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Abstract 

Whole-genome expression data generated by microarray studies have shown promise for quantitative 

human health risk assessment. While numerous approaches have been developed to determine 

benchmark doses (BMDs) from probeset-level dose responses, sensitivity of the results to methods used 

for normalization of the data has not yet been systematically investigated. Normalization of microarray 

data converts raw hybridization signals to expression estimates that are expected to be proportional to 

the amounts of transcripts in the profiled specimens. Different approaches to normalization have been 

shown to greatly influence the results of some downstream analyses, including biological interpretation. 

In this study we evaluate the influence of microarray normalization methods on the transcriptomic BMDs. 

We demonstrate using in vivo data that the use of alternative pipelines for normalization of Affymetrix 

microarray data can have a considerable impact on the number of detected differentially expressed genes 

and pathways (processes) determined to be treatment responsive, which may lead to alternative 

interpretations of the data. In addition, we found that normalization can have a considerable effect (as 

much as ~30-fold in this study) on estimation of the minimum biological potency (transcriptomic point of 

departure). We argue for consideration of alternative normalization methods and their data-informed 

selection to most effectively interpret microarray data for use in human health risk assessment. 
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Introduction 

Whole-genome expression data generated by microarray studies are a promising resource for human 

health risk assessment. Analysis of these data can provide insight into mechanisms of biological 

processes, enable prediction of adverse outcomes of chemical exposures, and support estimation of 

points of departure (PODs) for derivation of toxicity values (reviewed in [1]).   

Genomic dose-response studies (GDRS) done in an in vivo setting have been shown to identify gene set 

(e.g., pathway)-level PODs that approximate those identified using much more resource intensive 

guideline toxicity assessments [2,3]. In addition, mechanistic interpretation of GDRS data can yield a 

deeper understanding of molecular effects produced by tested substances in a manner that can support 

Adverse Outcome Pathway (AOP) development and human relevance determination [4].  

One approach to analysis of GDRS data is embodied in the BMDExpress software [5] which carries out a 

three-step process to identify gene set-level biological potency estimates referred to as benchmark dose 

(BMD) values. The three-step process includes (i) identification of probe sets (genes) responsive to 

chemical exposure, (ii) dose response model fitting of treatment responsive probe sets, and (iii) 

summarization of gene-level BMDs as gene set (e.g., pathway) level BMDs. Pathway level BMD and their 

lower confidence limits (BMDLs) are subsequently interpreted in the context of the lowest doses at 

which biological changes occur (i.e., biological effect point of departure [BEPOD] and biological point of 

departure lower bound [BEPOD/L], in the case of the lowest BMD and associated BMDL, respectively).  

At each level of the analysis, parameter selection (e.g., choosing a minimum fold change) is made that 

can dramatically impact the amount of information that is carried through the analysis. For the 

assessment discussed here we have used a set of parameters identified by the National Toxicology 

Program (NTP) [6]. 

Before BMD modeling of microarray expression data can take place, the raw fluorescence signals must 

be processed. This processing, frequently referred to as “normalization”, mathematically transforms raw 

signals to expression estimates that are proportional to the amounts of corresponding transcripts in the 

profiled specimens. The need for normalization relates to a complex set of processes that can introduce 

non-biological variability, along with complex relationships between input quantities of mRNAs and 

signal intensities. These processes include, but are not limited to reverse transcription, labeling and 

hybridization on microarrays. Normalization of raw data from Affymetrix microarrays has been the focus 

of a remarkable amount of research due to the significant effect it can have when interpreting 

microarray data and the popularity of the Affymetrix platform.  Numerous normalization methods are 

currently available, including MAS5.0.0, RMA, GCRMA, and PLIER. Each of these methods includes 

background adjustment (separates the specific signal from the non-specific signal), normalization and 

probe summarization steps [7]. Due to differences in assumptions underlying each of these methods[8], 

selection of normalization methods can significantly impact results of downstream analyses, such as 

identification of differentially expressed genes [9], clustering of genes or specimens [10], development 

of gene expression-based classifiers and building gene networks [11]. Previously published GDRS 

employed the most commonly used method for normalization of Affymetrix microarrays RMA (Robust 
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Multi-array Average) [3,12-15].  Here we investigate the influence of different normalization methods on 

genomic dose-response modeling. 

In this article we demonstrate the influence of different normalizations of expression microarrays on the 

findings from 5-day in vivo genomic dose-response studies of crude 4-methylcyclohexanemethanol 

(crude MCHM) [16], neat 4-methylcyclohexanemethanol (MCHM) [16], N,N-dimethyl-p-toluidine (DMPT) 

[17] and p-toluidine [17] in liver tissues, and propylene glycol phenyl ether (PPH) [16] in kidney tissues of 

orally-exposed rats. Our results indicate that normalization remarkably impacts the number of detected 

differentially expressed genes and responsive gene sets. In addition, we demonstrate that the different 

normalization methods can lead to changes in model fitting, which alter individual probe set BMD 

values. Estimates of minimum biological effect potency (BEPOD/L) were found to be robust to the 

effects of different normalization methods for some but not all chemicals. In some cases, potentially 

impactful differences between BEPOD/L values were observed with different normalization methods, 

hence this variable should be considered carefully when performing genomic dose response analysis. 

 

Materials and Methods 

Gene Expression Data:  All expression data used in this study were generated by profiling liver 

specimens of rats using the Affymetrix Rat Genome 230 2.0 Array that contains more than 31,000 probe 

sets analyzing transcripts from 15,575 annotated unique genes (NetAffx Annotation File, Release 36; 

URL: https://www.thermofisher.com/order/catalog/product/900505). 

Raw expression data for livers of male Harlan Sprague Dawley or male F344/N rats exposed orally for 5 

days to crude 4-methylcyclohexanemethanol (crude-MCHM),  or neat 4-methylcyclohexanemethanol 

(MCHM), and for kidneys of rats exposed orally to propylene glycol phenyl ether (PPH) were accessed 

from the Gene Expression Omnibus (GEO) as series GSE75655, GSE75657 and GSE75656, respectively. 

Hepatic transcriptomics data for F344/N rats exposed orally to N,N-dimethyl-p-toluidine (DMPT) or p-

toluidine for 5 days [17] were accessed from the GEO  as series GSE100502.  All .cel files available for 

each replicated exposure level and vehicle controls were included in this analysis.  

Crude MCHM represents a mixture of six components in addition to the major component 4-

methylcyclohexanemethanol (MCHM) used as a coal cleaning liquid. Propylene glycol phenyl ether (PPH) 

is an industrial chemical used as a latex coalescent and a solvent for textile dyes. Toxicological 

significance of MCHM and PPH is associated with a recent spill and large scale contamination of drinking 

water in West Virginia [18]. N,N-dimethyl-p-toluidine (DMPT) is an accelerant for methyl methacrylate 

monomers in medical devices that has been shown to induce liver carcinogenesis in male and female 

F344/N rats and B6C3F1 mice in a 2-year oral exposure study. p-toluidine, structurally-related to DMPT, 

is reportedly a liver carcinogen in mice [17]. 

Data processing:  The raw fluorescence signals was processed using the following methods: MAS5.0.0 

(Microarray Affymetrix Suite version 5.0), RMA (Robust Multichip Analysis), GCRMA (GeneChip Robust 

Multichip Analysis) and PLIER (Probe Logarithmic Intensity Error Estimation) [7,19]. Raw data in .cel file 
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format were imported into Expression Console Build 1.3.1.187 (Affymetrix, Santa Clara, CA, USA) and 

processed using MAS5.0 and RMA methods with default configurations. Processing using PLIER method 

was performed with PM-MM background correction and quantile normalization. Processing using 

GCRMA method was implemented in R version 3.5.1 (https://www.R-project.org) using the “GCRMA: 

Background Adjustment Using Sequence Information” R package version 2.52.0 (Bioconductor version 

3.7). PLIER16 values were calculated from PLIER values by adding 16 to each signal intensity value as a 

simple variance-stabilizing transformation. Low-quality microarrays were identified by visual inspection 

of the Relative Log Expression (RLE) boxplots generated by Expression Console (Affymetrix). RLE values 

are calculated for each probeset as the ratio between expression of this probeset in a given microarray 

and the median expression of this probeset across all the arrays in the dataset [20]. Low-quality 

microarrays were removed from the datasets and the raw data were re-normalized by GCRMA, RMA 

and PLIER methods (MAS5.0 uses a per-chip approach and re-normalization was not needed). 

Normalized data used in this study for BMD modelling are available at the URL: 

https://catalog.data.gov/organization/epa-gov 

Differential expression analysis and transcriptomics BMD modeling: Normalized data were imported 

into BMDExpress for Windows, version 2.20 build 0167 BETA 

(https://github.com/auerbachs/BMDExpress-2/releases ) [21]. For all chemicals, differentially expressed 

genes were determined from normalized datasets with all probesets included. To examine the influence 

of non-informative probesets, the analysis was also performed following removal of the probesets that 

showed "Absent" MAS5.0 absolute detection calls across all specimens from MAS5.0 and PLIER16-

normalized data (MAS5.0_noA calls and PLIER16_noAcalls methods).  

Differentially expressed probesets were detected using the Williams trend test (p<0.05; absolute fold 

change 1.5). Benchmark response of 1 SD was used for each feature. Best models among linear, 2nd 

degree polynomial, Hill, power and exponential models (degrees 2-5) were selected based on the lowest 

AIC. For more details on parameters used in BMDExpress, see Supplemental File. Gene set-level BMD 

values were determined by mapping probes that met BMD filtering criteria (Supplemental File) to GO: 

Biological Process ontologies and Reactome Pathways [22]. The most sensitive GO:BP (Gene Ontology 

Biological Process) or Reactome pathways were identified as those with lowest median BMD or BMDL 

values calculated from all mapped probesets and reported as BEPOD or BEPOD/L, respectively.   

Visualization and statistics: Comparison of differentially expressed genes was visualized using Venn 

diagrams (http://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl). All other plots 

were produced using TIBCO Spotfire Analyst version 7.8.0 (TIBCO Software Inc, Palo Alto, CA 94304, 

USA). Agreement between probe-level BMD or BMDL values determined by different normalization 

methods was assessed by Pearson correlation using Partek Genomics Suite version 7.18 (Partek 

Incorporated, St. Louis, MO 63141, USA). Statistical significance of differences among probeset-level 

best model fit BMD and BMDL values for PPH determined by 7 normalization methods were tested using 

Kruskal-Wallis test and the differences were considered statistically significant for two-tail p-

values<0.05. Most sensitive GO:BP gene sets were summarized for visualization using Revigo tool [23].  
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Results 

Assessment of Normalization 

We explored the influence of 7 different microarray normalization methods and two different 

collections of gene sets on estimation of BEPOD/L values for five test articles using public data 

generated by genomic dose-response studies. Methodological differences between 7 used 

normalization methods are summarized in (Supplemental file, Table 1).  

Visual inspection of RLE plots for raw MCHM and PPH data identified low-quality microarrays that 

differed from other microarrays in medians and distributions of their RLE values. These microarrays 

were removed from datasets and differentially expressed genes (probe sets) and BMD values were 

determined from the remaining expression data (Supplemental File, Figures 1-10) 

Effect of normalization on the identification of differentially expressed probe sets and active gene sets 

Different normalization methods identified remarkably different numbers of differentially expressed 

probe sets (DEPSs). The highest numbers of DEPSs for most chemicals were identified by using MAS5.0 

and PLIER methods, while PLIER16 and PLIER16-noAcalls identified considerably less probe sets 

corresponding to differentially expressed genes (Figure 1A). Likewise, GCRMA method produced more 

DEPSs than RMA with the single exception of p-toluidine (Figure 1A).  

The use of MAS5.0 and PLIER also produced the highest numbers of DEPSs with acceptable model fits 

(AMFs; i.e. DEPSs where the global goodness of fit p-value >0.1 and the BMDU/BMDL ratio <40), which 

would be therefore included in the gene set BMD analysis (Figure 1B). Consistent with this observation, 

these two methods produced highest numbers of GO:BP and Reactome Pathways, from which gene-set-

level BMDs and ultimately BEPOD values could be determined (Figure 1C and 1D)). In contrast, RMA, 

GCRMA, PLIER16 and PLIER16_noAcalls methods generally identified fewer DEPSs for which acceptable 

model fits, and therefore all identified fewer “active” GO:BP and Reactome pathways that could be used 

for estimation of BEPOD (Figure 1C and 1D).  

Comparison of overlaps among DEPSs with acceptable model fits across the 7 normalization methods 

was also performed for all data sets. In all chemical-organ sets, the percent of overlapping DEPSs with 

AMFs was quite small (<10%) when all normalizations were compared, suggesting that normalization is 

likely to have a large impact on the qualitative interpretation (e.g., mode of action, AOP assessment) of 

the toxicogenomic effects. To obtain a sense of how great the effect normalization has on the 

identification of DEPS with AMF, an “intersection” set for all normalizations per treatment-chemical pair 

was identified and used as a comparator for each normalization in a given chemical-treatment set 

(Figure 2A). This analysis showed that normalization methods such as MAS5.0 and PLIER consistently 

identified a greater number of DEPSs with acceptable model fits compared with other normalization 

methods. To more accurately quantify the relative increase and DEPSs with AMFs, a fold increase over 

intersection for each normalization in a chemical-organ pair was calculated (Figure 2B). MAS5.0 (median 
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~9.5) and PLIER (median ~7) showed the greatest fold increase in DEPSs with BMDs whereas PLIER16 

normalizations showed the smallest fold increases of intersection (Figure 2B). These findings are 

consistent with the relatively larger number of active GO:BP and Reactome pathways that are identified 

when using MAS5.0 and PLIER normalized data (Figure 1C and D). In addition, these results are 

consistent with analysis of overlaps among differentially expressed genes identified by different 

normalization methods (Supplemental file, Figure 11). 

Effect of normalization on the distribution of probeset BMD and BMDL 

Distributions of probeset-level BMD and BMDL values showed differences across normalization methods 

(Figure 3A and B). For example, differences among distributions of best model fit BMD and BMDL values 

for PPH were found statistically significant (Kruskal-Wallis p<0.0001 for BMD and BMDL). Median 

probeset-level BMD value for MAS5.0 method (BMD=637.4 mg/kg-day) was higher than median BMD 

values determined by all other normalization methods (range: 341.6-583.9 mg/kg-day); however, the 

lowest probeset-level BMDs for PLIER16 and PLIER16_noA (71.1 mg/kg-day) were found substantially 

higher than corresponding values for MAS5.0 and other normalization methods (range: 0.36-19.3 

mg/kg-day) (Figure 3A). Notably, median probe-set level BMD values were highest for MAS5.0 

normalization across all chemical-treatment pairs (Figure 3C). Similar manifestations are present in the 

gene set analysis where the GO:BP median BMD value distributions were higher when using MAS5.0 and 

generally lowest with PLIER16 (Figures 3D- and 3E) 

Effect of normalization on the lowest gene set BMD and BMDL (BEPOD and BEPOD/L) determination 

Selection of different normalization methods influenced determination of lowest median gene set-level 

BMD (BEPOD) and BMDL (BEPOD/L) for different chemicals to a different extent. Within a gene set type 

for any one treatment, the BEPOD/L variation ranged from 1.1 fold (Crude MCHM, Reactome BMDL) to 

up to 30.4 fold (P-toluidine, GO:BP BMDL) due to different normalizations (Figure 4 and Supplemental 

table 2). The mean and median variations in BEPOD/L values for a chemical treatment-gene set pair due 

to different normalizations were 6.2- and 3-fold, respectively.  In general, MAS5.0 normalization tended 

to yield the lowest BEPOD/L values and PLIER16 the highest (Supplemental figure 12). Further, GO:BP 

gene sets tended to produce lower BEPOD/Ls compared to the Reactome Pathway set, likely due to the 

relatively larger number curated gene sets included in the GO:BPs. 

Effect of normalization on the identity of the gene sets with the lowest BMD and BMDL (BEPOD and /L) 

Influence of normalization methods on the identity of the most sensitive GO Biological Processes and 

Reactome pathways varied across datasets (Figure 5A and B). For instance, the same three most 

sensitive GO:BP gene sets (GO:0002933, GO:0070988, and GO:0070989) were found for all 

normalization methods in the case of the MCHM data set (Figure 5A and Supplemental table 3). In 

contrast, a variety of different GO:BP gene sets were identified as the most sensitive when using 

different normalizations of the p-toluidine dataset. While “MAS5.0_noA calls” and “PLIER16_noA calls” 

detected the same most sensitive pathways as their corresponding parental methods MAS5.0 and 

PLIER16, other normalization methods identified seemingly biologically unrelated most sensitive GO:BP 

gene sets such as, e.g.  GO:00043588 “Skin development” (RMA), GO:0044246 “Regulation of 
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multicellular organismal metabolic process” (GCRMA), GO:0007040 “Lysosome organization” (MAS5.0), 

and GO:0048266 “Behavioral response to pain” (PLIER) (Figure 5C). Further, median BMD values 

corresponding to these pathways were also appreciably different (Supplemental table 2).  

Agreement of Gene Set BMD and BMDL values across normalizations 

To determine the effect of normalization on overall agreement of the BMD values, Pearson correlation 

between both probe set BMD values and median BMD values for GO:BP and Reactome pathways in 

each of the five experiments was performed. In nearly all cases, BMD values from probe sets (PS) or 

gene sets exhibited positive correlation, however the range of Pearson correlation coefficients (PCCs) 

varied from as high as 1, with average PCCs for any pair of normalizations mostly falling between 0.2 to 

0.4 (Figure 6A). In most cases, PS BMDs and median BMDs had higher agreement for GO:BP than for 

Reactome pathways. Evaluation of individual pairings of normalizations across experiments 

demonstrated the MAS5.0 group of normalizations and PLIER16 group normalization show high 

intragroup similarity across all PSs and gene set BMDs (Figure 6B). Other pairings such as RMA-MAS5.0, 

PLIER16-MAS5.0, PLIER-MAS5.0 show considerably worse agreement. Notably, the agreement of BMD 

values from Reactome pathways was found to be more negatively affected by changes in normalization 

than BMD values for GO:BP gene sets.  

 

Discussion 

Gene expression profiling has been identified as a promising method to address challenges in chemical 

risk assessment that have traditionally relied on data generated by time and resource consuming animal 

studies.  This promise is especially true for short-term, in vivo, dose-response microarray studies that 

demonstrated potential to produce transcriptomics benchmark doses in good agreement with 

traditional toxicological studies [1,2].  

Unlike RNA-seq where methods for analysis are still evolving, gene expression microarrays are an 

established tool in transcriptomics studies. Considering the relative maturity of data analysis of 

expression microarrays, they will likely continue to play a substantial role in whole-genome expression 

studies particularly in cases where the data will be used for critical decision making (e.g., in regulatory 

context) [1]. 

Analysis of microarray expression data needs to address a non-biological variability introduced by 

sample preparation, labeling, hybridization, fluorescence reading and other technical issues through 

normalization of raw microarray data. Normalization procedures attempt to remove non-biological 

variability from data by exploiting and enforcing known or assumed invariances of the data using 

different approaches [24]. Not surprisingly, numerous normalization methods have been developed for 

different platforms of expression microarrays [7,19]. These methods can produce considerably different 

results of downstream studies utilizing gene expression data, which was previously shown for some 

specific types of analyses, such as class discovery and gene co-expression analyses [9-11]. This study is 

the first to systematically evaluate the effect of microarray normalization on the transcriptomic BMD 
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modeling. Considering the potential influence of normalization methods due to their different 

underlying assumptions and performance, the absence of insight on microarray normalization, 

especially in the context of quantitative toxicogenomics, may be perceived as a gap impairing the use of 

microarray data in chemical risk assessment.  

The purpose of this study was to examine sensitivity of transcriptomics BMD modeling to some 

frequently used methods for microarray data normalization. Our results demonstrate that the use of 

different normalization methods produces considerably different lists of differentially expressed genes. 

Further, we found that the influence of microarray normalization methods on the results of 

transcriptomics BMD modeling is limited on some, but considerable on other datasets. We show that 

the fold differences between BMDL values determined from microarray data normalized by different 

methods can be as low as 1.1 -fold, but also as big as 30.4-fold. These differences are potentially 

noteworthy, because transcriptomic and apical BMD values can differ by factor of ten, when 

transcriptomic values are determined using RMA normalization [3]. Historically, genomic BMD analysis 

using Affymetrix microarrays has relied exclusively on RMA method; however, the findings presented 

here suggest that the appropriateness of the choice of normalization methods should likely be 

considered on a case-by-case basis. Consideration on a case-by-case basis instead of choosing a single 

method as suitable for all data reflects the fact that normalization methods differ in their fundamental 

assumptions, and these assumptions are satisfied by real data to varying degrees. This consideration 

may include behavior of normalized data (e.g., through RLE and MA plots), number of genes and gene 

sets that could be used for determination of BEPOD and BEPOD/L values, emphasis on 

sensitivity/specificity and possibly also examination of quality of probe sets that mapped to the most 

sensitive gene sets and subsequently projected into BEPOD and BEPOD/L values. If decision among 

several normalization methods cannot be made, normalizations that provide lowest BEPOD estimates 

for specific datasets will be interesting in the context of quantitative risk assessment as the most 

protective. In our study, MAS5.0 and MAS5.0_noA methods provided lowest (or next to lowest) BEPOD 

and BEPOD/L estimates for three datasets, GCRMA for one dataset, and all normalization methods were 

equivalent for one dataset.   

Prior comparisons of microarray normalization methods have not produced a clear winner. While some 

investigators found GCRMA to perform as well as or better than other methods [25], others reported 

good performance of PLIER and its superiority over MAS5.0 [26], and some studies favored RMA over 

other methods [27]. In gene expression correlation studies, MAS5.0 reportedly outperformed GCRMA, 

RMA and Li-Wong methods [11]. Normalization methods differ in their precision and accuracy and the 

most precise methods have been shown to be generally less accurate, while more accurate methods 

tend to have low precision [19]. For instance, RMA offers higher precision than MAS5.0 method, which 

introduces high variability particularly into low-intensity probes. Nevertheless, MAS5.0 provides linear 

relationship between signal and transcript concentration even at low transcript concentrations when 

RMA method introduces bias [19], and the use of MAS5.0 alongside with detection calls substantially 

improves its performance to detect differentially expressed genes [28]. Furthermore, relative 

importance of precision and accuracy seems to depend on the purpose of transcriptomics analysis. For 

instance, classification and clustering problems benefit from more precise methods, because in these 
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analyses variability accumulates from all probe sets and quickly impairs their results. While we do not 

attempt to propose a guideline regarding the use of microarray normalization methods, we argue that 

different normalization methods need to be considered as a part of quantitative toxicogenomic studies 

and that sensitivity of reported BEPOD and BEPOD/L values to different normalization, or justification of 

appropriateness of the selected normalization method need to be provided. Consequently, RMA 

pipeline, which has been almost exclusively used for processing of Affymetrix microarray data in 

quantitative toxicogenomics, should not be applied indiscriminately. 

Disclaimer: 

The views expressed are those of the authors and do not necessarily represent the views or policies of 

the U.S. Government, and they may not be used for advertising or product endorsement purposes. 

Figures 

Figure 1. Effect of different normalizations on the number of (A) differentially expressed probe sets 

(DEPSs), (B) probe sets with acceptable BMD estimates, (C) active GO Biological Processes and (D) active 

Reactome Pathways. 

Figure 2. (A) Effect of different normalizations on the number of differentially expressed probe sets 

(DEPSs) with acceptable model fits (AMFs). (B) Fold increases in DEPSs over an intersection of all 

normalizations for any individual chemical-treatment pairs. 

Figure 3. Impact of normalization on the overall distribution of probe set-level BMD (A) and BMDL (B) 

values and GO:BP median BMD (D) and BMDL (E) values in each of the 5 experiments.  

Figure 4. Effect of normalization on the lowest median BMD (BEPOD) and BMDL (BEPOD/L) values for 

GO:BP and Reactome pathways. The distribution of BEPOD and BEPOD/L values across 7 normalizations 

are shown for each of the 5 experiments. Fold variation: max BEPOD to min BEPOD (or max BEPOD/L to 

min BEPOD/L) ratio. Mean and median fold variations are shown for BEPOD/L vales.  

Figure 5. GO Biological Processes (A) and Reactome Pathways (B) that were identified as most sensitive 

when different normalizations were employed. A black cell indicates that the gene set was identified as 

the gene set with the lowest median BMD value. (C) A semantic similarity visualization of the GO:BP 

terms with lowest median BMD values generated using REVIGO (allowed similarity =0.9; database with 

GO term sizes: Rattus norvegicus; similarity measure: SimRel). 

Figure 6. Agreement of BMD values generated by different normalizations. (A) The distribution and 95% 

confidence interval of the Pearson correlation coefficients (PCCs) reflecting agreement of probe set-level 

or gene set-level BMD values between different pairs of normalizations. For each experiment, PCCs for 

21 pairs of normalizations were aggregated and presented separately for best model fit probeset level 

BMDs, lowest median GO:BP BMDs and lowest median Reactome pathway BMDs. (B) Average PCC 

values are shown for 21 different pairings. 
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