bioRxiv preprint doi: https://doi.org/10.1101/781062; this version posted January 15, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Improving the coverage of credible sets in Bayesian genetic fine-mapping

Anna Hutchinson!”, Hope Watson®, Chris Wallace>2"*

1 MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
2 Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge,

Cambridge, UK

* anna.hutchinson@mrec-bsu.cam.ac.uk

** cewb4@cam.ac.uk

Abstract

Genome Wide Association Studies (GWAS) have successfully identified thousands of loci associated with
human diseases. Bayesian genetic fine-mapping studies aim to identify the specific causal variants within
GWAS loci responsible for each association, reporting credible sets of plausible causal variants, which are
interpreted as containing the causal variant with some “coverage probability”.

Here, we use simulations to demonstrate that the coverage probabilities are over-conservative in most
fine-mapping situations. We show that this is because fine-mapping data sets are not randomly selected from
amongst all causal variants, but from amongst causal variants with larger effect sizes. We present a method
to re-estimate the coverage of credible sets using rapid simulations based on the observed, or estimated, SNP
correlation structure, we call this the “corrected coverage estimate”. This is extended to find “corrected
credible sets”, which are the smallest set of variants such that their corrected coverage estimate meets the
target coverage.

We use our method to improve the resolution of a fine-mapping study of type 1 diabetes. We found that
in 27 out of 39 associated genomic regions our method could reduce the number of potentially causal variants
to consider for follow-up, and found that none of the 95% or 99% credible sets required the inclusion of more
variants — a pattern matched in simulations of well powered GWAS.

Crucially, our correction method requires only GWAS summary statistics and remains accurate when

SNP correlations are estimated from a large reference panel. Using our method to improve the resolution of
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fine-mapping studies will enable more efficient expenditure of resources in the follow-up process of annotating

the variants in the credible set to determine the implicated genes and pathways in human diseases.

Author summary

Pinpointing specific genetic variants within the genome that are causal for human diseases is difficult due
to complex correlation patterns existing between variants. Consequently, researchers typically prioritise a
set of plausible causal variants for functional validation - these sets of putative causal variants are called
“credible sets”. We find that the probabilistic interpretation that these credible sets do indeed contain the
true causal variant is variable, in that the reported probabilities often underestimate the true coverage of
the causal variant in the credible set. We have developed a method to provide researchers with a “corrected
coverage estimate” that the true causal variant appears in the credible set, and this has been extended to
find “corrected credible sets”, allowing for more efficient allocation of resources in the expensive follow-up
laboratory experiments. We used our method to reduce the number of genetic variants to consider as causal

candidates for follow-up in 27 genomic regions that are associated with type 1 diabetes.

Introduction

Genome-Wide Association Studies (GWAS) have identified thousands of disease-associated regions in the
human genome, but the resolution of these regions is limited due to linkage disequilibrium (LD) between
variants [1]. Consequently, GWAS identifies multiple statistical, but often non-causal, associations at common
genetic variants (typically SNPs) that are in LD with the true causal variants. Follow-up studies are therefore
required for the prioritisation of the causal variants within these regions, which is an inherently difficult
problem due to convoluted LD patterns between hundreds or thousands of SNPs. Consequently, fine-mapping
studies prioritise a set of variants most likely to be causal in each risk loci. Laboratory functional studies or
large-scale replication studies may then be used to identify the true causal variants within these sets, which
can then be linked to their target genes to better understand the genetic basis of human diseases [2}/3].

Early statistical approaches for fine-mapping tended to focus on the SNP in the region with the smallest P
value, called the lead-SNP. However, it is generally acknowledged that this SNP may not be the causal variant
in a given region due to correlations with the true causal variants [1,/4]. Studies may therefore prioritise the
lead-SNP before extending the analysis to include either variants in high LD with this SNP or the top &
variants with the highest evidence of association [5].

Fine-mapping is analogous to a variable selection problem with many highly correlated variables (the
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SNPs) [6]. As such, methods such as penalised regression have also been adopted for fine-mapping, with 1
the aim of choosing the variables representing the variants most likely to be causal for inclusion in the final 1
model [7]. Yet these methods ultimately select one final model and lack probabilistic quantification for this 1
selected model. 20

Bayesian approaches for fine-mapping [8H12] use posterior probabilities of causality (PPs) to quantify the =
evidence that a variant is causal for a given disease, and these can be meaningfully compared both within 2
and across studies. The standard Bayesian approach for fine-mapping was developed by Maller et al. (2012) 2
and assumes a single causal variant per genetic region to prioritise an “(a x 100)% credible set” of putative 2
causal variants. This is derived by ranking variants based on their PPs and summing these until a threshold, s
a, is exceeded - with the variants required to exceed this threshold comprising the credible set. 2

These credible sets are interpreted as having good frequentist coverage of the causal variant [8,/13}/14], -

N

although there is no mathematical basis for this [6]. For example, researchers often state that an (a x 100)% =
credible set contains the causal variant with (o x 100)% probability |15-19] or with probability > (a x 100)% 2

[6120L21]. More specifically, they may be interpreted as containing the causal variant with probability equal 3

S

to the sum of the PPs of the variants in the credible set [22], for which the threshold forms a lower bound. A =
simulation study found that the coverage of the causal variant in 95% and 99% credible sets varied with the =
power to detect the signal (Fig S1 in [1]), implying that inferring the frequentist coverage estimate of these 1
Bayesian credible sets may not be as straightforward as the literature suggests. 3

In this work, we investigate the accuracy of standard coverage estimates reported in the Bayesian single 3
causal variant fine-mapping literature. We develop a new method to re-estimate the frequentist coverage of 36
these credible sets, deriving a “corrected coverage estimate” and extending this to construct a “corrected
credible set”. We validate our method through simulations and demonstrate its improved performance relative 38
to standard coverage estimates reported in the literature. 30

Our method is available as a CRAN R package, corrcoverage (https://github.com/annahutch/corrcoverage; o
https://cran.r-project.org/web/packages/corrcoverage/index.html), which was used to decrease the size of «
the standard 95% credible sets for 27 out of 39 genomic regions that are associated with type 1 diabetes.
Crucially, our method requires only summary-level data and remains accurate when SNP correlations are 4

estimated from a reference panel (such as the UK10K project [23]). a4
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Results

Accuracy of claimed coverage estimates in single causal variant fine-mapping
literature is variable

To investigate the true coverage of the causal variant in Bayesian credible sets, we simulated a variety of
single causal variant association studies using 1006 European haplotypes or 1322 African haplotypes from the

1000 Genomes Phase 3 data set [24].

Briefly, SNPs were sampled from various genomic regions with differing LD structures. In each simulation,

causality was randomly allocated to one of the variants in the region with an additive phenotypic effect.

Sample sizes were also varied across simulations (NN: number of cases = number of controls = 5000, 10000
or 50000). We calculated the frequentist empirical estimate of the true coverage for each simulated credible
set as the proportion of 5000 replicate credible sets that contained the simulated causal variant.

Bayesian fine-mapping frameworks require specification of a prior distribution on the effect size of the
causal variant, conventionally N (0,0.22) for a log odds ratio in a case-control study. We therefore simulated
association studies that reflect the underlying Bayesian single causal variant fine-mapping model exactly,
such that the causal effect sizes (3 = log odds ratio) were sampled from N (0,0.2?) and causality was selected
randomly across all SNPs. However, we argue that in any individual dataset the effect size at the causal
variant is sampled from a point distribution with unknown but fixed mean, and that it is this mean which
may be considered to be sampled from N(0,0.22).

We modelled the distribution of genome-wide significant lead-SNP effect sizes from data deposited in the
GWAS catalogue [25] to select representative point distributions to use in our analysis . Overall, in
each of our simulations effect sizes were either (i) sampled from the prior distribution, 8 ~ N(0,0.22) (ii)
fixed at 8 = log(1.05) or (iii) fixed at 8 = log(1.2).

A common feature of Bayesian statistical inference is that if one simulates from the prior used in the
underlying model, then the resultant posterior inferences will be accurate. This is reflected in our results,
where the PPs are well calibrated in simulations where the effect sizes are sampled from the prior normal
distribution (Fig [1JA; left). However, we found that some bias is introduced when the effect sizes are
sampled from a point distribution, as in a standard fine-mapping study. Specifically, the PPs tend to be
anti-conservatively biased in low effect sizes and conservatively biased in higher effect sizes (Fig ; right).

We then used these PPs to generate 90% credible sets of putative causal variants, following the standard
Bayesian single causal variant fine-mapping procedure (see Methods and [8]). We investigated the accuracy of

setting the coverage estimate of the credible set equal to both the threshold (“threshold coverage estimate”)
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[15H19] and the sum of the PPs of the variants in the set (“claimed coverage estimate”) [22]. We found that
there is accumulative bias carried through from SNP PPs to credible set coverage estimates.

When averaging results over all simulations, threshold coverage estimates tended to be conservatively
biased for credible sets, even when effect sizes are sampled from the prior distribution (Fig ; left). However,
jow effect sizes can also lead to anti-conservative estimates in regions with differing LD structures
and in low powered studies . The claimed coverage estimates are unbiased when effect sizes
are sampled from the prior distribution, but with large variability in the direction of conservative estimates.
On the contrary, when effect sizes are sampled from point distributions, the claimed coverage estimates are
systematically biased (Fig ; middle), a result that is consistent across various LD structures and credible

set thresholds (S2 Figl [S3 Fig]).

Researchers typically select regions to fine-map depending on the strength of evidence of an association in

that region, which is usually quantified by a P value (for example, regions reaching genome-wide significance).

We therefore further scrutinise the accuracy of the coverage estimates by binning simulations by minimum P
value (Pp;p) in the region. Each P value bin encompasses simulations which sample different parts of the
prior effect size distribution, such that the distribution of effect sizes for each P value bin no longer resemble
the conventional N(0,0.22) prior (Fig[1B).

We found that claimed coverage estimates are systematically biased in representatively powered scenarios
where fine-mapping is usually performed (P,,;, > 10712) regardless of the effect size sampling method (Fig ;
right). This bias is mostly conservative, but may be anti-conservative in low powered studies (demonstrated
by splitting simulations up by sample size, . Notably, even when the effect sizes are sampled from the
prior, the claimed coverage estimates are anti-conservatively biased in low powered simulations (P, > 107%),
conservatively biased in intermediately powered simulations (10712 < P,,;,, < 10~%) and unbiased in very
high powered simulations (P, < 10712).

These findings are consistent across various LD patterns and credible set thresholds, with greatest
variability detected between estimates in high LD regions . To investigate the impact of LD
further, we repeated the analysis, varying LD patterns over a much larger population (7562 European UK10K
haplotypes) and averaging the results over a range of LD patterns (see Methods). We found that the results
were similar to those shown in Fig .

In conclusion, the probabilities that the causal variant is contained within the credible set in intermediately
powered single causal variant fine-mapping studies are typically too low, and researchers can afford to be

“more confident” that they have captured the true causal variant in their credible set.

bioRxiv preprint doi: https://doi.org/10.1101/781062; this version posted January 15, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

76

7

78

79

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106


https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781062; this version posted January 15, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Corrected coverage estimate improves empirical calibration of credible sets 107

We developed a new estimator for the true coverage of the causal variant in credible sets, called the “corrected 10
coverage estimate”, which is based on learning the bias in the system by repeatedly simulating summary 10
GWAS data from the same MAF and LD structure as the observed data. We derive an estimate of effect size 10
at the (unknown) causal variant as a weighted average of absolute Z scores taken across SNPs in the region,
using the observed PPs as weights (see Methods for detailed derivation). 12

For each of the simulated credible sets, we found that the corrected coverage estimates were better 1

empirically calibrated than the claimed coverage estimates in simulations that are representative of those 11

considered for fine-mapping (Prnin < 1079) (Fig[2} [S2 Fig} [S3 Fig}[S5 Fig). Particularly, the median and mean s

error of the corrected coverage estimates decreases for P, < 1076, and the variability between estimates 1

also decreases even in simulations where the claimed coverage estimates are unbiased (P, < 10’12). 117

Corrected coverage robust to MAF and LD estimated from a reference panel 118

Our method relies on MAF and SNP correlation data to simulate GWAS summary statistics representative of 110
the observed GWAS data. So far we have assumed that this information is available from the GWAS samples, 120
but due to privacy concerns this is not generally the case. We therefore evaluated the performance of our 1z
correction when using independent reference data to estimate MAFs and SNP correlations. We applied our 12
correction to credible sets simulated from the European 1000 Genomes data using either MAFs and SNP 123
correlations from the original (1000 Genomes) data (Fig[2B) or MAFs and SNP correlations estimated from 12«

a reference panel (UK10K) (Fig[2C). We found that the corrected coverage estimates remained accurate in s

either case (Fig[2C, [S7 Fig). 126
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Corrected coverage robust to departures from single causal variant assumption

The Bayesian approach for fine-mapping described by Maller et al. assumes a single causal variant per
genomic region, which may be unrealistic [26]. Using simulated data with 2 causal variants, and defining
coverage as the frequency with which a credible set contained at least 1 causal variant, we found that the
corrected coverage estimates tended to have smaller error than the claimed coverage estimates for causal
variants in low LD (r? < 0.01, Fig[3A). When the 2 causal variants are in high LD (r? > 0.7), the corrected
coverage estimates are still generally more accurate than the claimed coverage estimates, although both
tend to underestimate the true coverage (and are thus conservative) (Fig[BB). Whilst the key assumption
underlying Bayesian fine-mapping may be controversial, we found that when this assumption is violated (and
when considering capturing at least 1 causal variant as most relevant), the corrected coverage estimates are

often still better empirically calibrated than the claimed coverage estimates.
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Fig 3. Error of coverage estimates for 90% credible sets in regions with 2 causal variants.
Error is calculated as estimated coverage — empirical coverage where empirical coverage is the proportion of
5000 additional simulated 90% credible sets that contain at least one of the 2 causal variants and estimated
coverage is the claimed or corrected coverage estimate as defined in the text. The median error and
interquartile range of claimed and corrected coverage estimates of 90% credible sets from 5000 simulated
regions with 2 causal variants that are (A) in low LD (r? < 0.01) (B) in high LD (r2 > 0.7). Faceted by odds
ratio values at the causal variants.

102§


https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781062; this version posted January 15, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Corrected credible sets 138

Obtaining an accurate coverage estimate that the causal variant appears in the credible set is useful in its 13
own right, but it is also beneficial to obtain a “corrected credible set” - that is, the smallest set of variants 140
required such that the corrected coverage estimate of the resultant credible set achieves some desired coverage. 1a
For example, discovering that a 90% credible set actually has 99% coverage of the causal variant is useful, 1«
but an obvious follow-up question is “What variants do I need such that the coverage is actually 90%7?”. 143

We explored this using an example simulated GWAS across 200 SNPs with the effect size fixed at 14
B =1log(1.2). The 90% credible set, constructed using the standard Bayesian approach, contained 8 variants s
and had a claimed coverage estimate of 0.903. The corrected coverage estimate of this credible set was 0.969 1
and the estimated empirical coverage was 0.972. 17

We used the root bisection method [27] to iteratively search for the smallest threshold value that yields a 14
credible set with accurate coverage of the causal variant. We found that a corrected 90% credible set could 140
be constructed using a threshold value of 0.781. This corrected credible set had a coverage estimate of 0.905 150
(empirical estimated coverage of 0.907) and reduced in size from 8 to 4 variants, with the 4 variants removed s
from the credible set holding a small proportion of the total posterior probability (Fig . 152

Simulations confirmed that the empirical coverage probabilities of corrected credible sets created in this 13
way are accurate, such that on average the empirical estimate of the true coverage of a corrected 90% (or s

95%) credible set is indeed 90% (or 95%) (S8 Figj). 155
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Fig 4. A simple example to illustrate the results of the correction method. (A) The absolute Z
scores of the SNPs. (B) The PPs of the SNPs. (C) As in the fine-mapping procedure, variants are sorted into
descending order of PP and summed. Starting with the SNP with the largest PP (far right) the cumulative
sum (size) of the credible set is plotted as each SNP is added to the set. Red SNPs are those in the corrected
90% credible set and blue SNPs are those that only appear in the original 90% credible set. The credible set
formed of the red SNPs has a corrected coverage estimate of 0.905 and the credible set formed of both the
blue and red SNPs has a corrected coverage estimate of 0.969.
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corrcoverage R package

We created a CRAN R package, corrcoverage (https://annahutch.github.io/corrcoverage/; https://cran.r-
project.org/web/packages/corrcoverage /index.html), that uses marginal summary statistics to derive corrected
coverage estimates and corrected credible sets. The functions to calculate corrected coverage estimates are
computationally efficient, taking approximately 1 minute for a 1000 SNP region (using one core of an Intel
Xeon E5-2670 processor running at 2.6GHz; .

The functions to derive corrected credible sets require only the summary statistics needed to derive
the corrected coverage estimate (Z scores, MAFs, sample sizes and SNP correlation matrix) plus some
user-specified desired coverage. Users are able to customise the optional arguments to suit both their accuracy
requirements and computational constraints. The algorithm then works iteratively such that the threshold
and the corrected coverage estimate of each tested credible set is displayed, until the smallest set of variants
with the desired coverage is established, offering researchers an easy tool to improve the resolution of their

credible sets.

Impact of correcting credible sets in a GWAS

We applied our corrected coverage method to association data from a large type 1 diabetes (T1D) genetic
association study consisting of 6,670 cases and 12,262 controls [28]. In the original study, 99% credible sets
are found for 40 genomic regions. Here we focus on 95% credible sets as these best illustrate the utility of our
method due to the greater margin for error, and we exclude the INS region with lead SNP rs689 which failed
QC in the Immunochip (and for which additional genotyping data was used in the original study).

The results match our previous findings - that the claimed coverage estimates are often too low (Fig [5]).

We found that the size of the 95% credible set could be reduced in 27 out of the 39 regions, without the use

of any additional data (S1 Table| [S2 Table)). Similarly, we found that the size of the 99% credible set could

be reduced in 26 out of the 39 regions (S10 Fig] [S2 File| [S3 Table} [S4 Table]).
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Fig 5. Summary of corrected coverage estimates and corrected credible sets in T1D data set.
Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected coverage
estimates of 95% Bayesian credible sets for T1D-associated genomic regions. Black points represents regions
where the credible set changed after the correction and the “-” values for the circled points represent the
decrease in the number of variants from the standard to the corrected 95% credible set. Blue points represent
regions where the credible set did not change after the correction and grey points represent regions where the
credible set did not need to be corrected since the threshold was contained in the 95% confidence interval of
the coverage estimate, or because the credible set already contained only a single variant.

Fine mapping to single base resolution has been used as a measure of GWAS resolution [21]. Two of the
original 95% credible sets only contained a single variant: rs34536443 (missense in TYK2) and rs72928038
(intronic in BACH2). After applying our correction, two additional 95% credible sets were narrowed down
from two variants to a single variant. First, rs2476601 (missense variant R620W in PTPN22) was selected,
dropping rs6679677 which is in high LD with rs2476601 (2 = 0.996). These SNPs have high PPs (0.856185774

and 0.143814226, respectively) and the corrected credible set containing only rs2476601 has a corrected
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coverage estimate of 0.9501 with a 95% confidence interval of (0.9392, 0.9613). 185

Second, rs9585056 was selected, dropping rs9517719 (r? = 0.483). 159517719 is intergenic, while 1s9585056 156
is in the 3’ UTR of the IncRNA AL136961.1, but has been shown to regulate expression of GPR183 which in  1er
turn regulates an IRF7-driven inflammatory network [29]. While it is likely that R620W is indeed the causal s
variant at PTPN22, there is no conclusive data to evaluate whether rs9585056 is more likely to be causal 1
compared to rs9517719. Nonetheless, the enrichment for missense variants is encouraging and in total, the 10

number of putative causal variants for T1D in credible sets reduced from 658 to 582 upon correction. 101

Discussion 102

Bayesian methods for single causal variant fine-mapping typically prioritise a credible set of putative causal 103
variants. In this work, we have stratified by P value to show that the inferred probabilities that these credible 10
sets do indeed contain the causal variant are systematically biased in simulations with intermediate power, 1
reflecting those instances where fine-mapping is usually performed. We show that this is because fine mapped 19
regions are not a random sample as assumed by fine mapping methods, but the subset of regions with the 1o
most extreme P values. 108

Threshold coverage estimates are typically conservatively biased, suggesting that the threshold of the 10
credible set can be used as a lower bound for the true coverage of the causal variant in the set [6,[20,21]. In 200
contrast, claimed coverage estimates (the sum of the PPs of the variants in the set) are anti-conservatively o
biased in low powered scenarios and conservatively biased in intermediately powered scenarios. We therefore 20
developed a “corrected coverage estimator” which has smaller expected error than the conventional coverage 203
estimates in the single causal variant literature, regardless of credible set threshold, power and the underlying 20
LD structure in the region (and whether this is known or estimated from a reference panel). 205

The standard Bayesian approach for fine-mapping (8], and therefore our correction method, are limited in 20
that they do not model multiple causal variants. Fine-mapping approaches that jointly model SNPs have 20
been developed, such as GUESSFM [4] which uses genotype data and FINEMAP [9] and JAM [12] which s
attempt to reconstruct multivariate SNP associations from univariate GWAS summary statistics, differing 200
both in the form they use for the likelihood and the method used to stochastically search the model space. 210
The output from these methods are posterior probabilities for various configurations of causal variants, and i
therefore the grouping of SNPs to distinct association signals must typically be performed post-hoc to obtain 2.2
similar inferences to that of single causal variant fine-mapping (e.g. to obtain credible sets). 213

The sum of single effects (SuSiE) method [6] removes the single causal variant assumption and groups 2

SNPs to distinct association signals in the analysis, such that it aims to find as many credible sets of variants s
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that are required so that each set captures an effect variant, whilst also containing as few variants as possible
(similar to “signal clusters” in Lee et al.’s DAP-G method [30]). This sophisticated approach has great
potential, but the simulated 95% credible sets formed using both the SuSiE and DAP-G methods “typically
had coverage slightly below 0.95, but usually > 0.9” (Fig 3 and Fig S3 in [6]). Our method could potentially
be extended to improve upon the coverage of credible sets obtained using SuSiE and DAP-G fine-mapping
methods.

Whilst our method does not address all the limitations of single causal variant fine-mapping, it improves
upon the common inferences that are reported in the literature by researchers. We recommend that our
correction is used as an extra step in the single causal variant fine-mapping pipeline, to obtain a corrected
coverage estimate that the causal variant is contained within the credible set and if required, to derive a

corrected credible set.

Methods

Design of simulation pipeline

We simulated a variety of genetic association studies using African and European haplotypes present in the
1000 Genomes Phase 3 data set [24]. Regions were selected that contained approximately 700 SNPs in low LD
(African: Chr10:6030194-6219451), medium LD (European: Chr10:6030194-6219451) or high LD (European:
Chr10:60969-431161) (GRCh37). Causality was randomly allocated to one variant in the region. Effect sizes
were either sampled from the prior (8 ~ N(0,0.22)) or fixed (at 3 = log(1.05) or 3 = log(1.2)). Sample sizes
(NN: number of cases = number of controls = 5000, 10000 or 50000) were also varied across simulations.

The haplotype frequencies and sampled parameter values were then used in the simGWAS R package [31]
to: (i) simulate the results of a case-control GWAS (the study to “correct”) (ii) simulate results from 5000
case-control GWASs (to evaluate the accuracy of our method). These simulated GWAS results are marginal Z
scores, which were then converted to PPs using the corrcoverage: :ppfunc or corrcoverage: :ppfunc.mat
functions, which are based on Maller et al.’s derivations (See ‘Z scores to PPs’ section below).

The variants are sorted into descending order of their PPs and these are summed until the credible set
threshold (0.9 or 0.95) is exceeded. The variants required to exceed this threshold comprise the 90% or
95% credible set. The sum of the PPs of the variants in the credible set is the “claimed coverage” [22],
which must be greater than or equal to the threshold by virtue of the method. The frequentist empirical
estimate of the true coverage is calculated as the proportion of 5000 simulated credible sets that contain

the causal variant (CV). The corrected coverage estimate is also calculated for each credible set using
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the corrcoverage: :corrcov function. The simulation procedure is repeated many times to obtain a final
simulation data set, consisting of the sampled parameter values and the empirical, claimed and corrected
coverage estimates of the simulated credible sets.

For the evaluation of averaging results over a range of LD patterns, we used haplotypes from the UK10K
data. In each simulation, genomic regions were randomly selected (bounded by recombination hotspots

defined using the LD detect method [32]) on chromosome 22 and two non-overlapping sets of 100 adjacent

variants were selected, so that the simulated region consisted of 200 correlated and non-correlated variants.

The simulation pipeline described above was then followed to obtain a final simulation data set for various
LD patterns.

For investigating the effect of violating the single causal variant assumption, 2 CVs were simulated in each
genomic region, which were either in high LD (72 > 0.7) or low LD (r? < 0.01), and coverage was defined as
the frequency with which a credible set contained at least one of the CVs. The odds ratio of the simulated
CVs were sampled independently and sample sizes were varied so that the power of the simulated systems
varied . We omitted analyses for regions containing > 2 CVs as defining coverage in these instances

becomes more problematic.

Z scores to PPs

Maller et al. derive a method to calculate PPs from GWAS summary statistics (Supplementary text in [8])
upon which the following is based. Let Bl fori =1,...,k SNPs in a genomic region be the regression coefficient
from a single-SNP logistic regression model, quantifying the evidence of an association between SNP 4 and
the disease. Assuming that there is only one CV per region and that this is typed in the study, if SNP i is
causal, then the underlying log odds ratio 8; # 0 and §; (for j # ¢) is non-zero only through LD between
SNPs ¢ and j. Note that no parametric assumptions are required for 3; yet, so we write simply that it is

sampled from some distribution, /3; ~ []. The likelihood is then,

P(D|B; ~[], i causal) = P(D;|B; ~ [], i causal) x P(D_;|D;, B; ~[], i causal) Q)
1
= P(D;|B; ~ [ ], i causal) x P(D_;|D;, i causal),

since D_; is independent of §; given D;. Here, D is the genotype data (0, 1 or 2 counts of the minor allele
per individual) for all SNPs in the genomic region and 4 is a SNP in the region, such that D; and D_; are
the genotype data at SNP ¢ and at the remaining SNPs, respectively.

Parametric assumptions can now be placed on SNP ¢’s true effect on disease. This is typically quantified

as log odds ratio, and is assumed to be sampled from a Gaussian distribution, 5; ~ N (0, W), where W is

172§

bioRxiv preprint doi: https://doi.org/10.1101/781062; this version posted January 15, 2020. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273


https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/

aCC-BY 4.0 International license.

chosen to reflect the researcher’s prior belief on the variability of the true OR. Conventionally W is set to
0.22, reflecting a belief that there is 95% probability that the odds ratio at the causal variant lies between
exp(—1.96 x 0.2) = 0.68 and exp(1.96 x 0.2) = 1.48.

The posterior probabilities of causality for each SNP i in an associated genomic region with & SNPs can
be calculated as,

PP, =P(B; ~ N(0,W), i causal|D), ie{l,.. k}. (2)
Under the assumption that each SNP is a priori equally likely to be causal, then
P(B; ~ N(0,W), i causal) = %, 1e{l,...,k} (3)
and Bayes theorem can be used to write
PP; = P(; ~ N(0,W), i causal|D) < P(D|B; ~ N(0,W), i causal). (4)

Dividing through by the probability of the genotype data given the null model of no genetic effect, Hy,

yields a likelihood ratio,
P(D|B; ~ N(0,W), i causal)
P(D[Hy) ’

PP; x (5)

from which Equation (1) can be used to derive,

P(D;|B; ~ N(0,W), i causal)
PP; = BF;
o P(D, ) Z )

where BF; is the Bayes factor for SNP i, measuring the ratio of the probabilities of the data at SNP 4 given
the alternative (SNP ¢ is causal) and the null (no genetic effect) models.
In genetic association studies where sample sizes are usually large, these BFs can be approximated using

Wakefield’s asymptotic Bayes factors (ABFs) [33]. Given that 3; ~ N(8;,V;) and a priori 8; ~ N(0, W),

7 72w
PP; x BF, = ABF; = || — exp () , (7)

2

where Z? = f/—’ is the squared marginal Z score for SNP 3.

Distribution of marginal Z scores under a single CV model

Associations between a SNP and a trait are usually tested for using single-SNP models, such that marginal

Z scores are derived. In contrast, if the SNPs in the region are jointly modelled, then joint Z scores can
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be derived. Under the assumption of a single CV per region, we can write down the expected joint Z score

vector,
ZJ:(Oa'"vOnquw"vO)Tv (8)

where Z; has length equal to the number of SNPs in the region, and all elements equal to 0 except at the
causal SNP’s position which takes the value .

Given Z;, the expected marginal Z scores can be written as
E(Z)=XxZy, (9)

where 3 is the SNP correlation matrix [34]. The asymptotic distribution of these marginal Z scores is then

multi-variate normal (MVN) with variance equal to the SNP correlation matrix [34],

Z ~ MVN(E(Z),%). (10)

Corrected coverage estimate

The value of p is unknown in genetic association studies and it is therefore estimated in our method to derive
the Z; vector. We consider using the absolute Z score at the lead-SNP as an estimate for u, but find this to
be too high in low powered scenarios (S6 Fig)). This is because E(|Z|) > 0 even when E(Z) = 0, and thus
E(|Z]) > E(Z) when E(Z) is close to 0. Instead, we consider a weighted average of the absolute Z scores, so

that for a region comprising of k¥ SNPs,

k
fo=">_|Z| x PP, (11)
i=1

We find this estimate to have small relative error even at small p (S6 Fig)).

Given [i, we consider each SNP ¢ in the region as the CV in turn, and construct the joint Z vector as

L 0 j#i
zi={ 7 (12)
fo j=i
We simulate N = 1000 marginal Z score vectors,
* * * iid 5
ZN—1000 ={Z1:-- - Ziooo} ~ MVN(E x Z;,%). (13)
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Each simulated Z* vector is then converted to PPs and credible sets are formed using the standard
Bayesian method (sort and sum). The proportion of the N = 1000 simulated credible sets that contain SNP
i, prop;, is calculated.

This procedure is implemented for each SNP in the genomic region with PP > 0.001 (this value can be
altered using the ‘ppOmin’ parameter in the software) considered as causal. The final corrected coverage

estimate is then calculated by weighting each of these proportions by the PP of the SNP considered causal,,

Zi:PPi>0.001 PP; x prop;

Corrected Coverage Estimate =
Zi:PPi>0.001 PP;

(14)

Note that we are not attempting to reweight the PPs for inference, only to calibrate the corrected coverage
estimate. Intuitively, proportions obtained from realistic scenarios (SNPs with high posterior probabilities of
causality considered as causal) are up-weighted and proportions obtained from more unrealistic scenarios
(SNPs with low posterior probabilities of causality considered as causal) are down-weighted.

A value of N = 1000 (so that 1000 credible sets are simulated for each SNP that is considered causal) was
found to be a robust choice, but is included as an optional parameter in the software. This allows users to
increase or decrease the value as desired, for example in the interest of computational time for small or large

numbers of SNPs in a genomic region, respectively.

Using a reference panel for MAF and LD

We evaluated the performance of corrected coverage estimates when using a reference population to approxi-
mate MAFs and SNP correlations. In this analysis, we selected an LD block (chr10:6030194-6219451) and
chose only the SNPs in this region that could be matched by their position between the 1000 Genomes data
and the UK10K data (578 SNPs) for our simulations. European haplotype data for these SNPs was collected
from both the 1000 Genomes data (consisting of 503 individuals) and the UK10K data (consisting of 3781
individuals).

As in our standard simulation pipeline, causality was randomly allocated to one of these variants with it’s
effect size either sampled from N(0,0.22) or fixed. Sample sizes (NN: number of cases = number of controls
= 5000, 10000 or 50000) were also varied across simulations. These sampled parameter values were then used
with MAFs and haplotype data from the 1000 Genomes data to simulate marginal Z scores from various
genetic association studies. The standard claimed and corrected coverage estimates (Fig and Fig
respectively) were then derived as usual and the corrected coverage estimates were also calculated when using
the reference data to estimate MAFs and SNP correlations (Fig 2[C).

For comparison, we also investigated the effect of using a reference panel for the correction in the high
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LD region previously discussed (we omitted the low LD region as this used African haplotypes, for which we
do not have a large representative reference panel). The results were similar, indicating that there is minimal

loss of accuracy in corrected coverage estimates when approximating SNP correlations using a reference panel

(57 Fig).

T1D data set

For the T1D data analysis, we used the index SNPs for the genomic regions reported in the original study [28§]
and used Immunochip data to find the other SNPs in each of these regions. We then used the corrcoverage
R package with default parameters to find 95% (and 99%) credible sets of variants, along with the claimed
and corrected coverage estimates for each of these. 95% confidence intervals for the corrected coverage
estimates were derived by calculating 100 corrected coverage estimates and taking the 2.5th and 97.5th
percentile of these. If 0.95 (or 0.99 for 99% credible sets) did not fall within this confidence interval, then
the corrcoverage: :corrected_cs function (with the following optional parameter values: ‘acc = 0.0001,
max.iter = 70’) was used to find a corrected credible set; that is, the smallest set of variants required such
that the corrected coverage of the resultant credible set is close to the threshold value (within 0.0001 or as

close as possible within 70 iterations).

Supporting information

S1 Fig. Distributions of absolute effect sizes. (A) Histogram of absolute effect sizes sampled from
the prior, 8 ~ N(0,0.22) (B) Histogram of absolute effect sizes of the lead-SNP in genome-wide significantly
associated regions from case-control studies deposited on the GWAS catalog. Blue curve overlaid is for
N(0,0.22) distribution, black dashed line is where 3 = log(1.05) and red dotted line is where 3 = log(1.2).

The z axis has been truncated to remove extreme values.

S2 Fig. Error of coverage estimates for 90% credible sets. Error is calculated as estimated coverage—
empirical coverage where empirical coverage is the proportion of 5000 replicate credible sets that contain
the causal variant. Box plots showing error in coverage estimates for 5000 (A) low (B) medium and (C)
high LD simulations. Coverage estimates are the threshold (0.9) (left), the claimed coverage (the sum of the
posterior probabilities of the variants in the credible set) averaged over all simulations (left-middle) or for
simulations binned by minimum P value in the region (right-middle) and the corrected coverage estimate
(right) binned by minimum P value in the region. Black diamond shows mean error. Two simulations for

B = log(1.05) simulations that fell into (1072, 0] bin were manually removed as a box plot could not be
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generated. Graphical display of SNP correlation matrix for each region shown.

S3 Fig. Error of coverage estimates for 95% credible sets. Error is calculated as estimated coverage—
empirical coverage where empirical coverage is the proportion of 5000 replicate credible sets that contain the
causal variant. Box plots showing error in coverage estimates for 5000 (A) low (B) medium and (C) high
LD simulations. Coverage estimates are the threshold (0.95) (left), the claimed coverage (the sum of the
posterior probabilities of the variants in the credible set) averaged over all simulations (left-middle) or for
simulations binned by minimum P value in the region (right-middle) and the corrected coverage estimate
(right) binned by minimum P value in the region. Black diamond shows mean error. Two simulations for
B = log(1.05) simulations that fell into (10712,0] bin were manually removed as a box plot could not be

generated. Graphical display of SNP correlation matrix for each region shown.

S4 Fig. Error of coverage estimates for 90% credible sets split up by sample size. Error is
calculated as estimated coverage — empirical coverage where empirical coverage is the proportion of 5000
replicate credible sets that contain the causal variant. Box plots showing error in coverage estimates for 5000
simulations with NO (number of controls) = N1 (number of cases) = (A) 5000 (B) 10000 and (C) 50000.
Overall error in (left) threshold and (middle) claimed coverage estimates averaged across all 5000 simulations.
Right hand plots show error in claimed coverage estimates for different P value bins. If there were < 10
simulations contained in a P value bin, then these were manually removed (for example in P,,;, < 10~¢ bins

for 8 = log(1.05), NO = N1 = 5000).

S5 Fig. Error of coverage estimates for credible sets using UK10K data. Box plots showing
the error, estimated coverage — empirical coverage, of (A) 90% and (B) 95% credible sets where empirical
coverage is the proportion of 5000 replicate credible sets that contain the causal variant. Error of coverage
estimates where (left) coverage estimate equals threshold, (middle) coverage estimate equals claimed coverage
(sum of the posterior probabilities of the variants in the set) and (right) coverage estimate is corrected
coverage. Results from 5000 simulations for each simulation type have been averaged over many genomic

regions that vary in LD patterns.

S6 Fig. Estimating p. Error of i estimates calculated as fix —p. The x axis is the joint Z score at the CV.

Line is fitted using a GAM as the smoothing function (geom_smooth() in ggplot2). (A) = ?lzaxk}(|2i|)
1re1,...,

(B) =%, 2| x PP,
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S7 Fig. Error of coverage estimates for 90% credible sets using a reference panel to approxi- 3w
mate MAFs and SNP correlations in a high LD region. Error is calculated as estimated coverage — s
empirical coverage. Coverage estimates from 5000 simulations using original 1000 Genomes data and UK10K 306
data as a reference panel. (A) Claimed coverage estimate (the sum of the posterior probabilities of causality —sor
for the variants in the credible set) (B) Corrected coverage estimate (C) Corrected coverage estimate using s
UKI10K data to approximate MAFs and SNP correlations (D) Graphical display of SNP correlations in 1000 30
Genomes data (E) Graphical display of the estimated SNP correlations in UK10K data. Two simulations 4o
for 8 = log(1.05) simulations that fell into (10~!2,0] bin were manually removed as a box plot could not be s

generated. 402

S8 Fig. Empirical estimate of the true coverage of corrected 90% and 95% credible sets. 40
100,000 simulated 90% and 95% credible sets were “corrected” using the corrcoverage::corrected.cs am
function (with default parameters and ‘desired.cov=0.9" or ‘desired.cov=0.95), and the “required threshold” s
value obtained from each simulation was used to form 5000 replicate credible sets to estimate the empirical 406

coverage of these corrected 90% and 95% credible sets. a07

S9 Fig. R package timings. Curve showing the timings of the corrcoverage: : corrcov function for dif- s
ferent sized genomic regions. For each size of genomic region analysed, 50 replicates of the corrcoverage: : corrcou
function were ran and the mean time taken is plotted. Curve drawn using geom_smooth() function in ggplot2. o

Simulations ran using one core of an Intel Xeon Gold 6142 processor running at 2.6GHz. an1

S10 Fig. Summary of corrected coverage estimates and corrected 99% credible sets in T1D
data set. Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected a3
coverage estimates of 99% Bayesian credible sets for T1D-associated genomic regions. Black points represents

w o

regions where the credible set changed after the correction and the values for the circled points represent s
the decrease in the number of variants from the standard to the corrected 99% credible set. Blue points 4.
represent regions where the credible set did not change after the correction and grey points represent regions a7

where the credible set did not need to be corrected since the threshold was contained in the 99% confidence s

interval of the coverage estimate, or because the credible set already contained only a single variant. 410

S11 Fig. Distribution of the minimum P value for 2 CV simulations (Fig[2). 2 CVs are (A) in o

low LD (7? < 0.01) (B) in high LD (r? > 0.7). Faceted by odds ratio values at the causal variants. 1
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S1 File. Individual plots for 95% credible set T1D analysis. Zip file containing Z-score plots, PP

plots and Manhattan plots for the 39 T1D association regions analysed.

S2 File. Individual plots for 99% credible set T1D analysis. Zip file containing Z-score plots, PP

plots and Manhattan plots for the 39 T1D association regions analysed.
S1 Table. T1D corrected 95% credible set results.

S2 Table. List of 95% credible sets before and after correction.
S3 Table. T1D corrected 99% credible set results.

S4 Table. List of 99% credible sets before and after correction.
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