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Abstract

Genome Wide Association Studies (GWAS) have successfully identified thousands of loci associated with

human diseases. Bayesian genetic fine-mapping studies aim to identify the specific causal variants within

GWAS loci responsible for each association, reporting credible sets of plausible causal variants, which are

interpreted as containing the causal variant with some “coverage probability”.

Here, we use simulations to demonstrate that the coverage probabilities are over-conservative in most

fine-mapping situations. We show that this is because fine-mapping data sets are not randomly selected from

amongst all causal variants, but from amongst causal variants with larger effect sizes. We present a method

to re-estimate the coverage of credible sets using rapid simulations based on the observed, or estimated, SNP

correlation structure, we call this the “corrected coverage estimate”. This is extended to find “corrected

credible sets”, which are the smallest set of variants such that their corrected coverage estimate meets the

target coverage.

We use our method to improve the resolution of a fine-mapping study of type 1 diabetes. We found that

in 27 out of 39 associated genomic regions our method could reduce the number of potentially causal variants

to consider for follow-up, and found that none of the 95% or 99% credible sets required the inclusion of more

variants – a pattern matched in simulations of well powered GWAS.

Crucially, our correction method requires only GWAS summary statistics and remains accurate when

SNP correlations are estimated from a large reference panel. Using our method to improve the resolution of
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fine-mapping studies will enable more efficient expenditure of resources in the follow-up process of annotating

the variants in the credible set to determine the implicated genes and pathways in human diseases.

Author summary

Pinpointing specific genetic variants within the genome that are causal for human diseases is difficult due

to complex correlation patterns existing between variants. Consequently, researchers typically prioritise a

set of plausible causal variants for functional validation - these sets of putative causal variants are called

“credible sets”. We find that the probabilistic interpretation that these credible sets do indeed contain the

true causal variant is variable, in that the reported probabilities often underestimate the true coverage of

the causal variant in the credible set. We have developed a method to provide researchers with a “corrected

coverage estimate” that the true causal variant appears in the credible set, and this has been extended to

find “corrected credible sets”, allowing for more efficient allocation of resources in the expensive follow-up

laboratory experiments. We used our method to reduce the number of genetic variants to consider as causal

candidates for follow-up in 27 genomic regions that are associated with type 1 diabetes.

Introduction 1

Genome-Wide Association Studies (GWAS) have identified thousands of disease-associated regions in the 2

human genome, but the resolution of these regions is limited due to linkage disequilibrium (LD) between 3

variants [1]. Consequently, GWAS identifies multiple statistical, but often non-causal, associations at common 4

genetic variants (typically SNPs) that are in LD with the true causal variants. Follow-up studies are therefore 5

required for the prioritisation of the causal variants within these regions, which is an inherently difficult 6

problem due to convoluted LD patterns between hundreds or thousands of SNPs. Consequently, fine-mapping 7

studies prioritise a set of variants most likely to be causal in each risk loci. Laboratory functional studies or 8

large-scale replication studies may then be used to identify the true causal variants within these sets, which 9

can then be linked to their target genes to better understand the genetic basis of human diseases [2, 3]. 10

Early statistical approaches for fine-mapping tended to focus on the SNP in the region with the smallest P 11

value, called the lead-SNP. However, it is generally acknowledged that this SNP may not be the causal variant 12

in a given region due to correlations with the true causal variants [1, 4]. Studies may therefore prioritise the 13

lead-SNP before extending the analysis to include either variants in high LD with this SNP or the top k 14

variants with the highest evidence of association [5]. 15

Fine-mapping is analogous to a variable selection problem with many highly correlated variables (the 16
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SNPs) [6]. As such, methods such as penalised regression have also been adopted for fine-mapping, with 17

the aim of choosing the variables representing the variants most likely to be causal for inclusion in the final 18

model [7]. Yet these methods ultimately select one final model and lack probabilistic quantification for this 19

selected model. 20

Bayesian approaches for fine-mapping [8–12] use posterior probabilities of causality (PPs) to quantify the 21

evidence that a variant is causal for a given disease, and these can be meaningfully compared both within 22

and across studies. The standard Bayesian approach for fine-mapping was developed by Maller et al. (2012) 23

and assumes a single causal variant per genetic region to prioritise an “(α× 100)% credible set” of putative 24

causal variants. This is derived by ranking variants based on their PPs and summing these until a threshold, 25

α, is exceeded - with the variants required to exceed this threshold comprising the credible set. 26

These credible sets are interpreted as having good frequentist coverage of the causal variant [8, 13, 14], 27

although there is no mathematical basis for this [6]. For example, researchers often state that an (α× 100)% 28

credible set contains the causal variant with (α× 100)% probability [15–19] or with probability ≥ (α× 100)% 29

[6, 20,21]. More specifically, they may be interpreted as containing the causal variant with probability equal 30

to the sum of the PPs of the variants in the credible set [22], for which the threshold forms a lower bound. A 31

simulation study found that the coverage of the causal variant in 95% and 99% credible sets varied with the 32

power to detect the signal (Fig S1 in [1]), implying that inferring the frequentist coverage estimate of these 33

Bayesian credible sets may not be as straightforward as the literature suggests. 34

In this work, we investigate the accuracy of standard coverage estimates reported in the Bayesian single 35

causal variant fine-mapping literature. We develop a new method to re-estimate the frequentist coverage of 36

these credible sets, deriving a “corrected coverage estimate” and extending this to construct a “corrected 37

credible set”. We validate our method through simulations and demonstrate its improved performance relative 38

to standard coverage estimates reported in the literature. 39

Our method is available as a CRAN R package, corrcoverage (https://github.com/annahutch/corrcoverage; 40

https://cran.r-project.org/web/packages/corrcoverage/index.html), which was used to decrease the size of 41

the standard 95% credible sets for 27 out of 39 genomic regions that are associated with type 1 diabetes. 42

Crucially, our method requires only summary-level data and remains accurate when SNP correlations are 43

estimated from a reference panel (such as the UK10K project [23]). 44
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Results 45

Accuracy of claimed coverage estimates in single causal variant fine-mapping 46

literature is variable 47

To investigate the true coverage of the causal variant in Bayesian credible sets, we simulated a variety of 48

single causal variant association studies using 1006 European haplotypes or 1322 African haplotypes from the 49

1000 Genomes Phase 3 data set [24]. 50

Briefly, SNPs were sampled from various genomic regions with differing LD structures. In each simulation, 51

causality was randomly allocated to one of the variants in the region with an additive phenotypic effect. 52

Sample sizes were also varied across simulations (NN: number of cases = number of controls = 5000, 10000 53

or 50000). We calculated the frequentist empirical estimate of the true coverage for each simulated credible 54

set as the proportion of 5000 replicate credible sets that contained the simulated causal variant. 55

Bayesian fine-mapping frameworks require specification of a prior distribution on the effect size of the 56

causal variant, conventionally N(0, 0.22) for a log odds ratio in a case-control study. We therefore simulated 57

association studies that reflect the underlying Bayesian single causal variant fine-mapping model exactly, 58

such that the causal effect sizes (β = log odds ratio) were sampled from N(0, 0.22) and causality was selected 59

randomly across all SNPs. However, we argue that in any individual dataset the effect size at the causal 60

variant is sampled from a point distribution with unknown but fixed mean, and that it is this mean which 61

may be considered to be sampled from N(0, 0.22). 62

We modelled the distribution of genome-wide significant lead-SNP effect sizes from data deposited in the 63

GWAS catalogue [25] to select representative point distributions to use in our analysis (S1 Fig). Overall, in 64

each of our simulations effect sizes were either (i) sampled from the prior distribution, β ∼ N(0, 0.22) (ii) 65

fixed at β = log(1.05) or (iii) fixed at β = log(1.2). 66

A common feature of Bayesian statistical inference is that if one simulates from the prior used in the 67

underlying model, then the resultant posterior inferences will be accurate. This is reflected in our results, 68

where the PPs are well calibrated in simulations where the effect sizes are sampled from the prior normal 69

distribution (Fig 1A; left). However, we found that some bias is introduced when the effect sizes are 70

sampled from a point distribution, as in a standard fine-mapping study. Specifically, the PPs tend to be 71

anti-conservatively biased in low effect sizes and conservatively biased in higher effect sizes (Fig 1A; right). 72

We then used these PPs to generate 90% credible sets of putative causal variants, following the standard 73

Bayesian single causal variant fine-mapping procedure (see Methods and [8]). We investigated the accuracy of 74

setting the coverage estimate of the credible set equal to both the threshold (“threshold coverage estimate”) 75
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[15–19] and the sum of the PPs of the variants in the set (“claimed coverage estimate”) [22]. We found that 76

there is accumulative bias carried through from SNP PPs to credible set coverage estimates. 77

When averaging results over all simulations, threshold coverage estimates tended to be conservatively 78

biased for credible sets, even when effect sizes are sampled from the prior distribution (Fig 1C; left). However, 79

low effect sizes can also lead to anti-conservative estimates in regions with differing LD structures (S2 Fig, S3 80

Fig) and in low powered studies (S4 Fig). The claimed coverage estimates are unbiased when effect sizes 81

are sampled from the prior distribution, but with large variability in the direction of conservative estimates. 82

On the contrary, when effect sizes are sampled from point distributions, the claimed coverage estimates are 83

systematically biased (Fig 1C; middle), a result that is consistent across various LD structures and credible 84

set thresholds (S2 Fig, S3 Fig). 85

Researchers typically select regions to fine-map depending on the strength of evidence of an association in 86

that region, which is usually quantified by a P value (for example, regions reaching genome-wide significance). 87

We therefore further scrutinise the accuracy of the coverage estimates by binning simulations by minimum P 88

value (Pmin) in the region. Each P value bin encompasses simulations which sample different parts of the 89

prior effect size distribution, such that the distribution of effect sizes for each P value bin no longer resemble 90

the conventional N(0, 0.22) prior (Fig 1B). 91

We found that claimed coverage estimates are systematically biased in representatively powered scenarios 92

where fine-mapping is usually performed (Pmin > 10−12) regardless of the effect size sampling method (Fig 1C; 93

right). This bias is mostly conservative, but may be anti-conservative in low powered studies (demonstrated 94

by splitting simulations up by sample size, S4 Fig). Notably, even when the effect sizes are sampled from the 95

prior, the claimed coverage estimates are anti-conservatively biased in low powered simulations (Pmin > 10−4), 96

conservatively biased in intermediately powered simulations (10−12 < Pmin < 10−4) and unbiased in very 97

high powered simulations (Pmin < 10−12). 98

These findings are consistent across various LD patterns and credible set thresholds, with greatest 99

variability detected between estimates in high LD regions (S2 Fig; S3 Fig). To investigate the impact of LD 100

further, we repeated the analysis, varying LD patterns over a much larger population (7562 European UK10K 101

haplotypes) and averaging the results over a range of LD patterns (see Methods). We found that the results 102

were similar to those shown in Fig 1 (S5 Fig). 103

In conclusion, the probabilities that the causal variant is contained within the credible set in intermediately 104

powered single causal variant fine-mapping studies are typically too low, and researchers can afford to be 105

“more confident” that they have captured the true causal variant in their credible set. 106
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Corrected coverage estimate improves empirical calibration of credible sets 107

We developed a new estimator for the true coverage of the causal variant in credible sets, called the “corrected 108

coverage estimate”, which is based on learning the bias in the system by repeatedly simulating summary 109

GWAS data from the same MAF and LD structure as the observed data. We derive an estimate of effect size 110

at the (unknown) causal variant as a weighted average of absolute Z scores taken across SNPs in the region, 111

using the observed PPs as weights (S6 Fig) (see Methods for detailed derivation). 112

For each of the simulated credible sets, we found that the corrected coverage estimates were better 113

empirically calibrated than the claimed coverage estimates in simulations that are representative of those 114

considered for fine-mapping (Pmin < 10−6) (Fig 2; S2 Fig; S3 Fig; S5 Fig). Particularly, the median and mean 115

error of the corrected coverage estimates decreases for Pmin < 10−6, and the variability between estimates 116

also decreases even in simulations where the claimed coverage estimates are unbiased (Pmin < 10−12). 117

Corrected coverage robust to MAF and LD estimated from a reference panel 118

Our method relies on MAF and SNP correlation data to simulate GWAS summary statistics representative of 119

the observed GWAS data. So far we have assumed that this information is available from the GWAS samples, 120

but due to privacy concerns this is not generally the case. We therefore evaluated the performance of our 121

correction when using independent reference data to estimate MAFs and SNP correlations. We applied our 122

correction to credible sets simulated from the European 1000 Genomes data using either MAFs and SNP 123

correlations from the original (1000 Genomes) data (Fig 2B) or MAFs and SNP correlations estimated from 124

a reference panel (UK10K) (Fig 2C). We found that the corrected coverage estimates remained accurate in 125

either case (Fig 2C, S7 Fig). 126
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Corrected coverage robust to departures from single causal variant assumption 127

The Bayesian approach for fine-mapping described by Maller et al. assumes a single causal variant per 128

genomic region, which may be unrealistic [26]. Using simulated data with 2 causal variants, and defining 129

coverage as the frequency with which a credible set contained at least 1 causal variant, we found that the 130

corrected coverage estimates tended to have smaller error than the claimed coverage estimates for causal 131

variants in low LD (r2 < 0.01, Fig 3A). When the 2 causal variants are in high LD (r2 > 0.7), the corrected 132

coverage estimates are still generally more accurate than the claimed coverage estimates, although both 133

tend to underestimate the true coverage (and are thus conservative) (Fig 3B). Whilst the key assumption 134

underlying Bayesian fine-mapping may be controversial, we found that when this assumption is violated (and 135

when considering capturing at least 1 causal variant as most relevant), the corrected coverage estimates are 136

often still better empirically calibrated than the claimed coverage estimates. 137
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Fig 3. Error of coverage estimates for 90% credible sets in regions with 2 causal variants.
Error is calculated as estimated coverage− empirical coverage where empirical coverage is the proportion of
5000 additional simulated 90% credible sets that contain at least one of the 2 causal variants and estimated
coverage is the claimed or corrected coverage estimate as defined in the text. The median error and
interquartile range of claimed and corrected coverage estimates of 90% credible sets from 5000 simulated
regions with 2 causal variants that are (A) in low LD (r2 < 0.01) (B) in high LD (r2 > 0.7). Faceted by odds
ratio values at the causal variants.
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Corrected credible sets 138

Obtaining an accurate coverage estimate that the causal variant appears in the credible set is useful in its 139

own right, but it is also beneficial to obtain a “corrected credible set” - that is, the smallest set of variants 140

required such that the corrected coverage estimate of the resultant credible set achieves some desired coverage. 141

For example, discovering that a 90% credible set actually has 99% coverage of the causal variant is useful, 142

but an obvious follow-up question is “What variants do I need such that the coverage is actually 90%?”. 143

We explored this using an example simulated GWAS across 200 SNPs with the effect size fixed at 144

β = log(1.2). The 90% credible set, constructed using the standard Bayesian approach, contained 8 variants 145

and had a claimed coverage estimate of 0.903. The corrected coverage estimate of this credible set was 0.969 146

and the estimated empirical coverage was 0.972. 147

We used the root bisection method [27] to iteratively search for the smallest threshold value that yields a 148

credible set with accurate coverage of the causal variant. We found that a corrected 90% credible set could 149

be constructed using a threshold value of 0.781. This corrected credible set had a coverage estimate of 0.905 150

(empirical estimated coverage of 0.907) and reduced in size from 8 to 4 variants, with the 4 variants removed 151

from the credible set holding a small proportion of the total posterior probability (Fig 4). 152

Simulations confirmed that the empirical coverage probabilities of corrected credible sets created in this 153

way are accurate, such that on average the empirical estimate of the true coverage of a corrected 90% (or 154

95%) credible set is indeed 90% (or 95%) (S8 Fig). 155
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Fig 4. A simple example to illustrate the results of the correction method. (A) The absolute Z
scores of the SNPs. (B) The PPs of the SNPs. (C) As in the fine-mapping procedure, variants are sorted into
descending order of PP and summed. Starting with the SNP with the largest PP (far right) the cumulative
sum (size) of the credible set is plotted as each SNP is added to the set. Red SNPs are those in the corrected
90% credible set and blue SNPs are those that only appear in the original 90% credible set. The credible set
formed of the red SNPs has a corrected coverage estimate of 0.905 and the credible set formed of both the
blue and red SNPs has a corrected coverage estimate of 0.969.
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corrcoverage R package 156

We created a CRAN R package, corrcoverage (https://annahutch.github.io/corrcoverage/; https://cran.r- 157

project.org/web/packages/corrcoverage/index.html), that uses marginal summary statistics to derive corrected 158

coverage estimates and corrected credible sets. The functions to calculate corrected coverage estimates are 159

computationally efficient, taking approximately 1 minute for a 1000 SNP region (using one core of an Intel 160

Xeon E5-2670 processor running at 2.6GHz; S9 Fig). 161

The functions to derive corrected credible sets require only the summary statistics needed to derive 162

the corrected coverage estimate (Z scores, MAFs, sample sizes and SNP correlation matrix) plus some 163

user-specified desired coverage. Users are able to customise the optional arguments to suit both their accuracy 164

requirements and computational constraints. The algorithm then works iteratively such that the threshold 165

and the corrected coverage estimate of each tested credible set is displayed, until the smallest set of variants 166

with the desired coverage is established, offering researchers an easy tool to improve the resolution of their 167

credible sets. 168

Impact of correcting credible sets in a GWAS 169

We applied our corrected coverage method to association data from a large type 1 diabetes (T1D) genetic 170

association study consisting of 6,670 cases and 12,262 controls [28]. In the original study, 99% credible sets 171

are found for 40 genomic regions. Here we focus on 95% credible sets as these best illustrate the utility of our 172

method due to the greater margin for error, and we exclude the INS region with lead SNP rs689 which failed 173

QC in the Immunochip (and for which additional genotyping data was used in the original study). 174

The results match our previous findings - that the claimed coverage estimates are often too low (Fig 5). 175

We found that the size of the 95% credible set could be reduced in 27 out of the 39 regions, without the use 176

of any additional data (S1 Table, S2 Table). Similarly, we found that the size of the 99% credible set could 177

be reduced in 26 out of the 39 regions (S10 Fig, S2 File, S3 Table, S4 Table). 178
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Fig 5. Summary of corrected coverage estimates and corrected credible sets in T1D data set.
Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected coverage
estimates of 95% Bayesian credible sets for T1D-associated genomic regions. Black points represents regions
where the credible set changed after the correction and the “-” values for the circled points represent the
decrease in the number of variants from the standard to the corrected 95% credible set. Blue points represent
regions where the credible set did not change after the correction and grey points represent regions where the
credible set did not need to be corrected since the threshold was contained in the 95% confidence interval of
the coverage estimate, or because the credible set already contained only a single variant.

Fine mapping to single base resolution has been used as a measure of GWAS resolution [21]. Two of the 179

original 95% credible sets only contained a single variant: rs34536443 (missense in TYK2 ) and rs72928038 180

(intronic in BACH2 ). After applying our correction, two additional 95% credible sets were narrowed down 181

from two variants to a single variant. First, rs2476601 (missense variant R620W in PTPN22 ) was selected, 182

dropping rs6679677 which is in high LD with rs2476601 (r2 = 0.996). These SNPs have high PPs (0.856185774 183

and 0.143814226, respectively) and the corrected credible set containing only rs2476601 has a corrected 184
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coverage estimate of 0.9501 with a 95% confidence interval of (0.9392, 0.9613). 185

Second, rs9585056 was selected, dropping rs9517719 (r2 = 0.483). rs9517719 is intergenic, while rs9585056 186

is in the 3’ UTR of the lncRNA AL136961.1, but has been shown to regulate expression of GPR183 which in 187

turn regulates an IRF7-driven inflammatory network [29]. While it is likely that R620W is indeed the causal 188

variant at PTPN22, there is no conclusive data to evaluate whether rs9585056 is more likely to be causal 189

compared to rs9517719. Nonetheless, the enrichment for missense variants is encouraging and in total, the 190

number of putative causal variants for T1D in credible sets reduced from 658 to 582 upon correction. 191

Discussion 192

Bayesian methods for single causal variant fine-mapping typically prioritise a credible set of putative causal 193

variants. In this work, we have stratified by P value to show that the inferred probabilities that these credible 194

sets do indeed contain the causal variant are systematically biased in simulations with intermediate power, 195

reflecting those instances where fine-mapping is usually performed. We show that this is because fine mapped 196

regions are not a random sample as assumed by fine mapping methods, but the subset of regions with the 197

most extreme P values. 198

Threshold coverage estimates are typically conservatively biased, suggesting that the threshold of the 199

credible set can be used as a lower bound for the true coverage of the causal variant in the set [6, 20,21]. In 200

contrast, claimed coverage estimates (the sum of the PPs of the variants in the set) are anti-conservatively 201

biased in low powered scenarios and conservatively biased in intermediately powered scenarios. We therefore 202

developed a “corrected coverage estimator” which has smaller expected error than the conventional coverage 203

estimates in the single causal variant literature, regardless of credible set threshold, power and the underlying 204

LD structure in the region (and whether this is known or estimated from a reference panel). 205

The standard Bayesian approach for fine-mapping [8], and therefore our correction method, are limited in 206

that they do not model multiple causal variants. Fine-mapping approaches that jointly model SNPs have 207

been developed, such as GUESSFM [4] which uses genotype data and FINEMAP [9] and JAM [12] which 208

attempt to reconstruct multivariate SNP associations from univariate GWAS summary statistics, differing 209

both in the form they use for the likelihood and the method used to stochastically search the model space. 210

The output from these methods are posterior probabilities for various configurations of causal variants, and 211

therefore the grouping of SNPs to distinct association signals must typically be performed post-hoc to obtain 212

similar inferences to that of single causal variant fine-mapping (e.g. to obtain credible sets). 213

The sum of single effects (SuSiE) method [6] removes the single causal variant assumption and groups 214

SNPs to distinct association signals in the analysis, such that it aims to find as many credible sets of variants 215
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that are required so that each set captures an effect variant, whilst also containing as few variants as possible 216

(similar to “signal clusters” in Lee et al.’s DAP-G method [30]). This sophisticated approach has great 217

potential, but the simulated 95% credible sets formed using both the SuSiE and DAP-G methods “typically 218

had coverage slightly below 0.95, but usually > 0.9” (Fig 3 and Fig S3 in [6]). Our method could potentially 219

be extended to improve upon the coverage of credible sets obtained using SuSiE and DAP-G fine-mapping 220

methods. 221

Whilst our method does not address all the limitations of single causal variant fine-mapping, it improves 222

upon the common inferences that are reported in the literature by researchers. We recommend that our 223

correction is used as an extra step in the single causal variant fine-mapping pipeline, to obtain a corrected 224

coverage estimate that the causal variant is contained within the credible set and if required, to derive a 225

corrected credible set. 226

Methods 227

Design of simulation pipeline 228

We simulated a variety of genetic association studies using African and European haplotypes present in the 229

1000 Genomes Phase 3 data set [24]. Regions were selected that contained approximately 700 SNPs in low LD 230

(African: Chr10:6030194-6219451), medium LD (European: Chr10:6030194-6219451) or high LD (European: 231

Chr10:60969-431161) (GRCh37). Causality was randomly allocated to one variant in the region. Effect sizes 232

were either sampled from the prior (β ∼ N(0, 0.22)) or fixed (at β = log(1.05) or β = log(1.2)). Sample sizes 233

(NN: number of cases = number of controls = 5000, 10000 or 50000) were also varied across simulations. 234

The haplotype frequencies and sampled parameter values were then used in the simGWAS R package [31] 235

to: (i) simulate the results of a case-control GWAS (the study to “correct”) (ii) simulate results from 5000 236

case-control GWASs (to evaluate the accuracy of our method). These simulated GWAS results are marginal Z 237

scores, which were then converted to PPs using the corrcoverage::ppfunc or corrcoverage::ppfunc.mat 238

functions, which are based on Maller et al.’s derivations (See ‘Z scores to PPs’ section below). 239

The variants are sorted into descending order of their PPs and these are summed until the credible set 240

threshold (0.9 or 0.95) is exceeded. The variants required to exceed this threshold comprise the 90% or 241

95% credible set. The sum of the PPs of the variants in the credible set is the “claimed coverage” [22], 242

which must be greater than or equal to the threshold by virtue of the method. The frequentist empirical 243

estimate of the true coverage is calculated as the proportion of 5000 simulated credible sets that contain 244

the causal variant (CV). The corrected coverage estimate is also calculated for each credible set using 245
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the corrcoverage::corrcov function. The simulation procedure is repeated many times to obtain a final 246

simulation data set, consisting of the sampled parameter values and the empirical, claimed and corrected 247

coverage estimates of the simulated credible sets. 248

For the evaluation of averaging results over a range of LD patterns, we used haplotypes from the UK10K 249

data. In each simulation, genomic regions were randomly selected (bounded by recombination hotspots 250

defined using the LD detect method [32]) on chromosome 22 and two non-overlapping sets of 100 adjacent 251

variants were selected, so that the simulated region consisted of 200 correlated and non-correlated variants. 252

The simulation pipeline described above was then followed to obtain a final simulation data set for various 253

LD patterns. 254

For investigating the effect of violating the single causal variant assumption, 2 CVs were simulated in each 255

genomic region, which were either in high LD (r2 > 0.7) or low LD (r2 < 0.01), and coverage was defined as 256

the frequency with which a credible set contained at least one of the CVs. The odds ratio of the simulated 257

CVs were sampled independently and sample sizes were varied so that the power of the simulated systems 258

varied (S11 Fig). We omitted analyses for regions containing > 2 CVs as defining coverage in these instances 259

becomes more problematic. 260

Z scores to PPs 261

Maller et al. derive a method to calculate PPs from GWAS summary statistics (Supplementary text in [8]) 262

upon which the following is based. Let β̂i for i = 1, ..., k SNPs in a genomic region be the regression coefficient 263

from a single-SNP logistic regression model, quantifying the evidence of an association between SNP i and 264

the disease. Assuming that there is only one CV per region and that this is typed in the study, if SNP i is 265

causal, then the underlying log odds ratio βi 6= 0 and βj (for j 6= i) is non-zero only through LD between 266

SNPs i and j. Note that no parametric assumptions are required for βi yet, so we write simply that it is 267

sampled from some distribution, βi ∼ [ ]. The likelihood is then, 268

P (D|βi ∼ [ ], i causal) = P (Di|βi ∼ [ ], i causal)× P (D−i|Di, βi ∼ [ ], i causal)

= P (Di|βi ∼ [ ], i causal)× P (D−i|Di, i causal) ,

(1)

since D−i is independent of βi given Di. Here, D is the genotype data (0, 1 or 2 counts of the minor allele 269

per individual) for all SNPs in the genomic region and i is a SNP in the region, such that Di and D−i are 270

the genotype data at SNP i and at the remaining SNPs, respectively. 271

Parametric assumptions can now be placed on SNP i’s true effect on disease. This is typically quantified 272

as log odds ratio, and is assumed to be sampled from a Gaussian distribution, βi ∼ N(0,W ), where W is 273
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chosen to reflect the researcher’s prior belief on the variability of the true OR. Conventionally W is set to 274

0.22, reflecting a belief that there is 95% probability that the odds ratio at the causal variant lies between 275

exp(−1.96× 0.2) = 0.68 and exp(1.96× 0.2) = 1.48. 276

The posterior probabilities of causality for each SNP i in an associated genomic region with k SNPs can 277

be calculated as, 278

PPi = P (βi ∼ N(0,W ), i causal|D) , i ∈ {1, ..., k}. (2)

Under the assumption that each SNP is a priori equally likely to be causal, then 279

P (βi ∼ N(0,W ), i causal) =
1

k
, i ∈ {1, ..., k} (3)

and Bayes theorem can be used to write 280

PPi = P (βi ∼ N(0,W ), i causal|D) ∝ P (D|βi ∼ N(0,W ), i causal). (4)

Dividing through by the probability of the genotype data given the null model of no genetic effect, H0, 281

yields a likelihood ratio, 282

PPi ∝
P (D|βi ∼ N(0,W ), i causal)

P (D|H0)
, (5)

from which Equation (1) can be used to derive, 283

PPi ∝
P (Di|βi ∼ N(0,W ), i causal)

P (Di|H0)
= BFi , (6)

where BFi is the Bayes factor for SNP i, measuring the ratio of the probabilities of the data at SNP i given 284

the alternative (SNP i is causal) and the null (no genetic effect) models. 285

In genetic association studies where sample sizes are usually large, these BFs can be approximated using 286

Wakefield’s asymptotic Bayes factors (ABFs) [33]. Given that β̂i ∼ N(βi, Vi) and a priori βi ∼ N(0,W ), 287

PPi ∝ BFi ≈ ABFi =

√
Vi

Vi +W
exp

(
Z2
i

2

W

(Vi +W )

)
, (7)

where Z2
i =

β̂2
i

Vi
is the squared marginal Z score for SNP i. 288

Distribution of marginal Z scores under a single CV model 289

Associations between a SNP and a trait are usually tested for using single-SNP models, such that marginal 290

Z scores are derived. In contrast, if the SNPs in the region are jointly modelled, then joint Z scores can 291
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be derived. Under the assumption of a single CV per region, we can write down the expected joint Z score 292

vector, 293

ZJ = (0, . . . , 0, µ, 0, . . . , 0)T , (8)

where ZJ has length equal to the number of SNPs in the region, and all elements equal to 0 except at the 294

causal SNP’s position which takes the value µ. 295

Given ZJ , the expected marginal Z scores can be written as 296

E(Z) = Σ× ZJ , (9)

where Σ is the SNP correlation matrix [34]. The asymptotic distribution of these marginal Z scores is then 297

multi-variate normal (MVN) with variance equal to the SNP correlation matrix [34], 298

Z ∼MVN(E(Z),Σ). (10)

Corrected coverage estimate 299

The value of µ is unknown in genetic association studies and it is therefore estimated in our method to derive 300

the ZJ vector. We consider using the absolute Z score at the lead-SNP as an estimate for µ, but find this to 301

be too high in low powered scenarios (S6 Fig). This is because E(|Z|) > 0 even when E(Z) = 0, and thus 302

E(|Z|) > E(Z) when E(Z) is close to 0. Instead, we consider a weighted average of the absolute Z scores, so 303

that for a region comprising of k SNPs, 304

µ̂ =
k∑

i=1

|Zi| × PPi. (11)

We find this estimate to have small relative error even at small µ (S6 Fig). 305

Given µ̂, we consider each SNP i in the region as the CV in turn, and construct the joint Z vector as 306

ẐJ [j] =

 0 j 6= i

µ̂ j = i
(12)

We simulate N = 1000 marginal Z score vectors, 307

Z∗N=1000 = {Z∗1 , . . . , Z∗1000}
iid∼ MVN(Σ× ẐJ ,Σ). (13)
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Each simulated Z∗ vector is then converted to PPs and credible sets are formed using the standard 308

Bayesian method (sort and sum). The proportion of the N = 1000 simulated credible sets that contain SNP 309

i, propi, is calculated. 310

This procedure is implemented for each SNP in the genomic region with PP > 0.001 (this value can be 311

altered using the ‘pp0min’ parameter in the software) considered as causal. The final corrected coverage 312

estimate is then calculated by weighting each of these proportions by the PP of the SNP considered causal,, 313

Corrected Coverage Estimate =

∑
i:PPi>0.001 PPi × propi∑

i:PPi>0.001 PPi
. (14)

Note that we are not attempting to reweight the PPs for inference, only to calibrate the corrected coverage 314

estimate. Intuitively, proportions obtained from realistic scenarios (SNPs with high posterior probabilities of 315

causality considered as causal) are up-weighted and proportions obtained from more unrealistic scenarios 316

(SNPs with low posterior probabilities of causality considered as causal) are down-weighted. 317

A value of N = 1000 (so that 1000 credible sets are simulated for each SNP that is considered causal) was 318

found to be a robust choice, but is included as an optional parameter in the software. This allows users to 319

increase or decrease the value as desired, for example in the interest of computational time for small or large 320

numbers of SNPs in a genomic region, respectively. 321

Using a reference panel for MAF and LD 322

We evaluated the performance of corrected coverage estimates when using a reference population to approxi- 323

mate MAFs and SNP correlations. In this analysis, we selected an LD block (chr10:6030194-6219451) and 324

chose only the SNPs in this region that could be matched by their position between the 1000 Genomes data 325

and the UK10K data (578 SNPs) for our simulations. European haplotype data for these SNPs was collected 326

from both the 1000 Genomes data (consisting of 503 individuals) and the UK10K data (consisting of 3781 327

individuals). 328

As in our standard simulation pipeline, causality was randomly allocated to one of these variants with it’s 329

effect size either sampled from N(0, 0.22) or fixed. Sample sizes (NN: number of cases = number of controls 330

= 5000, 10000 or 50000) were also varied across simulations. These sampled parameter values were then used 331

with MAFs and haplotype data from the 1000 Genomes data to simulate marginal Z scores from various 332

genetic association studies. The standard claimed and corrected coverage estimates (Fig 2A and Fig 2B 333

respectively) were then derived as usual and the corrected coverage estimates were also calculated when using 334

the reference data to estimate MAFs and SNP correlations (Fig 2C). 335

For comparison, we also investigated the effect of using a reference panel for the correction in the high 336
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LD region previously discussed (we omitted the low LD region as this used African haplotypes, for which we 337

do not have a large representative reference panel). The results were similar, indicating that there is minimal 338

loss of accuracy in corrected coverage estimates when approximating SNP correlations using a reference panel 339

(S7 Fig). 340

T1D data set 341

For the T1D data analysis, we used the index SNPs for the genomic regions reported in the original study [28] 342

and used Immunochip data to find the other SNPs in each of these regions. We then used the corrcoverage 343

R package with default parameters to find 95% (and 99%) credible sets of variants, along with the claimed 344

and corrected coverage estimates for each of these. 95% confidence intervals for the corrected coverage 345

estimates were derived by calculating 100 corrected coverage estimates and taking the 2.5th and 97.5th 346

percentile of these. If 0.95 (or 0.99 for 99% credible sets) did not fall within this confidence interval, then 347

the corrcoverage::corrected cs function (with the following optional parameter values: ‘acc = 0.0001, 348

max.iter = 70’) was used to find a corrected credible set; that is, the smallest set of variants required such 349

that the corrected coverage of the resultant credible set is close to the threshold value (within 0.0001 or as 350

close as possible within 70 iterations). 351

Supporting information 352

S1 Fig. Distributions of absolute effect sizes. (A) Histogram of absolute effect sizes sampled from 353

the prior, β ∼ N(0, 0.22) (B) Histogram of absolute effect sizes of the lead-SNP in genome-wide significantly 354

associated regions from case-control studies deposited on the GWAS catalog. Blue curve overlaid is for 355

N(0, 0.22) distribution, black dashed line is where β = log(1.05) and red dotted line is where β = log(1.2). 356

The x axis has been truncated to remove extreme values. 357

S2 Fig. Error of coverage estimates for 90% credible sets. Error is calculated as estimated coverage− 358

empirical coverage where empirical coverage is the proportion of 5000 replicate credible sets that contain 359

the causal variant. Box plots showing error in coverage estimates for 5000 (A) low (B) medium and (C) 360

high LD simulations. Coverage estimates are the threshold (0.9) (left), the claimed coverage (the sum of the 361

posterior probabilities of the variants in the credible set) averaged over all simulations (left-middle) or for 362

simulations binned by minimum P value in the region (right-middle) and the corrected coverage estimate 363

(right) binned by minimum P value in the region. Black diamond shows mean error. Two simulations for 364

β = log(1.05) simulations that fell into (10−12, 0] bin were manually removed as a box plot could not be 365
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generated. Graphical display of SNP correlation matrix for each region shown. 366

S3 Fig. Error of coverage estimates for 95% credible sets. Error is calculated as estimated coverage− 367

empirical coverage where empirical coverage is the proportion of 5000 replicate credible sets that contain the 368

causal variant. Box plots showing error in coverage estimates for 5000 (A) low (B) medium and (C) high 369

LD simulations. Coverage estimates are the threshold (0.95) (left), the claimed coverage (the sum of the 370

posterior probabilities of the variants in the credible set) averaged over all simulations (left-middle) or for 371

simulations binned by minimum P value in the region (right-middle) and the corrected coverage estimate 372

(right) binned by minimum P value in the region. Black diamond shows mean error. Two simulations for 373

β = log(1.05) simulations that fell into (10−12, 0] bin were manually removed as a box plot could not be 374

generated. Graphical display of SNP correlation matrix for each region shown. 375

S4 Fig. Error of coverage estimates for 90% credible sets split up by sample size. Error is 376

calculated as estimated coverage − empirical coverage where empirical coverage is the proportion of 5000 377

replicate credible sets that contain the causal variant. Box plots showing error in coverage estimates for 5000 378

simulations with N0 (number of controls) = N1 (number of cases) = (A) 5000 (B) 10000 and (C) 50000. 379

Overall error in (left) threshold and (middle) claimed coverage estimates averaged across all 5000 simulations. 380

Right hand plots show error in claimed coverage estimates for different P value bins. If there were < 10 381

simulations contained in a P value bin, then these were manually removed (for example in Pmin < 10−6 bins 382

for β = log(1.05), N0 = N1 = 5000). 383

S5 Fig. Error of coverage estimates for credible sets using UK10K data. Box plots showing 384

the error, estimated coverage− empirical coverage, of (A) 90% and (B) 95% credible sets where empirical 385

coverage is the proportion of 5000 replicate credible sets that contain the causal variant. Error of coverage 386

estimates where (left) coverage estimate equals threshold, (middle) coverage estimate equals claimed coverage 387

(sum of the posterior probabilities of the variants in the set) and (right) coverage estimate is corrected 388

coverage. Results from 5000 simulations for each simulation type have been averaged over many genomic 389

regions that vary in LD patterns. 390

S6 Fig. Estimating µ. Error of µ estimates calculated as µ̂X−µ. The x axis is the joint Z score at the CV. 391

Line is fitted using a GAM as the smoothing function (geom smooth() in ggplot2). (A) µ̂ = max
i∈{1,...,k}

(|Zi|) 392

(B) µ̂ =
∑k

i=1 |Zi| × PPi. 393
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S7 Fig. Error of coverage estimates for 90% credible sets using a reference panel to approxi- 394

mate MAFs and SNP correlations in a high LD region. Error is calculated as estimated coverage− 395

empirical coverage. Coverage estimates from 5000 simulations using original 1000 Genomes data and UK10K 396

data as a reference panel. (A) Claimed coverage estimate (the sum of the posterior probabilities of causality 397

for the variants in the credible set) (B) Corrected coverage estimate (C) Corrected coverage estimate using 398

UK10K data to approximate MAFs and SNP correlations (D) Graphical display of SNP correlations in 1000 399

Genomes data (E) Graphical display of the estimated SNP correlations in UK10K data. Two simulations 400

for β = log(1.05) simulations that fell into (10−12, 0] bin were manually removed as a box plot could not be 401

generated. 402

S8 Fig. Empirical estimate of the true coverage of corrected 90% and 95% credible sets. 403

100,000 simulated 90% and 95% credible sets were “corrected” using the corrcoverage::corrected cs 404

function (with default parameters and ‘desired.cov=0.9’ or ‘desired.cov=0.95’), and the “required threshold” 405

value obtained from each simulation was used to form 5000 replicate credible sets to estimate the empirical 406

coverage of these corrected 90% and 95% credible sets. 407

S9 Fig. R package timings. Curve showing the timings of the corrcoverage::corrcov function for dif- 408

ferent sized genomic regions. For each size of genomic region analysed, 50 replicates of the corrcoverage::corrcov409

function were ran and the mean time taken is plotted. Curve drawn using geom smooth() function in ggplot2. 410

Simulations ran using one core of an Intel Xeon Gold 6142 processor running at 2.6GHz. 411

S10 Fig. Summary of corrected coverage estimates and corrected 99% credible sets in T1D 412

data set. Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected 413

coverage estimates of 99% Bayesian credible sets for T1D-associated genomic regions. Black points represents 414

regions where the credible set changed after the correction and the “-” values for the circled points represent 415

the decrease in the number of variants from the standard to the corrected 99% credible set. Blue points 416

represent regions where the credible set did not change after the correction and grey points represent regions 417

where the credible set did not need to be corrected since the threshold was contained in the 99% confidence 418

interval of the coverage estimate, or because the credible set already contained only a single variant. 419

S11 Fig. Distribution of the minimum P value for 2 CV simulations (Fig 2). 2 CVs are (A) in 420

low LD (r2 < 0.01) (B) in high LD (r2 > 0.7). Faceted by odds ratio values at the causal variants. 421
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S1 File. Individual plots for 95% credible set T1D analysis. Zip file containing Z-score plots, PP 422

plots and Manhattan plots for the 39 T1D association regions analysed. 423

S2 File. Individual plots for 99% credible set T1D analysis. Zip file containing Z-score plots, PP 424

plots and Manhattan plots for the 39 T1D association regions analysed. 425

S1 Table. T1D corrected 95% credible set results. 426

S2 Table. List of 95% credible sets before and after correction. 427

S3 Table. T1D corrected 99% credible set results. 428

S4 Table. List of 99% credible sets before and after correction. 429

Funding 430

AH is supported by the the Engineering and Physical Sciences Research Council (EP/R511870/1) and 431

GlaxoSmithKline (GSK). CW is supported by the Wellcome Trust (WT107881) and the Medical Research 432

Council (MC UU 00002/4). The funders had no role in study design, data collection and analysis, decision to 433

publish, or preparation of the manuscript. 434

Acknowledgments 435

We thank Paul Newcombe and Rob Goudie for helpful discussions, and Kevin Kunzmann for advice on 436

creating R packages. 437

Author Contributions 438

Conceived and designed the experiments: AH CW. Performed the experiments: AH HW. Software: AH CW. 439

Wrote the paper: AH CW. Proofed the paper: HW. 440

January 15, 2020 24/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2020. ; https://doi.org/10.1101/781062doi: bioRxiv preprint 

https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/


References

1. van de Bunt M, Cortes A, Brown MA, Morris AP, McCarthy MI. Evaluating the Performance

of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genetics. 2015;11(9):1–14.

doi:10.1371/journal.pgen.1005535.

2. Ghosh S, Collins FS. The geneticist’s approach to complex disease. Annual review of medicine.

1996;47:333–53. doi:10.1146/annurev.med.47.1.333.

3. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by

statistical fine-mapping. Nature Reviews Genetics. 2018;19(8):491–504. doi:10.1038/s41576-018-0016-z.

4. Wallace C, Cutler AJ, Pontikos N, Pekalski ML, Burren OS, Cooper JD, et al. Dissection of a Complex

Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. PLoS

Genetics. 2015;11(6):1–22. doi:10.1371/journal.pgen.1005272.

5. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65

new breast cancer risk loci. Nature. 2017;551:92.

6. Wang G, Sarkar AK, Carbonetto P, Stephens M. A simple new approach to variable selection in

regression, with application to genetic fine-mapping. bioRxiv. 2018; p. 501114. doi:10.1101/501114.

7. Valdar W, Sabourin J, Nobel A, Holmes CC. Reprioritizing Genetic Associations in Hit Re-

gions Using LASSO-Based Resample Model Averaging. Genetic Epidemiology. 2012;36(5):451–462.

doi:10.1002/gepi.21639.

8. Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K, Su Z, et al. Bayesian refinement of association

signals for 14 loci in 3 common diseases. Nature Genetics. 2012;44(12):1294–1301. doi:10.1038/ng.2435.

9. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: Efficient variable

selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(10):1493–

1501. doi:10.1093/bioinformatics/btw018.

10. Wen X, Lee Y, Luca F, Pique-Regi R. Efficient Integrative Multi-SNP Association Analysis via

Deterministic Approximation of Posteriors. American Journal of Human Genetics. 2016;98(6):1114–

1129. doi:10.1016/j.ajhg.2016.03.029.

11. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. Identifying causal variants at loci with

multiple signals of association. Genetics. 2014;198(2):497–508. doi:10.1534/genetics.114.167908.

January 15, 2020 25/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2020. ; https://doi.org/10.1101/781062doi: bioRxiv preprint 

https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/


12. Newcombe PJ, Conti DV, Richardson S. JAM: A Scalable Bayesian Framework for Joint Analysis of

Marginal SNP Effects. Genetic Epidemiology. 2016;40(3):188–201. doi:10.1002/gepi.21953.

13. Morris AP. Transethnic meta-analysis of genomewide association studies. Genetic Epidemiology.

2011;35(8):809–822. doi:10.1002/gepi.20630.

14. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide

association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA

methylation. Nature Genetics. 2015;47(11):1282–1293. doi:10.1038/ng.3405.

15. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemi-

ology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D),

Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by

Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium. Genome-wide trans-

ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.

Nature Genetics. 2014;46(3):234–244. doi:10.1038/ng.2897.

16. Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, et al. Multi-ancestry genome-

wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis.

Nature Genetics. 2015;47(12):1449–1456. doi:10.1038/ng.3424.

17. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, et al. Meta-analysis of 375,000 individuals

identifies 38 susceptibility loci for migraine. Nature Genetics. 2016;48(8):856–866. doi:10.1038/ng.3598.

18. Fritsche LG, Igl W, Bailey JNC, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large

genome-wide association study of age-related macular degeneration highlights contributions of rare

and common variants. Nature Genetics. 2016;48(2):134–143. doi:10.1038/ng.3448.

19. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the

first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics.

2019;51(1):63–75. doi:10.1038/s41588-018-0269-7.

20. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Genetic fine mapping and
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