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Each gene has its own evolutionary history which can substan-
tially differ from the evolutionary histories of other genes. For
example, some individual genes or operons can be affected by
specific horizontal gene transfer or hybridization events. Thus,
the evolutionary history of each gene should be represented by
its own phylogenetic tree which may display different evolution-
ary patterns from the species tree, or Tree of Life, that repre-
sents the main patterns of vertical descent. Here, we present a
new efficient method for inferring single or multiple consensus
trees and supertrees for a given set of phylogenetic trees (i.e. ad-
ditive trees or X-trees). The output of the traditional tree con-
sensus methods is a unique consensus tree or supertree. Here,
we show how Machine Learning (ML) models, based on some
interesting properties of the Robinson and Foulds topological
distance, can be used to partition a given set of trees into one
(when the data are homogeneous) or multiple (when the data
are heterogeneous) cluster(s) of trees. We adapt the popular
Accuracy, Precision, Sensitivity, and F; scores to the tree
clustering. A special attention is paid to the relevant, but very
challenging, problem of inferring alternative supertrees that are
built from phylogenies defined on different, but mutually over-
lapping, sets of species. The use of an approximate objective
function in clustering makes the new method faster than the ex-
isting tree clustering techniques and thus suitable for the analy-
sis of large genomic datasets.

Deep Learning | Machine Learning | Model | Phylogeny | Classification | Accu-
racy

Introduction

In recent years, the next-generation sequencing (NGS) has
revolutionized systematic biology and molecular ecology.
NGS is a fast, reliable and affordable sequencing technique
which produces millions of DNA sequence reads in a sin-
gle run (Mardis 2008; Glockle et al. 2014). The evolution-
ary biology applies tree inferring methods to the aligned se-
quences in order to reconstruct the species phylogeny which
represents the evolution of the species under study. The most
popular tree inferring methods nowadays include Neighbor-
Joining (Saitou and Nei, 1987), PhyML (Guindon et al.
2010) and RAXML (Stamatakis 2014). Most of the conven-
tional trees inferring methods generate one candidate tree for
a given set of input data. However, the topologies of gene
trees representing the evolution of different genes can be
substantially different due to possible horizontal gene trans-
fer, hybridization or intragenic and intergenic recombination
events they may undergo. Each gene tree depicts a unique
evolutionary history, which is connected to the species tree

but often considerably diverges from it (Szoll6si et al. 2014).
In order to produce a reliable species phylogeny, the related
gene trees should be merged, while minimizing the topologi-
cal conflicts presented in them (Maddison et al. 2007). Two
scenarios are envisaged here: 1) Merging trees defined on the
same set of species, which are usually associated with the tree
leaves (the case of consensus trees), and 2) Merging trees de-
fined on different, but mutually overlapping, sets of species
(the case of supertrees).

A large variety of methods have been proposed to resolve the
problem of reconciliation of multiple trees in order to recon-
struct a species tree. In case of consensus trees, the most
known types of consensus trees are the strict consensus tree,
the majority-rule consensus tree and the extended majority
consensus tree (Bryant 2003; Felsenstein 2004). Three main
methods have been proposed to synthesize collections of
small phylogenetic trees with incomplete taxon overlap into
comprehensive supertrees, which include all taxa found in
the input trees. The most known methods are Matrix Repre-
sentation with Parsimony (MRP) (Baum 1992; Ragan 1992),
parsimony supermatrix (Driskell et al. 2004; Siccarelli et
al. 2006) and strict supertree (Sanderson et al. 1998). The
MRP method is an amply used supertree method, which an-
alyzed and inferred separately different systematic data sets.
The trees derived from these independent analyses are used
to produce a single MRP matrix and then this matrix was
analyzed to reconstruct the supertree of all source taxa (de
Queiroz and Gatesy, 2007). Another way is a parsimony su-
permatrix approach, this last one concatenates all systematic
characters into a single phylogenetic matrix and then by an-
alyzing all the characters simultaneously to compute super-
matrix tree. The strict supertree represents the bipartitions
which agree with all bipartitions present in phylogenetic tree
sources, the rest of bipartitions are indicated by multifurca-
tions. The strict supertree is often no resolved tree.

The implementation of the famous project "Tree of Life"
(ToL) intended for inference of the largest possible species
phylogenetic tree became feasible because of collaborative
efforts of biologists and nature enthusiasts from around the
world (1). The approach adopted by the project organizers
allows for a gradual reduction of the complex tree reconstruc-
tion problem into several sub-problems and then for merg-
ing the obtained results. Indeed, such an approach produces
thousands of small trees which should be combined in order
to assemble ToL. The problem is twofold: first, we have to
infer small sub-trees of ToL (i.e., often gene trees) defined on
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in this project only on the same sets of taxa; second, we have
to merge these small trees into one or several large consensus
phylogenies using a consensus trees reconstruction algorithm
(i.e., Phylip Package of (2), which allows for combining trees
inferred for same, sets of taxa (3). In this context, the appli-
cation of a tree or a consensus-tree clustering method would
allow for providing alternative evolutionary scenarios for sev-
eral sub-trees of ToL.

Moreover, biological dataset is often heterogeneous, i.e.,
source of the dataset can be Deoxyribonucleic acid, Ribonu-
cleic acid or protein, which the length is variable and it is
more complicated to interpret. The heterogeneous of biolog-
ical dataset implies completeness and difficulty of data in-
terpretation. Thus, it will a good testbed for Deep Learning
(DL) techniques. The superiority of DL approach is acknowl-
edged for prediction. We aim to exploit the phylogenetic
relationship (via distance between trees) to enable adopting
the Convolutional Neural Network (CNN) in DL architecture.
The operation is based on the pairwise Robinson and Foulds
(RF) topological distances (4) stored in matrix structure.

In this paper, we describe a new tree clustering method based
on CNN. We illustrated the results of simulations by loss and
accuracy functions. Finally, we apply this strategy to four
real datasets of (5).

Phylogeny

In this section, we give some terminology which is necessary
to describe our new approach.

Trees. Figure 1 presents an example of phylogenetic tree de-
fined on a set of five species (i.e., Human, Orang-Outan,
Mouse, Rat, and Bird). The trees are generally (in Bioinfor-
matic) defined by their Newick strings (2) and could be un-
resolved or resolved. In the first case (i.e., unresolved trees),
the phylogenetic tree lack of knowledge and it is representing
by multifurcation, more than three branches by internal node.
Figure 1 illustrates one resolved phylogenetic tree, i.e., each
internal node has three branches. Figure 1 displays that Hu-
man and Orang-Outan are closed and the same concept for
Rat and Mouse. Finally, we observed that the Bird is evolu-
tionary different of these two clades ({Human, Orang-Outan }
and {Rat, Mouse}). It means that Bird was considered like
an outlier in this study.

11

Robinson and Foulds topological distance. The Robin-
son and Foulds (RF) topological distance (4) between two
trees is the minimum number of elementary operations (con-
traction and expansion) of nodes required to transform one
phylogenetic tree into another. The two phylogenetic trees
in question must have the same set of taxa. However, if the
two trees do not contain the same set of taxa, a prepossessing
step, consisting of the extraction of subtrees with common
taxa, will be required. The more two phylogenetic trees are
topologically close, the smaller is the value of the RF dis-
tance. However, the absolute value of RF does not take into
account the number of taxa. It is often relevant to normalize
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this value by the maximum possible value of RF (equal to
2n — 6) for two binary trees with n leaves. This distance is
mostly used in phylogenetic analysis.

Consensus trees. Figure 2 presents an example of a set of
four phylogenetic trees defined on a set of seven species and
each tree is resolved. Many methods have been proposed
to infer a single consensus tree for a collection of phyloge-
netic trees (6). The most known types of consensus trees are
the strict consensus tree, the majority consensus tree and the
extended majority consensus tree (2, 6). The strict consen-
sus tree contains only the edges that are common to all input
trees. The majority consensus tree contains the edges that are
present in more than 50% of the input trees, although higher
percentages may also be considered. According to the ex-
tended majority rule, the consensus tree includes all of the
majority edges to which compatible residual edges are added
gradually, starting with the most frequent ones. Extended ma-
jority consensus trees are the most frequently used consensus
trees in evolutionary biology because they are usually much
better resolved (i.e., have the lower total degree of internal
nodes) than strict and majority consensus trees (2).

1

We can observe on Figure 2 that trees 77 and 75 are mostly
similar and trees 73 and 7} are similar too. However, the ex-
tended majority consensus tree obtained by the set of input
trees given by Figure 2 is represented by star tree. It would
be more relevant to have not one consensus tree but two con-
sensus trees.

Data description

We will describe the sets of data simulated in our study, and
we will present in detail the results of our simulations. We
did three sets of simulations that are as follows:

Simulation design. We tested our new algorithm for com-
puting multiple consensus and supertrees. The simulation
protocol include three main steps. First step, we randomly
generated K consensus phylogenetic trees 77,;Tx with n
leaves each, where K =1, ..., 5, and n = 8, 16, 32, 64 or
128. In the second step, for each phylogenetic tree T; (2 = 1,
..., K) obtained in the first step, we randomly generated a set
of 100 trees T corresponding to cluster ¢ and each 77 is differ
from the Ti tree by two species switched. We classified each
T! in four intervals of noise defined below. Each element
T/ of i was a phylogenetic tree, such that the percentage of
similarity (measured using the RF distance) between 7 and
T; varied from 0% to 10% (noise level 10% in Fig. 2c), from
10% to 25% (noise level 25%), from 25% to 50% (noise level
50%) or from 50% to 75% (noise level 75%). The third step
consisted of a random removal of some species (the branches
adjacent to these species were also removed) from the gen-
erated trees. The following percentages of species were re-
moved: 0%, 10%, 25% or 50% (see Fig. 2). In the case
of incomplete trees, the RF distance was computed between
the maximum subtrees of two trees having at least 4 or more
identical leaves. In the case of supertree, we filtered the two
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Fig. 1. lllustration of phylogenetic tree with five species and resolved. The phylogenetic tree contains one root, virtual ancestors, branches and actual species (leaves).
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Fig. 2. Four input phylogenetic trees defined with seven same species.
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leaves set of two input trees for having the exactly all species
in common. Thus, we also evaluated the ability of our algo-
rithm to cope with incomplete data. The k-means algorithm
was carried out with 100 random starts and until convergence
of criterion score or maximum of 100 iterations in its internal
loop. Note, for the case of consensus trees (see Fig. 2), we
realized only the two first steps and add the third step for the
case of supertrees. We illustrated only the results of CH cri-
terion which is the best criterion when k=1 (see Fig. 3) and
the criterion of supertree approach otherwise (see Fig. 4).

Linguistic dataset. We extended our approach to linguis-
tic dataset. The biologists are not alone to use the concept
of evolutionary tree of Darwin by representing the histories
of descent with modification. In fact, there are many studies
which used the trees to study linguistic evolutionary by con-
necting the concepts of phylogeny and linguistic (Schleicher,
1873). More recently, this curious connection was presented
by Atkinson and Gray (2005); they realized conceptual paral-
lels between biological and linguistic evolution such as Hor-
izontal gene transfer by borrowing and plant hybrids by lan-
guage Creoles. We focused exclusively on the North and
West Germanic groups. Among the 1315 word trees down-
load and preprocessing from http://www.trex.ugam.
ca/bioling_interactive/, data are also available
from the github repository in https://github.com/
TahiriNadia/CKMeansTreeClustering. Note,
there are cases where Indo-European languages have more
than one hypothesis of evolution. If this language belongs
to the 12 languages studied (i.e North and West Germanic)
then we have indicated on the tree of evolution the differ-
ent hypotheses; otherwise we have masked these assump-
tions. We selected only the trees containing at least four
languages of the North and West Germanic groups (i.e.
Iceland-ic, Faroese, Swedish, Danish and Riksmal for North
Germanic and Ducth, Flemich, Germanic ST, Frisian, Pen-
nDutch, Sranan and English for West Germanic), i.e. 248
trees in this step. We keep all the possibilities of evolutions
concerning the languages of interest (i.e Sranan and Frisian).
Then, we obtained 264 trees with 12 leaves.

Stockham et al. datasets. To validate our approach, we
used four biological datasets from (5) and compared our so-
lutions to their results.

* The first dataset is Camp (i.e., Campanulaceae) (5, 7),
which is a family of plants. This dataset is based on
the deoxyribonucleic acid sequences of chloroplasts.
These sequences are highly conserved (e.g., an order of
genes, genome size), which is why they are frequently
used as phylogenetic markers (8).

* The second set of dataset is Caesal (i.e., Caesalplinia)
(5), which is included in the Angiosperms group. This
dataset is based on the trnL-trnF intron and the chloro-
plast genome spacing regions.

e The third and fourth datasets are composed of
PEVCCAI1 and PEVCCA2 (i.e., Porifera, Echinoder-
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mata, Vertebrata, Cnidaria, Crustacea, and Annelida).
These data are based on small ribosomal ribonucleic
acid sequences of 129 species (5).

Materials and Methods

In this section, we describe the main algorithm allowing us
to classify a set of phylogenetic trees, defined on the same set
of species using CNN approach.

In our simulations, we first generated random phylogenetic
trees using the tree generation algorithm available on the T-
REX website (9). This algorithm requires as input the size
of the tree, n, as well as the number of trees, k£, and returns
as output K random binary phylogenetic trees with n leaves
each that is built according to the method of (10). In total, we
generated 5808 unrooted phylogenetic trees for each of the
following phylogenetic tree sizes: n = 8 and n = 16. Then,
we computed the pairwise RF distances between trees. Fi-
nally, we normalized the matrix of RF distances by 2n — 6.
After this last step, the values of RF will be between 0 and
1. We develop a novel DL architecture aimed at effectively
including the phylogenetic structure into the learning pro-
cess. The core of the network is CNN layers coupling with
Keras library. The input layer is represented by a collection
of a set of phylogenetic trees, specifically, the matrix of RF
distance normalized. We activated input layer by sigmoid
function. The neighbor detection procedure identifies the k-
nearest neighbors of a given set of trees to be convolved with
the filters by the CNN. To deal with the problem of finding
neighbors for set of trees, we map the discrete space of the set
of trees into an L norm (4). The selected neighbors are then
convolved with the 20 filters on the CNN. We added seven
hidden layers with Dropout at 0.1 (see Figure ??), we acti-
vated the neurons by Rectified Linear Unit (ReLU) function.
The output layer are composed by MaxPooling, then Flatten
layer, Fully Connected (Dense) for the transfer learning ex-
periments and we used the same Dropout at 0.1. The neurons
of the last layer were activated by softmax function. Finally,
we used Adam to short for Adaptive Moment Estimation as
optimizer with learning rate 0.01. The script was written in
Python 3.6.

Statistics

We present the obtained results using proposed method in this
section. As well as the metrics (see Equations 1-4) that are
utilized to evaluate the performance of methods.

Statistic score. The accuracy of a test is its capability to
recognize the classes properly. To evaluate the accuracy of
the model, we should define the percentage of true positive
and true negative in all estimated cases, i.e. the sum of true
positive, true negative, false positive, and false negative. Sta-
tistically, this metric can be identified as follow:

(TP+TN) W
(TP+TN+FP+FN)

where T'P is True Positive, F'P is False Positive, T'N is True
Negative, and F'N is False Negative.

Accuracy =
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The precision is a description of random errors, a measure
of statistical variability. The formula of precision is the ratio
between T'P with all truth data (positive or negative).

The Equation is described as follow:

TP
Precision = m (2)
The recall or sensitivity or T' P Rate is defined as the num-
ber of true positive data labeled divided by the total number

of TP and F'N labeled data.

TP

(TP+FN) ®

Recall = Sensitivity =T PRate =
The F'— measure or F} is a well-known and reliable evalua-
tion metric. The value of 1 would the mean perfect accuracy,
i.e., the product would definitely be purchased.

2TP
F— =Fl= 4
rmeasure @rp+rp+FN) P
We examined these four evaluation metrics in our study (see

the next section for the results of the F; measure).

Results

In this section, we will present the results of our simulations.
These simulations will allow us to test the performance of our
algorithm and evaluate the quality of our model. We consider
two types of data: 1) The first type of data for which we have
a prior knowledge of the number of clusters (i.e., simulated
datasets), and 2) the second type of data for which the number
of clusters is unknown initially, i.e., real datasets of (5) was
considered (see Section "Data description").

1

The results of accuracy and loss functions are shown in Fig-
ure 3. We performed 5227 epochs to reach the stability. Fig-
ure 3(a) shows the model is adequately chosen for your study.
The accuracy of the train set is 0.9997 at 150 epochs and the
accuracy of the test set is 0.8999 at 150 epochs.

Figure 3(b) shows the tendencies of loss function by epochs.
The loss of the train set is 0.0047 at 150 epochs and the loss
of the test set is 0.5195 at 150 epochs.

The obtained results demonstrate that the CNN approach
to classifying the phylogenetic trees in the previous section
clearly outperformed Stockham (5) approach.

Simulated dataset. A list of each algorithm short name, the
mean squared error and the standard deviation accuracy.

Listing 1. Output of comparing multiple algorithms.

LR: 0.840577 (0.046930)
LDA: 0.850907 (0.042764)
KNN: 0.821301 (0.113539)
CART: 0.959207 (0.053094)
NB: 0.483839 (0.049203)
SVM: 0.799275 (0.076180)
RF: 0.977969 (0.027921)
MLPC: 0.963852 (0.027984)
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Table 1. Composition of North and West Germanic clusters and the results for
supertree approach.

Model Predictive Accuracy
Logistic Regression 85.37%
Support Vector Machine 79.52%
Random Forest 99.66%
Neural Network 86.23%
Linear Discriminant Analysis  86.06%
K-Neighbors Classifier 83.82%
Decision Tree Classifier 96.76%
Gaussian NB 49.23%

Table 1 shows the best accuracy for a Random Forest function
was the most accurate to the simulated dataset.

Linguistic dataset. Our algorithm gives, for these input
trees, three supertrees (See Table 2). The first cluster con-
tained 76 trees, the second cluster contained 82 trees and the
third cluster contained 106 trees.

For each of these three clusters, we used the software
CLANN (Creevey and Mclnerney, 2004) and PAUP* (Swof-
ford et al. 1993) to infer three supertrees (Fig. 8), one su-
pertree by cluster obtained. This study shows that Riksmal
language is the same evolution to Danish language (see Fig.
8b and 8c) and to Icelandic language (sees Fig. 8a). The
same result has been obtained by Bryant et al. (2005), Gray
et al. (2010) and Willems et al. (2016), showing that Riksmal
lan-guage is a hybrid language between Icelandic and Danish
languages. Riksmal is the most widely used written standard
of contemporary Norwegian. Trees in Figure 8(a) identifies
the branch of the West Scandinavian languages (Icelandic,
Faroese and Norwegian), which constitutes one of the three
branches of the North Germanic languages (Willems et al.
2016). However, Trees in Figures 8(b) and 8(c) highlights the
influence of Danish on Riksmal. This influence is due to the
political domination of Denmark over Norway between the
end of the 14th century and the beginning of the 19th century.
This study also shows that Sranan language is the same evolu-
tion to English language (see Fig. 8a and 8c) and to the clade
(Dutch and Flemish) language (see Fig. 8b). The same result
has been obtained by Bryant et al. (2005), Gray et al. (2010)
and Willems et al. (2016), showing that Sranan language is
hybrid language between English and Old Dutch languages.
We also detect-ed that PennDutch language is hybrid lan-
guage between clade of English and Sranan languages (see
Fig. 8a and 8c) and German language (see Fig. 8b). Real
evolutionary data often contain a number of different and
sometimes conflicting phylogenetic signals, and thus do not
always clearly support a unique tree. To address this problem,
Bandelt and Dress (1992) developed the method of split de-
composition. The split decomposition method introduced by
decomposes the given distance matrix into simple component
based on weighted splits Bandelt and Dress (1992). For sum-
marise a set of trees, we used SplitsTree4 (Huson and Bryant
2005) with all North and West Germanic dataset after prepro-
cessing (see Fig. 7a), with the three supertrees obtained by
our new algorithm wit supertree approach (see Fig. 7b) and
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Fig. 3. (a) A plot of model accuracy on train and validation datasets and (b) A plot of model loss on train and validation datasets.
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Fig. 4. Box and Whisker Plots Comparing Algorithm Performance of eight models
(1- Logistic Regression (LR), 2- Linear Discriminant Analysis (LDA), 3- K-Neighbors
Classifier (KNN), 4- Decision Tree Classifier (CART), 5- GaussianNB (NB), 6- SVC
(SVM), 7- Random Forest Classifier (RF), 8- MLP Classifier (MLPC)).

with each cluster obtained by supertree approach (see Fig.9
in Appendices).

We extended our approach to linguistic dataset. The biolo-
gists are not alone to use the concept of evolutionary tree of
Darwin by representing the histories of descent with mod-
ification. In fact, there are many studies which used the
trees to study linguistic evolutionary by connecting the con-
cepts of phylogeny and linguistic (Schleicher, 1873). More
recently, this curious connection was presented by Atkin-
son and Gray (2005); they realized conceptual parallels be-
tween biological and linguistic evolution such as Horizon-
tal gene transfer by borrowing and plant hybrids by lan-
guage Creoles. We focused exclusively on the North and
West Germanic groups. Among the 1315 word trees down-
load and preprocessing from http://www.trex.ugam.
ca/bioling_interactive/, data are also available
from the github repository in https://github.com/
TahiriNadia/CKMeansTreeClustering. Note,
there are cases where Indo-European languages have more
than one hypothesis of evolution. If this language belongs

6 | bioRxiv

to the 12 languages studied (i.e North and West Germanic)
then we have indicated on the tree of evolution the differ-
ent hypotheses; otherwise we have masked these assump-
tions. We selected only the trees containing at least four lan-
guages of the North and West Germanic groups (i.e. Ice-
landic, Faroese, Swedish, Danish and Riksmal for North
Germanic and Ducth, Flemich, Germanic ST, Frisian, Pen-
nDutch, Sranan and English for West Germanic), i.e. 248
trees in this step. We keep all the possibilities of evolutions
concerning the languages of interest (i.e Sranan and Frisian).
Then, we obtained 264 trees with 12 leaves.

Stockham et al. datasets. 1

Discussion

In this article we described a new algorithm for partition-
ing a set of phylogenetic trees in several clusters in order
to infer multiple supertrees, in case, the input trees have
different, but mutually overlapping sets of leaves. We pre-
sented new formulas allowing for using the popular Calinski-
Harabasz, Silhouette and Gap statistic cluster validity in-
dices as well as the Robinson and Foulds topological dis-
tance in the framework of tree clustering based on the pop-
ular k-means algorithm. The new algorithm can be used
to address a number of important issues in bioinfor-matics,
such as the identification of genes having similar evolution-
ary histories, e.g. those that underwent the same horizontal
gene transfers or those that were affected by the same an-
cient duplication events. It can also be used for inference
of multiple subtrees of Tree of Life. In order to compute
the Robinson and Foulds topological distance between such
pairs of trees, we can first reduce them to the common set
of leaves. After this reduction, the Robinson and Foulds dis-
tance normalized by its maximum value, which is equal to
2n-6 for two binary trees with n leaves. Overall, good per-
formances achieved by the new algorithm in terms of both
clustering quality and running time makes it well suited for
the analysis of large genomic and phylogenetic datasets. A
Python script, called KMSTC (K-Means SuperTree Clus-
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Clustering of Caseal data set

Fig. 5. Heatmaps (a) of Camp dataset, (b) of Caesal dataset, (c) of PEVCCA1 dataset and (d) of PEVCCA2 dataset.

tering), implementing the discussed tree partitioning al-
gorithm is freely available at https://github.com/
TahiriNadia/KMeansSuperTreeClustering/.
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Supplementary Note 1: ANNEXE

Table 2. Composition of North and West Germanic clusters and
the results for supertree approach.

Characteristic Optimal number of clusters
Linguistic Group Number of languages Number of trees Supertree approach
North Germz'lmc and D 264 3
West Germanic groups
bioRxiv
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