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ABSTRACT  
 
Multiplex single-molecule fluorescent in situ hybridization (smFISH) is a powerful method for 
validating RNA sequencing and emerging spatial transcriptomic data, but quantification remains 
a computational challenge. We present a framework for generating and analyzing smFISH data 
in complex tissues while overcoming autofluorescence and increasing multiplexing capacity. We 
developed dotdotdot (https://github.com/LieberInstitute/dotdotdot) as a corresponding software 
package to quantify RNA transcripts in single nuclei and perform differential expression 
analysis. We first demonstrate robustness of our platform in single mouse neurons by 
quantifying differential expression of activity-regulated genes. We then quantify spatial gene 
expression in human dorsolateral prefrontal cortex (DLPFC) using spectral imaging and 
dotdotdot to mask lipofuscin autofluorescence.  We lastly apply machine learning to predict cell 
types and perform downstream cell type-specific expression analysis. In summary, we provide 
experimental workflows, imaging acquisition and analytic strategies for quantification and 
biological interpretation of smFISH data in complex tissues. 
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INTRODUCTION 
 

In the age of rapidly advancing Next Generation Sequencing (NGS) technologies, such 
as single cell RNA-sequencing (RNA-seq) and spatial transcriptomics1,2, single-molecule 
fluorescent in situ hybridization (smFISH) has emerged as a potential gold standard for 
validating and extending findings derived from large scale transcriptomic data. The widespread 
generation of single-cell RNA-seq data sets in the neurosciences has fueled a resurgence of 
smFISH approaches to validate cell type-specific molecular profiles by visualizing individual 
transcripts at cellular resolution3,4. Information from single-cell RNA-seq data has revealed 
increasingly complex transcriptomic signatures for functionally distinct cell types, including the  
recently identified Rosehip neurons in cortical layer one5 and cells with neurogenic potential in 
the dentate gyrus of the hippocampus6,7, such that molecular definition of these cells 
necessitates combinatorial labeling with multiple probes to confirm both presence and absence 
of specific transcripts within a spatially-defined context.     

While chromogenic and fluorescent in situ hybridization methodologies have been 
utilized for decades8,9, recent advances in hybridization/probe technologies, imaging techniques, 
and data analysis tools have streamlined smFISH assays and improved sensitivity and 
specificity10–12.  Despite these methodological advances, multiplexing in complex tissues with 
extensive cellular heterogeneity, such as postmortem human brain, remains a significant 
challenge. Studying human brain tissue is also complicated by high levels of autofluorescence 
due to lipofuscin granules13,14. Indeed, to avoid confounding signals from lipofuscin, the majority 
of smFISH investigations in postmortem human brain have been limited to single or duplex 
chromogenic approaches6,7,15–17. 

While studies have begun to incorporate multiplex fluorescent approaches in 
postmortem human brain tissue, no consistent strategy for eliminating, masking, or subtracting 
lipofuscin autofluorescence has been described3,5,18–22. Some studies have characterized 
lipofuscin autofluorescence based on size and intensity or custom filter cubes3,4,21, but these 
reports do not document how these approaches impact quantification of fluorescent signals from 
probe hybridization. An image processing approach in non-human primate brain tissue using 
spectral imaging and linear unmixing showed promise for characterizing and removing lipofuscin 
autofluorescence23. However, this approach has not yet been validated and widely implemented 
in postmortem human brain. Furthermore, the four dimensional data sets acquired using 
multispectral imaging across a tissue depth add additional computational hurdles for automating 
image analysis and quantifying single transcripts. 

Several microscopy-based methodologies for single cell, spatially resolved 
transcriptomics have been developed24–28. However, these highly specialized platforms still rely 
on the availability and accuracy of algorithms for fluorescence segmentation, and often require 
sophisticated microscopy equipment and reagents that are not readily available to the majority 
of laboratories. Commercially available smFISH platforms have the capacity for higher-order 
multiplexing and can, in theory, be used for differential expression analysis within molecularly 
and spatially defined cell types. However, the downstream computational tools for analyzing 
these types of data have lagged behind their widespread use, and those tools that have been 
developed remain largely inaccessible to most neurobiology labs without strong computational 
expertise. Hence, the majority of current smFISH applications have been qualitative, rather than 
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quantitative, and have therefore not maximized the utility of these potentially rich imaging 
datasets.  

To address this need, we developed an intuitive and adaptable computational workflow 
called dotdotdot to quantify individual RNA transcripts at single cell resolution in intact tissues 
and performed differential expression analysis of smFISH data. We validate the accuracy of 
dotdotdot for quantifying RNA transcripts in both mouse and postmortem human brain and use 
computational approaches, such as K-means clustering and machine learning, to answer 
biological questions about gene co-expression and molecular cell type based on quantitative 
analysis of spatial gene expression. In summary, we present an imaging platform coupled with 
computational tools for smFISH data that can be readily implemented in most laboratories 
without need for highly specialized expertise or equipment to elevate spatial analyses of gene 
expression and complement growing single cell and spatial transcriptomic data sets in the field 
of neuroscience and beyond.  
 
RESULTS 
 
The dotdotdot framework for image acquisition and data analysis 
 We first introduce the dotdotdot framework, which involves 1) image acquisition using 
confocal microscopy or spectral imaging/linear unmixing, 2) image processing to extract 
nuclei/regions of interest (ROIs) and quantitative transcript abundances and 3) transcript 
colocalization analysis to classify cell types and 4) differential expression analysis. To localize 
and quantify single transcripts in individual nuclei, we developed parallel gene-labeling, 
fluorescence microscopy, and image analysis workflows for mouse and human brain tissues.  
The general workflows for mouse (Fig. 1a) and human (Fig. 1b) tissues are similar, but they 
include optimized conditions for sample preparation (i.e. section thickness, fixation, protease 
treatment), smFISH labeling (i.e. V1 vs. V2 RNAscope Multiplex Fluorescence Technology, 
number of gene targets, fluorophores), fluorescent imaging (i.e. confocal microscopy vs. 
multispectral imaging/linear unmixing), and image analysis (segmentation, dot/transcript 
detection). Differences in image processing and data analysis workflows in mouse (Fig. S1) and 
human (Fig. S2) tissues arose from the need to address a  challenge specifically associated 
with fluorescent imaging in postmortem human brain tissue-lipofuscin autofluorescence. In 
addition, because postmortem human brain is a limited resource, we sought to maximize 
multiplexing capabilities by utilizing V2 4-plex RNAscope technology, which allowed us to 
visualize an additional gene target compared to the V1 3-plex technology used for mouse 
tissues.  For the human workflow (Fig. 1b), we used four different fluorophores (Opal520, 
Opal570, Opal620, and Opal690) to label four distinct gene targets.  Importantly, the number 
associated with each Opal dye corresponds to its maximum emission wavelength ([520nm] 
green, [570nm] orange, [620nm] red, [690nm] far red, respectively). Following image 
acquisition, raw fluorescent data are processed in MATLAB using dotdotdot. This toolbox and 
example vignettes are available at: https://github.com/LieberInstitute/dotdotdot. We demonstrate 
the utility of this framework (Fig. 2) and software using several experimental examples across 
diverse applications in mouse and human tissues.  
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dotdotdot quantifies dynamics of two activity-regulated genes (ARGs) at cellular 
resolution following induction of widespread neural activity 

We first conducted a proof-of-concept experiment in mouse tissue examining the 
expression of two well-established activity-regulated genes (ARGs) in piriform cortex following 
brain stimulation to establish and validate the robustness of dotdotdot for quantifying smFISH 
data acquired with RNAscope technology.  Mice were administered electroconvulsive seizures 
(ECS) to induce widespread neural activity and subsequent upregulation of ARGs29.  After 90 
minutes, brains from ECS- and Sham-treated animals were collected, snap frozen, and 
processed through our smFISH workflow for mouse tissue to visualize individual transcripts for 
activity regulated cytoskeleton associated protein (Arc) and brain-derived neurotrophic factor 
(Bdnf) splice variants (Fig. 1a). Bdnf transcription is initiated from one of nine promoters 
upstream of individual 5′-untranslated regions (UTRs) that are spliced to a common coding 
exon30,31. We previously designed and validated RNAscope probes for Bdnf splice variants 
containing untranslated exons 1 (Ex1) and 4 (Ex4), which are strongly induced by neural 
activity32–34.  As expected, confocal images show a qualitative upregulation of Arc, Bdnf Ex1, 
and Bdnf Ex4 transcripts following induction of neural activity (Fig. 3a-b).   

To quantitatively analyze increases in these ARG transcripts, dotdotdot first uses nuclear 
segmentation in x, y, and z-dimensions to define nuclei regions of interest (ROIs) based on 
DAPI staining (Fig. S1, S3a-c).  As expected, quantification of nuclei/ROI number and size 
reveals similar metrics between Sham and ECS images (nuclei size: p=0.7, total nuclei: p=0.47; 
Fig. S3d-e), demonstrating accurate and effective automated three-dimensional nuclear 
segmentation.  After defining ROIs, dotdotdot next performs transcript segmentation for each 
gene in x, y, and z-dimensions (Fig. S1, S4a-l).  Metrics such as dot location, size, number, and 
fluorescence intensity are extracted for each transcript. Using dot count metrics, analysis of 
total, nuclear, and cytoplasmic Arc, Bdnf Ex1, and Bdnf Ex4 transcripts per image reveals 
increases in these ARGs following ECS (Fig. S4m-o). Quantification revealed significant 
increases in Bdnf Ex1 and Ex4 transcripts in both nuclear and non-nuclear (cytoplasmic) 
compartments (Bdnf Ex1 nuc: p=5.05e-4, cyt:  p=9.53e-4; Bdnf Ex4 nuc: p=1.63e-4, cyt: 
p=0.022) following ECS administration.  Interestingly, we see specific increases in cytoplasmic 
Arc transcripts following activity induction, which is consistent with the role of Arc as a 
cytoskeletal protein (nuc: p=0.782, cyt: p=0.0658)35.  

While increases in these ARGs following induction of widespread neural activity have 
been appreciated for decades, two questions have remained outstanding. First, are global 
increases in activity-induced gene transcription mediated by small increases from many cells or 
large increases from a select group of “expressers?” Second, do individual neurons differentially 
express and utilize distinct Bdnf splice variants as their source of activity-dependent BDNF?  
Definitively answering these questions requires quantifying transcript levels at single cell 
resolution. Using metrics for dot count and size, we performed k-means cluster analysis and 
classified cells into low, medium, and high expressers for each ARG (Fig. S5).  For example, 
Bdnf Ex1 low expressers had <11 dots (transcripts) with an average dot size of less than 17 
pixels, while Bdnf Ex1 high expressers had >25 dots.  We then examined the proportion of low, 
medium, and high expressers between Sham and ECS treatment (Fig. 3c-e).  For both ARGs, 
we saw shifts from the proportions of low to medium and high expressers following activity-
induction.  This was  especially true for Bdnf Ex 4 (low: p=0.00717, medium p=0.0135, high 
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p=0.00984, Fig. 3e).  Pooling the proportion of high and medium expressers further 
demonstrated increased Bdnf transcription in single cells following ECS (Fig. 3f, Bdnf Ex1: 
p=0.0122, Bdnf Ex4 p=0.00717). Surprisingly, co-expression analysis of these ARGs in high 
and medium expressers following Sham or ECS showed that Arc and Bdnf splice variants are 
differentially expressed in single cells at baseline and following activity (Fig. 3g). While there is 
extensive overlap among ROIs expressing Arc, Bdnf Ex1, and Bdnf Ex4, there are several ROIs 
that express only one or both transcripts suggesting that these ARGs can be dynamically 
regulated in single cells.  These data validate the robustness of dotdotdot for transcript 
segmentation and quantification, and illustrate its utility to provide novel biological insights by 
analyzing data at cellular resolution.  

 
 
Visualization and quantification of single transcripts in postmortem human brain tissue 
using spectral imaging, linear unmixing, and dotdotdot 

Extensive efforts are underway to more fully characterize the human brain transcriptome 
within and across cell types to better understand changes in RNA expression associated with 
brain development and aging, developmental or psychiatric brain disorders, and local genetic 
variation. Many of these studies incorporate smFISH in postmortem human brain to validate 
RNA-seq findings. However, postmortem human brain tissue contains abundant lipofuscin, a 
highly autofluorescent product of lysosomal digestion that confounds quantification of smFISH 
signals13,14,23. To address this problem, we employed multispectral imaging and linear unmixing 
to isolate and exclude lipofuscin autofluorescence from analysis (Fig. 4a-c). In addition to 
allowing for isolation of lipofuscin autofluorescence, this strategy also allows precise separation 
of spectrally overlapping fluorophores (i.e. orange [Opal570] and red [Opal620]), which is 
necessary for utilizing 4-plex technology.   

To validate spectral imaging and linear umixing parameters in postmortem human brain, 
we used probes targeting canonical cell type markers in dorsolateral prefrontal cortex (DLPFC), 
including synaptosome associated protein 5 (SNAP25), solute carrier family 17 member 7 
(SLC17A7), glutamate decarboxylase 1 (GAD1), and myelin basic protein (MBP), which identify 
neurons, excitatory neurons, inhibitory neurons, and oligodendrocytes, respectively3 (Fig. 4).  
For fluorescent visualization, we assigned Opal690 to SNAP25, Opal570 to SLC17A7, Opal620 
to GAD1, and Opal520 to MBP and we co-labeled samples with DAPI (maximum emission 
wavelength at 461nm). We then performed spectral imaging across several z planes to 
generate a matrix of mixed fluorescent signals across the tissue depth (Fig. 4a). For a given z-
plane, we captured a spectral image stack, or a lambda stack, which is a collection of images of 
the same field of view (x, y) captured at different wavelengths (Fig. 4b).  This four-dimensional 
matrix of mixed fluorescent signals (x, y , z, lambda stack; Fig. 4a ) was decoded, or “unmixed,” 
(Fig. 4c) using a linear unmixing algorithm in Zen software, which separates signals from 
individual probes and lipofuscin autofluorescence using reference emission spectral profiles, or 
emission “fingerprints,” for each fluorophore (Fig. S6) and lipofuscin (Fig. S7). A single Opal 
dye, regardless of its degree of spectral overlap with other Opal dyes and DAPI, has a unique 
spectral signature that can be cataloged and used to assign the spatial contribution of that 
fluorophore to individual pixels in a lambda stack during linear unmixing.  
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Given that reference emission spectral profiles are critical for accurate unmixing, we 
carefully generated and validated fingerprints for DAPI (Fig. S6a), Opal520 (Fig. S6b), 
Opal570, (Fig. S6c), Opal620 (Fig. S6d), and Opal690 (Fig. S6e) in mouse tissue, which lacks 
lipofuscin autofluorescence. Fingerprints were created in Zen software for each of the Opal 
fluorophores using a series of 4  “single positive” slides of mouse brain tissue hybridized with a 
positive control probe against the “house-keeping” gene, POLR2A. For the DAPI fingerprint, 
mouse brain tissue was subjected to pretreatment conditions, but no additional probe labeling 
before incubation with DAPI. Linear unmixing of single positive slides with all fingerprints (DAPI, 
Opal520, Opal570, Opal620, and Opal690) verified that reference emission spectral profiles are 
highly specific for the targeted fluorophore.  For example, when POLR2A is labeled with the 
Opal570 fluorophore (Fig. S6c), unmixing with the Opal570 fingerprint captures Opal570 
fluorescence, while no fluorescent signals are captured with other fingerprints, including the 
spectrally overlapping Opal620 fingerprint. Transcript segmentation with dotdotdot similarly 
captures fluorescent signals in the appropriate spectral range for each single positive slide.  
Quantification of dot count, intensity, and size further demonstrates the specificity of reference 
emission spectral profiles used for linear unmixing of lambda stacks (Fig. S6).   

In addition to validating robust emission fingerprints for DAPI and each Opal dye, we 
also generated and validated a spectral signature for lipofuscin autofluorescence in postmortem 
human DLPFC (Fig. S7a-b). Here, we hybridized DLPFC tissue from a representative subject 
with a negative control probe against the bacterial gene dapB.  As there was no probe binding, 
fluorescent signals were attributed exclusively to lipofuscin autofluorescence, and a lipofuscin 
fingerprint was created in Zen software.  Using fingerprints for DAPI, Opal520, Opal570, 
Opal690, and lipofuscin, we performed linear unmixing of 8 lambda stacks acquired from 
negative control slides from 4 different subjects (Fig. S7c).  The lipofuscin fingerprint was 
equally effective in detecting lipofuscin autofluorescence across subjects.  For all images, 
segregated lipofuscin signals were used to successfully mask and excludes pixels confounded 
by autofluorescence across the electromagnetic spectrum (Fig. S7c).   

After linear unmixing with our validated reference emission spectra, we qualitatively 
observed co-localization of SLC17A7 (excitatory neurons) and GAD1 (inhibitory neurons) with 
SNAP25 (pan-neuronal) as expected.  Similarly, we saw no overlap of MBP (oligodendrocytes) 
with SNAP25 (neurons), and exclusive expression of either SLC17A7 (excitatory) or GAD1 
(inhibitory) in SNAP25+ neurons (Fig. 4c).  Nuclear and transcript segmentation with dodotdot 
faithfully represented fluorescence signals (Fig. 4d-e), and masking with lipofuscin signals 
removed background autofluorescence (Fig. 4f). For quantitative analysis of unmixed spectral 
data using dotdotdot, we acquired a set of images at 63x magnification in layers II/III and VI of 
postmortem DLPFC (n=2 subjects, n=2 cortical strips per subject, n=6 images per layer per 
strip, Fig. 4c, 5a-g). Given differences in the density and arrangement of nuclei in mouse and 
human tissue, we first optimized nuclear segmentation for human tissue (Fig. S8a-c), and 
demonstrated successful identification of nuclei/ROIs.  We observed a similar number and size 
of nuclei in layer II/III versus layer VI of DLPFC (Fig. S8d-e, nuclei number p = 0.376 , nuclei 
size p = 0.592).    

Following transcript segmentation and lipofuscin masking with dotdotdot,  we quantified 
the number, size, and fluorescence intensity of SNAP25, MBP, SLC17A7 and GAD1 dots and 
used these data to predict the cell type of each nucleus/ROI using a classification and 
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regression tree (CART) model (Fig. S9). Given the close spatial proximity of nuclei/ROIs that 
may represent different cell types (i.e. MBP+ oligodendrocytes situated next to SLC17A7+ 
neurons), this type of model accommodates potentially conflicting signals (i.e. cytoplasm of 
MBP+ oligodendrocytes overlapping the nuclear ROI of a SLC17A7+ neuron) allowing accurate 
cell type calling.  We gave the model 60 random nuclei/ROIs from 11 manually annotated 
images as training data and built a classification tree for defining SLC17A7+, MBP+, GAD1+, or 
triple negative ROIs (Fig. S9a). The confusion matrix for all 201 manually annotated ROIs 
demonstrates high accuracy between predicted and actual (manual) cell type calling (182 
correctly predicted out of 201; Fig. S9b).  For example, the classifier identifies 31 MBP+ ROIs 
out of 35 actual MBP+ ROIs. Of these 31 identified MBP+ ROIs, 30 are correctly predicted and 
1 is mislabeled as negative. Plotting the manual and predicted cell type for each ROI against the 
proportion of the ROI positive for GAD1, SLC17A7, and MBP demonstrates the high sensitivity, 
specificity, and precision of the classifier, which has a 90.5% accuracy (Fig. S9c). Furthermore, 
for the 961 ROIs identified in layer II/III and layer VI, we confirmed that cells predicted to be 
excitatory and inhibitory neurons (SLC17A7+ and GAD1+, respectively) were highly enriched for 
the pan-neuronal marker SNAP25 (SNAP25 vs. Neg, p = <2e-16; SNAP25 vs. MBP, p = <2e-16 
Fig. 5h).  Consistent with a predicted glial cell type, ROIs classified as oligodendrocytes (MBP+) 
or negative for MBP, SLC17A7, and GAD1 (likely astrocyte and microglia populations) showed 
low or zero levels of SNAP25. Further supporting the accuracy of transcript quantification with 
dotdotdot and subsequent cell type calling with CART analysis, we observed a higher proportion 
of excitatory neurons compared to inhibitory neurons in both layers of DLPFC and a higher 
proportion of oligodendrocytes in layer VI compared to layer II/III (Fig. 5i, MBP: p = 3.97e-05, 
SLC17A7: p =  0.029,  GAD1: p = 0.0493, Neg: p = 0.859874). Taken together, we show robust 
analysis of gene expression in postmortem human DLPFC using 4-plex RNAscope technology 
and spectral imaging/linear unmixing in combination with dotdotdot and machine learning. 
 
dotdotdot accommodates smFISH data acquired with alternative imaging acquisition 
parameters and saved in diverse file formats  

To demonstrate the utility of our image acquisition and analysis workflow, we enabled 
flexible solutions for users who may be unable to image lipofuscin autofluorescence with 
spectral imaging or who may acquire images in alternative file formats.  First, we evaluated 
whether a narrower spectral range, such as the range detected by the Opal520 fingerprint, 
could be used for lipofuscin detection and masking. This would allow users to sacrifice data 
collection for one gene target in order to capture lipofuscin autofluorescence in the available 
spectral range (i.e. use the spectral range of one fluorophore to capture lipofuscin instead of a 
gene target).  

To evaluate this possibility, we hybridized postmortem human DLPFC with probes 
targeting SLC17A7 (Opal690), GAD1 (Opal620), and SNX19 (sorting nexin 19, Opal570), a 
gene associated with genetic risk for schizophrenia36 (Fig. S10). As the Opal520 fluorophore 
was not used to detect a probe target, signals unmixed with the Opal520 fingerprint represented 
autofluorescence due to lipofuscin (Fig. S10a). Unmixing with the Opal520 fingerprint as a 
proxy for the lipofuscin fingerprint captured the majority of autofluorescence. However, unmixing 
the same lambda stack with the custom lipofuscin fingerprint was more comprehensive and 
captured a larger number of autofluorescent pixels (Fig. S10b).  Quantification of fluorescent 
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pixels assigned to each gene demonstrated that more confounding autofluorescent pixels were 
removed from gene channels when unmixing with the lipofuscin compared to Opal520 
fingerprint (Fig. S10c). However, masking with either Opal520 or lipofuscin unmixed signals 
removed a substantial portion of background autofluorescence (Fig. S10a-b), suggesting that a 
more narrow spectral range can be used to detect and monitor lipofuscin autofluorescence if 
imaging capabilities are limited.  

 Finally, given the diversity of imaging file formats for smFISH data, we next evaluated 
the performance of dotdotdot on images acquired and saved using a different microscope 
system and customized file format (Nikon “.nd2” files vs. Zeiss “.czi” files).  For three distinct 
combinations of probe targets hybridized to postmortem human cortical tissue (images courtesy 
of Jennie Close and Ed Lein at the Allen Brain Institute), we show accurate segmentation of 
fluorescent RNAscope signals (Fig. S11). dotdotdot is compatible with several additional file 
formats, including those supported by Zeiss, Leica, Nikon, Olympus, and MetaMorph systems. 
Taken together, we provide a robust, flexible, and automated approach for quantification of 
multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues, 
including postmortem human brain.  
 
DISCUSSION 
 
Here we present and validate dotdotdot, a versatile computational tool for quantitative analysis 
of smFISH data. We demonstrate robustness of this framework for quantifying gene expression 
in single cells in mouse brain as well as postmortem human brain. Importantly, we develop 
imaging acquisition and analysis strategies for detecting and removing tissue autofluorescence 
in smFISH data to improve the accuracy of transcript quantification.  Furthermore, we 
demonstrate that quantitative segmentation data can be used in combination with machine 
learning approaches to define cell types in a systematic and unbiased manner.  Finally, we 
demonstrate the flexibility of dotdotdot for diverse data file formats and imaging acquisition 
parameters thereby increasing its utility for different types of smFISH data.    
 
dotdotdot confers advantages for quantitative analysis of smFISH data 
 dotdotdot is compatible with several smFISH workflows, including RNAscope Multiplex 
Fluorescent V1 and V2 assays (Fig. 1). We demonstrate analysis of six separate fluorescent 
signals using spectral imaging and linear unmixing (Fig. 5), but there is no limit to the number of 
gene targets or fluorescent signals (i.e. DAPI or lipofuscin) that dotdotdot can process in 
parallel. Chemistry for higher order multiplexing is rapidly coming online. For example, 
Advanced Cell Diagnostics recently introduced the RNAscope Hi-plex assay, which visualizes 
up to 12 gene targets in a single tissue slice with several rounds of hybridization and stripping. 
Computational tools like dotdotdot will be urgently needed to quantitatively analyze multiple 
fluorescent signals with a rapid and unbiased approach.   

While several commercial platforms, including HALO (Indica Labs) and Aperio (Leica),  
are available for analysis of smFISH data, these softwares are only available for purchase and 
they utilize proprietary algorithms that offer less flexibility for customization.  dotdotdot is an 
open source platform that can be implemented by any MATLAB user and can accommodate 
diverse smFISH data and file formats.  Furthermore, unlike other open-source platforms12, 
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dotdotdot is optimized for complex tissues, and can process three-dimensional data (i.e. z-
stacks) by segmenting each z-plane as opposed to two-dimensional maximum intensity 
projections. This strategy allows for accurate quantification of fluorescent signals across tissue 
depths in complex biological samples.   
 
Quantifying spatial gene expression at single cell resolution with dotdotdot delivers 
novel biological insights 
 We confirmed the accuracy of dotdotdot by quantifying expression of Arc and Bdnf, 
ARGs that are expected to increase following ECS administration29,37–40.  While induction of Arc 
and Bdnf in response to ECS has been long appreciated41, it has remained unclear whether 
activity-induced increases are driven by increased transcription in a stable population of cell 
“expressers,” recruitment of additional neurons that become transcriptionally active, or a 
combination of both. Furthermore, whether multiple Bdnf isoforms can be induced within an 
individual BDNF-expressing cell in vivo has been difficult to demonstrate. While the necessary 
spatial and cellular resolution to answer these questions is lost in bulk homogenate analysis of 
gene expression, it can be resolved with quantitative analysis of smFISH data.  

Using dotdotdot, we identify distinct ensembles of ARG-expressing cells following ECS.  
While the majority of cells upregulate Arc and Bdnf upon activity, we identify some cells that 
appear to selectively upregulate Arc, and some that preferentially upregulate specific Bdnf 
isoforms . The dynamics in regulation of these ARGs following activity have important 
implications for studies using activity-induced promoters (e.g. Arc and Fos) to tag ensembles of 
activated neurons42,43.  These data suggest that “activated” ensembles may not be a  
homogenous population as some activity-tagged cells may have the capacity to release BDNF 
and engage downstream plasticity cascades, while others may not.  Similarly, our results 
suggest that activity-induced, BDNF-expressing neurons are likely not a uniform population as 
some BDNF-expressing neurons may preferentially utilize  one isoform over another.  Because 
Bdnf isoforms show distinct expression kinetics and subcellular targeting44–46, it is likely that 
differences in upregulation between single cells impact neuron function. Future studies should 
aim to link differences in ARG expression following activity or distinct behaviors to correlates of 
cell function, including morphology and activity, to better understand how dynamic ARG 
expression impacts network function.   
 
dodotdot overcomes tissue autofluorescence to accurately profile postmortem human 
brain tissue 

Postmortem human brain poses several intrinsic and extrinsic challenges for quantitative 
smFISH, including extensive cellular heterogeneity47, high lipofuscin autofluorescence13, and 
RNA degradation due to the interval between death and brain extraction and processing. To 
overcome these challenges, we carefully optimized the RNAscope assay as well as imaging 
acquisition and analysis parameters.  We found that RNAscope Multiplex Fluorescence V2 
reagents afforded higher signal-to-noise in postmortem human brain tissue, especially for 
moderate or low expressing gene targets, such as SNX19 (Fig. S10).  Flexibility to dilute 
fluorophore concentrations for higher expressing gene targets, such as SLC17A7 (Fig. 4), also 
facilitated more accurate target labeling and quantification. While we utilized RNAscope 
technology for fluorescent probe labeling, non-commercial smFISH technologies have also 
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proven successful in postmortem human brain tissue4. However, RNAscope offers a rapid, 
robust, and universal approach that has now been replicated by several groups for qualitative 
validation of RNA-seq data in postmortem human brain tissue3–5,18.    
  For quantitative analysis of smFISH signals in postmortem human brain tissue, it is 
necessary to identify and remove fluorescent pixels derived from lipofuscin autofluorescence. 
There are several lipophilic reagents marketed to quench tissue autofluorescence that can be 
incorporated into the RNAscope assay23,48.  However, dye-based approaches proved ineffective 
in mitigating lipofuscin signals in our hands. While we did not explore optical tissue clearing 
methods to remove lipofuscin granules, several approaches, such as CLARITY, have been 
utilized in conjunction with smFISH28,49,50 and may be compatible with the RNAScope assay.   

Given the persistence of lipofuscin in our human brain samples, we employed a spectral 
imaging/linear unmixing approach to isolate and mask autofluorescent pixels attributed to 
lipofuscin and other tissue artifacts23. This approach also allowed us to conduct 4-plex labeling 
as we were able to separate signals arising from spectrally overlapping fluorophores (Opal570 
and Opal620).  We carefully validated reference emission profiles used for linear unmixing of 
fluorescent probe signals (Fig. S6) and lipofuscin autofluorescence (Fig. S7). Importantly, we 
demonstrated that the spectral quality of lipofuscin autofluorescence is comparable among 
subjects close in age and a common lipofuscin fingerprint can be employed for multiple 
subjects.  However, studies examining gene expression across development may require age-
specific lipofuscin fingerprints as biochemical and autofluorescent properties of lipofuscin are 
dynamic across the lifespan14.  Although spectral imaging or a custom lipofuscin filter cube are 
superior imaging strategies for detecting and masking lipofuscin autofluorescence21,23, we also 
demonstrate the feasibility of using a narrower spectral range, such as that detected by Opal520 
(or a standard FITC filter), to detect and mask lipofuscin fluorescence with dotdotdot.  Given that 
neurons are more profoundly affected by lipofuscin masking than glia13, it is important to 
consider whether removal of lipofuscin pixels biases quantification of gene expression in 
particular cell types.  Our data suggest that neurons are not adversely affected by lipofuscin 
masking as we detect the expected proportions of neuronal and glial cell types in DLPFC51 (Fig. 
5).  

 
dotdotdot complements growing computational approaches for spatial analysis of 
genome-wide expression 

We developed dotdotdot to faithfully segment fluorescent probe signals and provide 
quantitative information on transcript/dot size, number, and fluorescence intensity.  While this 
quantitative output of dotdotdot can stand alone to answer many biological questions52, we 
provide examples of how further computational approaches can be utilized to answer more 
complex questions about gene expression.  First, in mouse tissue, we used K-means clustering 
53 to identify groups of cells defined as high, medium, and low expressers for individual genes 
based on transcript dot size and number (Fig. 3). Second, using thresholds established with the 
K-means approach, we examined co-localization of different ARGs to understand co-regulation 
of activity-induced transcripts.  A key advantage of the K-means approach is that several 
features of transcript segmentation, such as dot size and number, are included to provide a 
more comprehensive and unbiased interpretation of gene expression. Finally, given the diversity 
and intermingled spatial position of different cell types in postmortem human brain tissue, we 
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used a machine learning approach (CART),54 to systematically assign cell types to individual 
ROIs with 91% accuracy (Fig. 5 and S9).  This model accommodated potentially conflicting 
signals from mutually exclusive canonical cell type markers (i.e. MBP and SLC17A7) to assign 
the most likely cell type for each ROI.  As molecular profiles of cell types become more 
complex, machine learning approaches such as CART may become increasingly necessary to 
interpret overlapping patterns of gene expression55.  

Spatial analysis of genome-wide expression is a rapidly emerging field2,56–58.  With the 
advent of Spatial Transcriptomics59 and Slide-seq60, smFISH will continue to be a gold standard 
for validating spatial RNA-seq approaches.  dotdotdot is an intuitive computational tool that can 
add quantitative dimensions to traditionally qualitative smFISH data. Furthermore, as tools for 
integrating smFISH and single cell RNA-seq data continue to develop61,62, dotdotdot can 
augment these approaches by extracting quantitative information from existing datasets for 
integration with spatial gene expression databases. In summary, we present a computational 
tool for smFISH data that can be readily implemented in wet-bench laboratories to elevate 
spatial analyses of gene expression and complement growing single cell and spatial 
transcriptomic data sets in the field of neuroscience63 and beyond64. 
 
 
MATERIALS AND METHODS 
 
Animals and electroconvulsive seizure (ECS) treatment  
Six-week old male mice (C57BL/6J) were administered either Sham or ECS treatment as 
previously described41,65.  Briefly, ECS was delivered with an Ugo Basile pulse generator using 
a corneal electrode fork placed over the frontal cortex (model #57800-001, shock parameters: 
100 pulse/s frequency, 0.3 ms pulse width, 1s shock duration and 50 mA current). The 
stimulation parameters were chosen because they reliably induced tonic-clonic convulsions. 
Mice were administered inhaled isoflurane anesthesia prior to ECS sessions, and remained 
anesthetized for the procedure. Each mouse received a single session of Sham or ECS and 
was euthanized 90 minutes following the treatment. All animal experiments were approved by 
the SoBran Institutional Animal Care and Use Committee.  
 
Postmortem human tissue samples 
Post-mortem human brain tissue from two donors (both male: one 17 years old of African 
American ancestry and the other 25 years old with European ancestry) was obtained by autopsy 
primarily from the Offices of the Chief Medical Examiner of the District of Columbia, and of the 
Commonwealth of Virginia, Northern District, all with informed consent from the legal next of kin 
(protocol 90-M-0142 approved by the NIMH/NIH Institutional Review Board).  Clinical 
characterization, diagnoses, and macro- and microscopic neuropathological examinations were 
performed on all samples using a standardized paradigm, and subjects with evidence of macro- 
or microscopic neuropathology were excluded. Details of tissue acquisition, handling, 
processing, dissection, clinical characterization, diagnoses, neuropathological examinations, 
RNA extraction and quality control measures have been described previously66.   
 
3-plex smFISH and image acquisition in mouse tissue 
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Mice (n=3 Sham and n=4 ECS treated) were cervically dislocated and brains were removed 
from the skull, flash frozen in isopentane, and stored at -80°C. Brain tissue was equilibrated to -
20°C in a cryostat (Leica, Wetzlar, Germany) and serial sections of piriform cortex were 
collected at 16μm (4 sections per slide). Sections were stored at -80°C until completion of the 
smFISH assay.  For mouse studies (Fig. 1a), in situ hybridization assays were performed with 
RNAscope technology utilizing the RNAscope Fluorescent Multiplex Kit V1 (Cat # 320850 
Advanced Cell Diagnostics [ACD], Hayward, California) according to manufacturer’s instructions 
as previously described32. Briefly, tissue sections were fixed with a 10% neutral buffered 
formalin solution (Cat # HT501128 Sigma-Aldrich, St. Louis, Missouri) for 20 minutes at room 
temperature (RT), series dehydrated with ethanol, and pretreated with protease IV for 20 
minutes. Sections were incubated with custom-designed probes for Bdnf exon IV (Cat # 
482981-C3, ACD) and commercially probes for Bdnf exon I and Arc (Cat #457321-C2 and 
#316911, ACD, Hayward, California). Probes were fluorescently labeled with orange (excitation 
550 nm), green (excitation 488 nm), or far red (excitation 647)  fluorophores using the Amp 4 Alt 
B-FL and stained with DAPI (4′,6-diamidino-2-phenylindole) to demarcate the nucleus.  
Confocal images were acquired in z-series using a Zeiss LSM700 confocal microscope.  For 
each mouse (biological replicate), two images were randomly captured in the piriform cortex per 
section (4 sections; 8 images total).   
 
4-plex smFISH and image acquisition in postmortem human tissue 

Two blocks of fresh frozen dorsolateral prefrontal cortex (DLPFC) from neurotypical 
control individuals ages 24 and 17 were sectioned at 10μm and stored at -80°C.  RNA integrity 
numbers (RINS) were 8.4 and 8.8, respectively.  For postmortem human studies (Fig. 1b), in 
situ hybridization assays were performed with RNAscope technology utilizing the RNAscope 
Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat # 323100, 323120  ACD, Hayward, 
California) according to manufacturer’s instructions. Briefly, tissue sections were fixed with a 
10% neutral buffered formalin solution (Cat # HT501128 Sigma-Aldrich, St. Louis, Missouri) for 
30 minutes at RT, series dehydrated in ethanol, pretreated with hydrogen peroxide for 10 
minutes at RT, and treated with protease IV for 20 minutes. Sections were incubated with 
probes for SNAP25, SLC17A7, GAD1, and MBP (Cat #518851, 415611-C2, 573061-C3, 
573051-C4, ACD, Hayward, California) and stored overnight in 4x SSC (saline-sodium citrate) 
buffer.  Probes were fluorescently labeled with Opal Dyes (Perkin Elmer, Waltham, MA; 
Opal690 diluted at 1:1000 and assigned to SNAP25; Opal570 diluted at 1:1500 and assigned to 
SLC17A7; Opal620 diluted at 1:500 and assigned to GAD1; Opal520 diluted at 1:1500 and 
assigned to MBP) and stained with DAPI (4′,6-diamidino-2-phenylindole) to label the nucleus. 
For experiments with SNX19, sections were incubated with probes for SLC17A7, GAD1, and 
SNX19 (Cat #415611-C3, Cat #404031, Cat #518861-C2, ACD, Hayward, California) and 
stored overnight in 4x SSC buffer.  Probes were fluorescently labeled with Opal Dyes (Opal690 
diluted at 1:1500 and assigned to SLC17A7; Opal570 diluted at 1:500 and assigned to SNX19; 
Opal520 diluted at 1:1000 and assigned to GAD1) and stained with DAPI to label the nucleus 

Lambda stacks were acquired in z-series using a Zeiss LSM780 confocal microscope 
equipped with 20x x 1.4 NA and 63x x 1.4NA objectives, a GaAsP spectral detector, and 405, 
488, 555, and 647 lasers. All lambda stacks were acquired with the same imaging settings and 
laser power intensities. For each subject, two cortical strips were tile imaged at 20x to capture 
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layers I to VI (Fig. 5).  Layer II/II and layer VI were identified by measuring 20-30% and 80-90% 
of the cortical layer thickness, respectively.  This strategy reliability delineated layer II/III and VI 
across 10 individuals and cortical strips with varying absolute thicknesses.  After demarcation of 
cortical layers, the positions feature in Zen software was used to randomly select 6 fields per 
layer per strip (n=12 layer II/III and n=12 layer VI in 2 different cortical strips per subject) for high 
magnification imaging at 63x.  Following image acquisition, lambda stacks in z-series were 
linearly unmixed in Zen software (weighted; no autoscale) using reference emission spectral 
profiles previously created in Zen (see below) and saved as Carl Zeiss Image “.czi” files.  
 
Generation of Reference Emission Spectral profiles 
Reference emission spectral profiles, or “fingerprints,” were created for each Opal dye in Zen 
software.  Briefly, 4 single positive slides were generated in mouse tissue using the RNAscope 
Fluorescent Multiplex Kit V2 and 4-plex Ancillary Kit (Cat # 323100, 323120  ACD, Hayward, 
California) and a control probe against the housekeeping gene POLR2A according to 
manufacturer’s instructions as described above (Fig. S6).  Mouse tissue was used in place of 
human tissue due to lower tissue autofluorescence (i.e. the absence of confounding lipofuscin 
signals). For each single positive slide, POLR2A was labeled with either Opal520, Opal570, 
Opal620, or Opal690 dye.  A single positive slide was generated for DAPI using the same 
pretreatment conditions, but omission of probe hybridization steps. To generate a reference 
emission spectral profile for lipofuscin autofluorescence, a negative control slide was generated 
in postmortem DLPFC tissue using a 4-plex negative control probe against 4 bacterial genes 
(Cat #321831, ACD, Hayward, California) in which all Opal dyes were applied, but no probe 
signal was amplified.     
 
Automated Imaging Analysis 
dotdotdot is a MATLAB-based command line toolbox for automated nuclei and transcript 
segmentation and quantification67. Confocal images are processed in MATLAB, but downstream 
data analyses can be performed in R (as done here), MATLAB, python, or any statistical 
software. Briefly, the processing pipeline involves smoothing/filtering raw images, thresholding, 
watershed segmentation, autofluorescence masking, and extracting dot metrics. The analysis 
pipeline involves k-means clustering for classifying nuclei expression (low, medium and high) 
and CART (Classification and Regression Trees) for classifying cell types (astrocytes, 
oligodendrocytes, GABAergic or glutamatergic neurons). Bio-formats toolbox “bfmatlab” 68 is 
used to read the image data into a MATLAB structure with fields containing gene data, DAPI 
and lipofuscin. Processing techniques for human nuclei, mouse nuclei and transcript channels 
are different, as described below. 
 
Mouse nuclei segmentation: Processing and segmentation of mouse nuclei is performed using 
the MATLAB toolbox called “CellSegm”69. The toolbox provides the user with several input 
options for smoothing (coherence enhancing diffusion, edge enhancing diffusion, gaussian) and 
thresholding (iterative thresholding, adaptive thresholding, gradient thresholding, ridge 
enhancement). A 2D planewise gaussian smoothing with default settings (filter size = [5 5], 
standard deviation = 2) was used to filter the raw images (X = Y = 512 pixels) (Fig S1.A1). 
Adaptive thresholding with an average filter (size = [42 42]) followed by several morphological 
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operations (like imopen, imerode, imfill) were performed on the gaussian smoothed images (Fig 
S1.B1) to obtain the binary image (Fig S1.C1). The irregularly large objects in the binary image 
are then split into smaller segments using watershed segmentation based on local maxima and 
the euclidean distances (Fig S1.D1). 
 
Human nuclei segmentation: A 3D median filter (size = [19 19 3]) is used to smooth (Fig S2.B1) 
the intensity irregularities in the raw image (X = Y = 1024 pixels) (Fig S2.A1) that are produced 
from heterogeneously-stained nuclei. An intensity threshold from the image histogram is then 
used to segment the DAPI stained nuclei from the background. A technique called “minima 
imposition” is applied to the binary image (Fig S2.C1) before watershed transform to filter the 
tiny local minima that might cause over-splitting of large segmented nuclei blobs. A modified 
distance transform of the binary image is then computed for the watershed segmentation on the 
maximum z projection (Fig S2.D1).  
 
Transcript segmentation and lipofuscin masking: Background noise (i.e. potential bleed-through 
from adjacent wavelengths) in the gene channels is eliminated using the function “imhmin” 70.  
Here all the minima in the grayscale image whose depth is less than the standard deviation of 
the image is suppressed (Fig S1.B2, Fig S2.B2). A histogram-based intensity threshold is used 
to segment the RNA signal (Fig S1.C2, Fig S2.C2). Watershed segmentation based on the 
minima of the image is then performed to split the detected pixel clusters in each channel into 
identified transcripts (Fig S1.D2, Fig S2.D2). Lipofuscin segmentation is similar, except it does 
not include the background suppression step (Fig S2.Lipofuscin channel).  
  
Extract nuclei and transcript metrics: Custom MATLAB functions (regionprops3 function in 
Image Processing toolbox) were then used to calculate relevant metrics (count, size, location, 
intensity) of detected nuclei and transcripts (Fig S1.E(1,2), Fig S2.E(1,2)). For human data, 
before transcript quantification, the segmented RNA channels (Fig S2.D2) are masked (Fig 
S2.E3) with the segmented lipofuscin channel (Fig S2.C3). Nuclei and transcript colocalization 
data  (Fig S1.Data analysis.1, Fig S2.Data analysis.1) are then obtained by assigning each 
transcript to a cell based on its position in 3 dimensions. For gene expression analysis (mouse 
data) a dot is assigned to a nucleus if its center falls within the boundary of the nucleus and for 
cell type classification (human data) each segmented gene pixel is considered as a transcript 
and is assigned to nucleus if it is within the boundary of the nucleus.  
 
Downstream data analysis: (a) Gene expression analysis (Fig S1.F): all the nuclei are clustered 
into low, medium and high expressers for each gene type by the k-means clustering method 
(Fig S1.F.2) based on the total transcript count and the average transcript size per nuclei. The 
choice of k here (3) was biologically motivated, but can be a flexible parameter dependent on 
the underlying study design and research question. Nuclei with at least one transcript are 
recruited for k-means clustering, and the nuclei with zero transcripts are explicitly labeled as low 
expressers. (b) Cell type classification (Fig S2.F): the proportion of each type of transcript in 
individual nuclei is used by Classification and Regression Trees (CART) to predict the 
underlying cell type (Fig S2.F.3). The initial CART model was built on test and train dataset 
created from 89 manually annotated nuclei (60 random ROIs were used to train the model and 
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the rest were used to test) from 5 random images (Fig S2.F.2) from the whole dataset. The 
predictions from this model were used to classify the rest of the data into predefined categories. 
This strategy can be used to develop other analogous classification models for other cell and 
tissue types.  
 
Statistics  
All statistical analyses were performed in R71.  For mouse data analyses, we used linear mixed 
effects modeling with the lmerTest package72 to analyze nuclei size, total number of nuclei in an 
image, gene expression (Bdnf Ex1, Bdnf Ex4, Arc) as a function of the treatment main effect 
(Sham versus ECS) and random intercepts of repeated measures: animal ID, brain section and 
the image/scan ID. For human data analysis, we also used linear mixed effects modeling for the 
analysis of nuclei size, total number of nuclei in image, proportions of cell types in an image as 
a function of brain layer (Layer II/III versus Layer VI) as a main effect and  random intercepts of 
repeated measures: brain donor, strip number, and the image ID. For the validation of SNAP25 
enrichment in GAD1 and SLC17A7 positive cells, GAD1 and SLC17A7 cells were combined into 
one group and compared to the MBP and negative labelled cells. The analysis was performed 
using the linear mixed effects model with main effects as the predicted cell labels and random 
intercepts being the same variables as above. 
 
Data and Code availability 
The source code for dotdotdot is available together with test data and detailed tutorials at 
https://github.com/LieberInstitute/dotdotdot.   
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FIGURES 
 
 
 

 
 
 
Figure 1. Experimental workflows and imaging protocols for smFISH in mouse and human tissues. 
a, Brains were extracted from wild-type (WT) mice 90 minutes following electroconvulsive seizures (ECS) 
or Sham treatment and sectioned on a cryostat.  Gene targets were visualized with the RNAscope 
Multiplex Fluorescence V1 kit.  RNAscope technology uses hybridization of two independent probes 
(double Z probes), referred to as a “ZZ pair,” that must bind to the target sequence in tandem for signal 
amplification to proceed via the subsequent binding of preamplifiers, amplifiers, and fluorescent detection 
molecules. Approximately 5-30 ZZ pairs are designed for each target gene. After completion of the 
RNAscope V1 assay, slides are imaged in x, y, and z-dimensions using confocal microscopy. b, Fresh 
frozen postmortem human tissue  was sectioned on a cryostat and gene targets were visualized using the 
RNAscope Multiplex Fluorescence V2 kit. The V2 assay uses the same RNAscope technology with 
added TSA technology for customization of dyes/concentrations and the ability to include a fourth gene 
target.  The V2 assay is also better suited for tissues with autofluorescence, such as postmortem human 
brain tissue, which contains an abundance of highly autofluorescent lipofuscin granules. Multispectral 
imaging and linear unmixing were used to separate individual probe signals and lipofuscin 
autofluorescence. Lipofuscin signals served as a mask during downstream analysis to exclude pixels 
confounded by autofluorescence.  
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Figure 2 . Dotdotdot image processing and data analysis workflow: a, Raw ‘.czi’ images of nuclei 
and gene channels. b, Final segmented images of nuclei and gene channels (Processing* involves 
gaussian smoothening, adaptive thresholding and watershed segmentation of nuclei channel, 
Processing+ involves background filtering, histogram-based thresholding and watershed segmentation of 
transcript channel). c, Data analysis steps (for example, k-means) that are executed based on metrics 
from segmented images. d, Predictions from data analysis steps are used to produce final results. 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/781559doi: bioRxiv preprint 

https://doi.org/10.1101/781559
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 3. Image analysis with dotdotdot captures differential expression of two activity-regulated 
gene (ARG) transcripts in single cells of mouse cortex following activity induction. a, Maximum 
intensity confocal projections of piriform cortex depicting expression of transcripts for Arc (a), Bdnf Ex1, 
(a’) Bdnf Ex4 (a’’), and merged (a’’’) from a mouse receiving Sham treatment. b, Maximum intensity 
confocal projections of piriform cortex depicting expression of transcripts for Arc (b), Bdnf Ex1, (b’) Bdnf 
Ex4 (b’’), and merged (b’’’) 90 minutes after an acute ECS treatment. c-e, Proportion of cortical cells 
expressing low, medium and high levels of Arc (c), Bdnf Ex1 (d), and Bdnf Ex4 (e) in Sham vs. ECS 
treatment (n= 3 mice, 24 images, 2543 nuclei and n=4 mice, 32 images, and 3102nuclei, respectively). f, 
Proportion of cortical cells expressing medium/high levels of Arc, Bdnf Ex1, Bdnf Ex4 following ECS 
treatment. g, Venn diagrams showing co-expression of different ARGs in high/medium expressers 
following Sham or ECS ( n=867 high/medium ROIs out of 2543 total ROIs with n=1676 low expressers 
excluded for Sham, n=1133 high/medium ROIs out of 3102 total ROIs for ECS with n=1969 low 
expressers). Yellow arrows highlight cells preferentially expressing Bdnf Ex4 compared to Bdnf Ex1.  
Cyan arrows highlight cells expressing Arc, but not Bdnf.  Pink arrows highlight cells enriched in Bdnf 
Ex1, which often co-express Bdnf Ex4 and Arc. Scale bar is 20um. 
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Figure 4. Visualization and quantification of single transcripts in postmortem human brain tissue 
using spectral imaging/linear unmixing and dotdotdot. a, Matrix of raw confocal images acquired 
during spectral imaging in z-series of a single field of postmortem human cortex at 63x magnification.  A 
lambda stack is captured at each z-plane detecting expression of SNAP25, SLC17A7, GAD1, MBP 
(labeled using Opal520 [emission maximum at 520nm], Opal570 [emission maximum at 570nm], Opal620 
[emission maximum at 620nm], and Opal 690 [emission maximum at 5690nm] dyes, respectively), and 
lipofuscin autofluorescence.  b, Representative lambda stack depicting a single z-plane acquired at 
different wavelength bands, each spanning a limited spectral region (~8.7nm). c, Combined emission 
signals across the lambda stack in each z-plane are linearly unmixed using reference emission spectral 
profiles from each Opal dye and lipofuscin to separate the contribution of individual fluorescent gene 
probes. Unmixed data is then projected across the z-axis. Single transcripts for SNAP25 (c), SLC17A7 
(c’), GAD1 (c’’), and MBP (c’’’) (canonical markers for neurons, excitatory neurons, inhibitory neurons, 
and oligodendrocytes, respectively) can be separated from each other and from lipofuscin 
autofluorescence (c’’’’). d, Segmentation of unmixed fluorescent signals using dotdotdot. e, Nuclear 
segmentation overlaid with transcript segmentation. f, Masking with lipofuscin signal removes pixels 
confounded by autofluorescence from analysis.  Green arrows highlight MBP+/SNAP25-/SLC17A7-
/GAD1- oligodendrocytes.  Red arrows highlight MBP-/SNAP25+/SLC17A7+/GAD1- excitatory neurons.  
Pink arrows highlight MBP-/SNAP25+/SLC17A7-/GAD1+ inhibitory neurons. Cyan double arrows 
highlight lipofuscin. Scale bar is 20um. 
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Figure 5. Layer-specific cell type analysis in postmortem human DLPFC demonstrates sensitivity 
and specificity of dotdotdot for transcript quantification. a-g, Maximum z-projection of unmixed and 
stitched lambda stacks acquired across a single cortical strip (layer I to VI) of postmortem human DLPFC 
depicting expression of DAPI (a), SNAP25 (b), SLC17A7 (c), GAD1 (d), MBP (e), lipofuscin (f) and 
merged (g). High magnification (63x) images used for analysis were randomly acquired within a strip in 
layer II/III (80-90% of strip thickness; n= 24 images total) or layer VI (20-30% of strip thickness; n=24 
images total) from 2 individuals from 2 different strips (see Fig. 3 for representative 63x image).  h, 
Validation of cell type calling using CART analysis demonstrating an enrichment of SNAP25 transcripts in 
predicted excitatory (SLC17A7) and inhibitory (GAD1) neurons compared to oligodendrocytes (MBP) and 
SLC17A7-/GAD1-/MBP- cells (likely astrocytes and microglia).  Color represents different subjects and 
shape represents different layers (circle=layer II/III and triangle is layer VI). i, Proportion of cortical cells 
expressing markers for neurons, excitatory neurons, inhibitory neurons, and oligodendrocytes in layer II/III 
vs. layer VI of DLPFC (n= 519 ROIs layer II/III and n= 442 ROIs layer VI). Scale bar is 200um.  
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SUPPLEMENTARY FIGURES 
 

 
Supplementary Figure 1. Dotdotdot image processing and data analysis workflows for smFISH 
data in mouse tissue. A-E, Image processing workflow. A) Raw “.czi” images of mouse nuclei (DAPI) 
and gene channels (i.e., Bdnf Ex1 [Opal520], Arc [Opal570], and Bdnf Ex4 [Opal690]). B) Processed 
images of nuclei and transcript channels (gaussian smoothened (B1) and background filtered (B2)). C) 
Segmented binary images of nuclei (adaptive thresholding) and transcript (image histogram-based 
thresholding) channels. D) Final watershed segmentation of nuclei and transcript channels. E) Metrics 
showing ID, volume (in pixels), location (centroid, bounding box, indices), intensities (mean, minimum and 
maximum) of each segmented region (i.e. nuclei and transcripts) per channel. F, Data analysis workflow. 
1) Location metrics from E1 and E2 are used to find ROIs/nuclei and transcript colocalization information. 
Table shows each ROI/nucleus with its transcript quantification (count, average size, average intensity, 
proportion of nuclei volume occupied) per gene channel. 2-3) K-means clustering of ROIs/nuclei into high, 
medium and low expressers per gene channel based on transcript count and average transcript size of 
nuclei. 4) Data analysis based on thresholds from k-means clustering. 
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Supplementary Figure 2 . Image processing and data analysis workflows for smFISH data in 
human tissue.  A-E, Image processing workflow. A1, A2, A3) Raw “.czi” images of human nuclei (DAPI), 
gene channels (MBP [Opal520], SLC17A7 [Opal570], GAD1 [Opal620], and SNAP25 [Opal690]) and the 
lipofuscin channel. B1, B2) Processed images of nuclei and transcript channels (3D Median 
filtered/smoothened (B1) and background filtered (B2)). There was no processing step on the lipofuscin 
channel to retain all signals. C1, C2, B3) Histogram-based threshold-ed binary images of nuclei, transcript 
and lipofuscin channels. D1, D2, C3) Final watershed segmentation of nuclei, transcript (overlaid with 
lipofuscin autofluorescence pixels in cyan) and lipofuscin channels. E3) Segmented and lipofuscin- 
masked image of each gene channel. E1,E2) Final extracted metrics showing ID, volume (in pixels), 
location (centroid, bounding box, indices), intensities (mean, minimum and maximum) of each segmented 
region (i.e. nuclei and transcripts after lipofuscin masking) per channel. F) Data analysis workflow. 1) 
Location metrics from E1 and E2 are used to find ROIs/nuclei and transcript colocalization information. 
Table shows each ROI/nucleus with its transcript quantification (count, average size, average intensity, 
proportion of nuclei volume occupied) per gene channel. 2) Manually annotated images show ROIs/nuclei 
positive for gene targets (color labelled as red-SLC17A7, green-MBP, white-SNAP25, pink-GAD1 and 
yellow-negative) based on qualitative analysis. 3) Classification and regression tree (CART) model 
produced by using the proportion of nuclei occupied by each gene and its manually annotated cell labels 
(Gene1 (SLC17A7), Gene2 (MBP), Gene3 (GAD1) and negative). 4) Based on CART predictions, nuclei 
from all images are classified into predefined cell types and data analysis is performed. To validate CART 
predictions, we show that SNAP25 is enriched in nuclei that are positive for SLC17A7 and GAD1. 
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Supplementary Figure 3. Nuclei segmentation defines regions of interest (ROIs) in mouse tissue. 
A-C) DAPI staining depicting individual nuclei in x,y-dimensions of a single confocal z-plane from three 
representative areas in the mouse piriform cortex. A’-C’) Corresponding nuclear segmentation in x,y-
dimensions with each nucleus (yellow, red, orange, or white) representing a single ROI. A’’-C’’) Nuclear 
segmentation in y, z-dimensions. For z-stacks, nuclear segmentation is performed in each z-plane and 
ROIs are reconstructed in 3 dimensions. D) Number of segmented nuclei per field in images acquired 
from Sham and ECS treated mice (n= 24 images, 3 mice and n= 32 images, mice, respectively). Each dot 
represents an image and each color represents a different mouse.  E) Average size of segmented 
nucleus in Sham compared to ECS images (n= 56 images and 5645 nuclei).   
 
 
 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/781559doi: bioRxiv preprint 

https://doi.org/10.1101/781559
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Supplementary Figure 4. Three-dimensional dot segmentation and feature extraction delineates 
individual probe signals in multiplex images. A-D) Representative confocal z-plane of mouse piriform 
cortex depicting nuclear DAPI staining (blue) and single transcripts for Arc (A), Bdnf Ex1(B), Bdnf Ex4 (C), 
and merged (D). E-H) Corresponding dot segmentation for Arc (E), Bdnf Ex1 (F), Bdnf Ex4 (G), and 
merged (H). I-L) Overlay of nuclear and dot segmentation used for identification of ROIs and 
quantification of dot/transcript features (size, number, and intensity) for Arc (I), Bdnf Ex1 (J), Bdnf Ex4 (K), 
and merged (L). M) Total number of Arc, Bdnf Ex1, and Bdnf Ex4 transcripts per field in images acquired 
from Sham and ECS treated mice (n= 3 mice, 24 images, 2543 nuclei and n=4 mice, 32 images, and 
3102nuclei, respectively). Each dot represents an image and each color represents a different mouse. N) 
Total number of nuclear transcripts per field for Arc, Bdnf Ex1, and Bdnf Ex4 in Sham compared to ECS.  
O) Total number of cytosolic transcripts per field for Arc, Bdnf Ex1, and Bdnf Ex4 in Sham compared to 
ECS.  Yellow arrows depict positive cells.   
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Supplementary Figure 5.  K-means cluster analysis uses transcript (dot) count and size per ROI to 
group ROIs as low, medium, or high expressers for individual ARGs. A) Plot depicting clustering of 
4,967 ROIs with low, medium, and high Arc expression based on number of transcripts (low: <12; 
medium: 12-31; high: >31) and average transcript size (low: <43; medium: <65; high: >0). B) Plot 
depicting clustering of 2,538 ROIs with low, medium, and high Bdnf Ex1 expression based on number of 
transcripts (low: <11; medium: 11-25; high: >25) and average transcript size (low: <17; medium: <74; 
high: >0). C) Plot depicting clustering of 3,983 ROIs with low, medium, and high Bdnf Ex4 expression 
based on number of transcripts (low: <11; medium: 11-25; high: >25) and average transcript size (low: 
<21; medium: <59; high: >0). Nuclei with <1 transcript are directly assigned to the low group.  
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Supplementary Figure 6. Validation of reference emission spectral profiles (“fingerprints”) used 
for linear unmixing. A) A reference emission spectral profile, or “fingerprint,” was created in Zen 
software for DAPI using mouse brain tissue subjected to pretreatment conditions, but no additional probe 
labeling. Top panel shows linear unmixing with the DAPI fingerprint specifically recognizes DAPI signal. 
Bottom panel depicts segmentation for ROI identification. B-E) Reference emission spectral profiles were 
created in Zen software for each of the Opal dyes (referred to as Opal (O)520, Opal (O)570, Opal (O)620, 
and Opal(O) 690) using a “single positive” slide of mouse brain tissue hybridized with a positive control 
probe against a house-keeping gene, POLR2A, and visualized with the respective Opal dye (Opal520 in 
B, Opal570 in C, Opal620 in D, and Opal690 in E). Top panels show linear unmixing with DAPI, Opal520, 
Opal570, Opal620, and Opal690 for each single positive slide. Bottom panels depict segmentation for dot 
detection.  Plots to right of images show POLR2A dot number, size, and average intensity after linear 
unmixing of respective single positive images. Importantly, reference emission spectral profiles are highly 
specific (i.e. when POLR2A is labeled with Opal570 in C, the spectrally similar Opal620 fingerprint does 
not detect Opal570 signal, etc.). Similarly, dot features are only detected after unmixing with the relevant 
reference emission spectral profile. Scale bar is 20um. 
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Supplementary Figure 7. A common spectral signature for lipofuscin can be used across multiple 
subjects to identify and exclude autofluorescence.  A-B) A reference emission spectral profile, or 
“fingerprint,” was created in Zen software for lipofuscin autofluorescence using DLPFC from a 
representative subject hybridized with a negative control probe for the bacterial gene dapB. For 2 different 
human subjects (A and B), top panels show a single confocal z-slice after linear unmixing with DAPI, 
Opal520, Opal570, Opal60, and lipofuscin fingerprints.  Middle panels show corresponding segmentation.  
Bottom panels show segmentation after masking with lipofuscin signals.  C) Plot depicting the number of 
transcript pixels detected for DAPI (blue bars), Opal520 (green bars), Opal570 (red bars), Opal690 
(black/gray bars) before and after masking with lipofuscin (dark bars=before, light bars=after) across 8 
images derived from 4 different subjects (Images 5-6 from Subject 1, Images 7-8 from Subject 2, Images 
1-2 from Subject 3, Images 3-4 from Subject 4,).  The reference emission spectral profile for lipofuscin is 
equally effective across subjects and successfully masks and excludes pixels confounded by 
autofluorescence across the electromagnetic spectrum.  Scale bar 20um.   
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Supplementary Figure 8. Nuclei segmentation defines regions of interest (ROIs) in human brain. A-
C) DAPI staining depicting individual nuclei in x,y-dimensions of a single confocal z-plane from three 
representative areas in postmortem human DLPFC. A’-C’) Corresponding nuclear segmentation in x,y-
dimensions with each nucleus (yellow, red, orange, or white) representing a single ROI. A’’-C’’) Nuclear 
segmentation in y, z-dimensions. For z-stacks, nuclear segmentation is performed in each z-plane and 
ROIs are reconstructed in 3 dimensions. D) Number of segmented nuclei per field in images acquired 
from cortical layers II/III and VI (n=2 subjects, 2 cortical strips per subject, 24 images).  E) Average size of 
segmented nucleus in layer II/III compared to layer VI (n= 519 and 442 nuclei, respectively).   
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Supplementary Figure 9. Classification and regression tree (CART) model for accurately 
predicting cell types in DLPFC. A) Classification tree built from 60 random ROIs from 5 manually 
annotated images using the rpart algorithm with termination criteria of 4 major classes: SLC17A7 
(excitatory neuron), MBP (oligodendrocyte), GAD1 (inhibitory neuron), and triple negative (Neg; likely 
microglia and astrocytes).  For example, a cell is defined as an SLC17A7+ excitatory neuron when the 
volume of the ROI is at least 4.3% SLC17A7 (given that MBP covers less than 7.6% of the ROI and 
GAD1 covers less than  0.0794% of the ROI). For these 60 ROIs, the classifier predicts 35% of the ROIs 
are SLC17A7, 18% are MBP, 15% are GAD1, and 32% are triple negative. B) Confusion matrix for 201 
manually annotated ROIs comparing predicted and actual cell type. C) Plot showing manual and 
predicted cell type for each ROI plotted against the proportion of the nuclei positive for GAD1, SLC17A7, 
and MBP. Prediction accuracy of the CART model is 91%.  
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Supplementary Figure 10. Flexibility for using autofluorescence detected in a narrow spectral 
range to mask lipofuscin autofluorescence. A) Top panel shows confocal z-slice after linear unmixing 
with DAPI, Opal520, Opal570, Opal620, and Opal690 fingerprints to detect SNX19 (Opal570), GAD1 
(Opal620), and SLC17A7 (Opal690).  As no probe was used with the Opal520 dye, signal in this spectral 
range can be attributed to lipofuscin autofluorescence.  Second panel shows segmentation of fluorescent 
signals. Third panel shows segmentation overlaid with autofluorescence captured by unmixing with the 
Opal520 fingerprint.  Bottom panel shows segmentation for each gene after masking with Opal520 
autofluorescence.  Cyan and yellow arrows show lipofuscin autofluorescence.  B) Using the same lambda 
stack, top panel shows confocal z-slice after linear unmixing with DAPI, lipofuscin, Opal570, Opal620, 
and Opal690 fingerprints to detect SNX19 (Opal570), GAD1 (Opal620), SLC17A7 (Opal690), and 
lipofuscin autofluorescence. Second panel shows segmentation of fluorescent signals. Third panel shows 
segmentation overlaid with autofluorescence captured by unmixing with the lipofuscin fingerprint.  Bottom 
panel shows segmentation for each gene after masking with lipofuscin autofluorescence.  Lipofuscin 
fingerprint captures additional autofluorescence compared to Opal520 fingerprint (compare yellow arrows 
in A and B). C) Plot comparing the number of pixels detected for DAPI or each gene when lipofuscin 
autofluorescence is unmixed using the Opal520 (O520; green border bars) versus lipofuscin (Lipo; cyan 
border bars) fingerprints. The lipofuscin fingerprint captures more autofluorescent pixels than the Opal520 
fingerprint (cyan vs. green bar) thereby reducing the number of pixels attributed to autofluorescence in 
other channels.  Scale bar is 20um.  
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Supplementary Figure 11. dotdotdot is compatible with diverse file formats generated using 
different microscope systems. A-F) Raw confocal fluorescence (A, C, E) and corresponding 
nuclear/transcript segmentation (B, D, F) from 3 unique RNAscope images acquired in postmortem 
human brain tissue utilizing separate probe combinations.  Imaging processing with dotdotdot was 
performed on Nikon “.nd2” files. 
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