I Pp Pp-Dp (Jul) 0.5752+5.331*I Dp

Pp-Pv (June) 0.7693+8.182*I Pp Pp-Pv (Jul) 1.262+39.31*I Pp

Dp-Pv (June) 1.258+31.10*I Pv Dp-Pv (Jul) 0.5752+5.331*I Dp

September 3.078+14.99*I Pp August 2.879+13.80*I Dp

October 4.907+38.67*I Dp Pp-Dp (Sep) 1.790+53.12*I Pp

November 0.7481+7.726*I Pp Pp-Pv (Sep) 0.3186+2.028*I Pv

Dp-Pv (Sep) 0.3186+2.028*I Pv

October 2.905+13.93*I Pv

WE: Washidu East quadrat; WW: Washidu West quadrat; Pp: Polysphondylium
pallidum; Dp: Dictyostelium purpureum; Pv: Polysphondylium violaceum. Major:
species that had a major impact on dynamics.

can be related to any elliptic function form by a particular pair of Legendre
canonical forms. Utilizing Weierstraß ℘ is thus closely related to abstraction
of interaction of the states, with a cube of ℘ itself. Setting Ω as a period
of f(u), the canonical form K(Ω) ∼= C[x, y]/(y2 − 4x3 + g2x + g3), where
C[x, y] is an integral domain. The ideal thus characterizes the observation
phenomena related to F,G.

To develop the evaluation, s can be regarded as the elliptic function f(u)
via p, l double periodicity, and a linear plot of f(u) against ℘′ shows F,G
values. Basically, due to empirically massive values for ℘′, G ∼ 0 and F
are almost identical to either of the s values selected for calculating the
interaction. By this method, one can evaluate which of the interacting
partners plays a major role in the interaction. The results are shown in
Table 9; in WE, the climax species Pp dominated, while in WW, pioneer-
ing species Dp and Pv had significant roles [3]. Note that F,G are solu-
tions for corresponding hypergeometric differential equations. Thus g2, g3
become apparent during the time development process. ω can be calculated
by g2 = 60

∑
ω∈Λ′

1
ω4 , g3 = 140

∑
ω∈Λ′

1
ω6 . Riemann’s theta relations showed

how a (3 + 1)-dimensional system could be rearranged to a 2 + 2 system.
Tables 10 & 11 show calculated values for g2, g3 in normal form of the elliptic
curves.

4 Discussion

Here we move to some more miscellaneous parts associated with eliminating
fluctuations. Regarding the utilization of hyperbolic geometry (logarithmic-
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Table 10: g2, g3 values I.
Normal form g2 g3 int. const. synch.

Pp-Dp (June) 3.066e103-2.529e103*I -7.698e119+1.343e119*I - + anti

Pp-Pv (June) -2.408e65-2.899e65*I 1.298e81+7.295e81*I + - anti

Dp-Pv (June) 3.066e103-2.529e103 -3.028e135-1.182e136*I - +

September -3.651e58-4.368e58*I -3.373e81-4.044e82*I + + for

October 1.159e75-2.991e73*I -1.859e110+8.674e109*I - + anti

November 3.747e118-1.663e118*I -1.630e134-3.473e132*I - +

int.: positive or negative effect of an interaction term on ℘′ dynamics; const.:
positive or negative effect of a constant on ℘′ dynamics; synch.: coupling between
g2 and g3 against the dynamics.

Table 11: g2, g3 values II.
Normal form g2 g3 int. const. synch.

Pp-Dp (Jul) -4.118e70-1.788e71*I 2.322e82+2.096e81*I + - anti

Pp-Pv (Jul) -1.728e107+2.700e107*I -6.829e142+7.054e141*I + + for

Dp-Pv (Jul) 1.691e198-1.728e107*I -3.697e118+1.709e118*I - + anti

August -1.060e58-6.532e57*I -2.706e79-8.852e80*I + + for

Pp-Dp (Sep) -9.168e77-4.559e78*I -5.398e116-7.349e116*I + + for

Pp-Pv (Sep) -1.199e78-3.676e78*I -1.584e79+1.834e78*I + +

Dp-Pv (Sep) 1.099e77-1.162e77*I -3.794e77-5.397e77*I - +

October 1.634e46-5.905e45*I 4.963e63+3.128e64*I - -

int.: positive or negative effect of an interaction term on ℘′ dynamics; const.:
positive or negative effect of a constant on ℘′ dynamics; synch.: coupling between
g2 and g3 against the dynamics.
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adic space) and blowing up for resolution of singularity, see our earlier work
[5]. From generalized function theories, the idea of cohomology naturally
emerges and if we set operator III in terms of cohomology, the Hp = 0(p ≥ 1)
(p are primes and 1) cohomology and the Kawamata-Viehweg vanishing the-
orem are fulfilled. This clearly demonstrates that investment in adaptation
in the higher order hierarchies diminishes chaotic behavior in the hierarchies.
This is because our complex manifold is a Stein manifold (s is a Schwartz
distribution). Furthermore, an empirical process is already introduced as
“Paddelbewegung” in [1], inspired by Hermann Weyl’s work. Other possible
developments for this work include utilizing a Riemann scheme and hyper-
geometric differential equations or Painlevé VI equations for the hierarchical
time-developing model. Consideration of an array of model types would
plausibly allow exploration in relation to Galois theory and étale cohomol-
ogy to interpret the hierarchical structures of natural systems, especially in
biological contexts. This thus represents fruitful terrain for future research.

Finally, adopting the Atiyah-Singer index theorem, a twisted (fractal)
property, Euler number of

∫
B
e(TB) is obviously equal to its topological

Euler characteristic, χ(B) =
∑

(−1)ll. Hence, the analytical index of Euler
class (Poincaré dual) should be the same. For evaluation of agreement, the
Chern class should be (−1)ll. On the other hand, analytically, the Hirzebruch
signature (characteristic from species) of B is (−1)n

∫
B

∏n
i=1

pi
tanh pi

, where
pi

tanh pi
=

∑
k≥0

22kB2k

(2k)!
p2ki . Topologically, this is equivalent to the L genus.

We are thus able to extend the methodology for the “small s” metric to
characterize dynamical system hierarchy (adaptation and contributions) and
interactions, using only abundance data along time development.
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