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Abstract: 

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer that primarily affects 

adolescents and young adults. Up to now there is only one identified molecular target responsible 

for driving the disease, the chimeric protein encoded by DNAJB1-PRKACA (J-PKAca). Immune 

cells have been identified as key players in liver cancer biology, however the effect of J-PKAca on 

inflammation in the liver microenvironment is not known. Here we report a new zebrafish model of 

FLC with non-invasive live imaging capabilities that allows the study of the interactions between 

immune cells and transformed hepatocytes. We found that overexpression of the dnajb1a-prkcaaa 

fusion gene specifically in hepatocytes induces early malignancy features in FLC transgenic larvae, 

such as increased liver and hepatocyte size. In addition, this aberrant form of PKA promotes a pro-

inflammatory liver microenvironment by increasing the number of neutrophils and macrophages in 

the liver area and inducing macrophage polarization to a pro-inflammatory phenotype. Increased 

caspase-a activity was also found in the liver of FLC transgenic larvae. Importantly, 

pharmacological inhibition of TNFα secretion and caspase-a activity decreased liver size and 

inflammation. Overall, these findings suggest that inflammation may be an early feature of FLC 

involved in progression, and that targeting TNFαand caspase-1 may be beneficial in treating FLC.  
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Introduction: 

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare and understudied liver cancer that primarily 

affects adolescents and young adults. Surgery (resection/liver transplantation) is the most common 

treatment with the best prognosis for FLC patients; however, recurrence is very common in FLC 

patients. Unfortunately, few therapeutic strategies are available, and they are not very effective. 

Most studies have focused on identifying molecular targets that drive the disease and specific FLC 

tumor markers (Dhingra et al., 2010; Graham et al., 2015; Honeyman et al., 2014; Li et al., 2010; 

Oikawa et al., 2015; Ross et al., 2011; Simon et al., 2015). There is only one identified molecular 

target responsible for driving the disease, resulting from a 400kb deletion on chromosome 19, the 

DNAJB1-PRKACA fusion transcript (Honeyman et al., 2014; Simon et al., 2015). Recently 

developed murine models using CRISPR/Cas9 or overexpression of this fusion gene support the 

idea that the fused DNAJB1-PRKACA gene alone is sufficient to drive tumorigenesis in vivo 

(Engelholm et al., 2017; Kastenhuber et al., 2017).  

The biochemical features of the chimeric protein encoded by DNAJB1-PRKACA are a major 

research focus in the field (Graham et al., 2018; Riggle et al., 2016). The DNAJB1-PRKACA 

transcript comprises the J-domain of DnaJB1 (the amino-terminal 69 residues) fused to the 

carboxyl-terminal 336 residues of the PKAcα. Importantly, the chimeric protein, J-PKAcα, is 

enzymatically active (Simon et al., 2015; Xu et al., 2015). However, it is still unclear how the 

physiological properties of this aberrant PKA cause FLC. PKA is a key regulator of both the innate 

and adaptive immune response (Serezani et al., 2008; Skalhegg et al., 2005). Innate immune cells 

play a role in liver cancer development and progression (de Oliveira et al., 2019; Kuang et al., 

2009; Kuang et al., 2011; Li et al., 2015; Yan et al., 2015; Yan et al., 2017), but the effect of J-

PKAcα on immune cells and subsequent modulation of the liver microenvironment and FLC 

progression is still unclear. There is a need for animal models amenable to studying immune cell-

tumor cell interactions with non-invasive live imaging. Therefore, to study immune cell-cancer cell 
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interactions in an intact animal in vivo we developed a FLC zebrafish model. Zebrafish have 

unmatched live imaging capabilities and scalability, and they are amenable to whole-organism-

level experiments and genetic and pharmacological manipulations. Hepatocyte-specific 

overexpression of the dnajb1a-prkcaa fusion transcript promotes early malignancy features in 

zebrafish FLC larvae and formation of masses in adults. In addition, expression of J-PKAcα in 

hepatocytes induces infiltration of neutrophils and macrophages into the liver area and 

macrophage polarization to a pro-inflammatory phenotype in 7 days-post-fertilization FLC 

transgenic larvae.  Caspase-a activity in the liver is also increased. Finally, using a 

pharmacological approach to target inflammation and FLC progression, we found that inhibition of 

TNFα or caspase-a decreased neutrophil and macrophage infiltration and liver size in FLC larvae. 

Overall, our data suggest that inflammation occurs early in FLC larvae and that pharmacological 

inhibition of TNFα secretion and caspase-a activity might be targets to treat inflammation and 

progression in FLC. 
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Results: 

Overexpression of dnajb1a-prkacaa in hepatocytes can induce tumorigenesis in adult 

zebrafish. The DNAJB1-PRKACA chimera is a unique marker for FLC. This chimera is a fusion 

product of a 400Kb deletion on chromosome 19 that occurs in the liver of FLC patients (Fig. 1A). 

Expression of the DNAJB1-PRKACA fusion transcript is sufficient to drive tumorigenesis in vivo in 

murine models (Engelholm et al., 2017; Kastenhuber et al., 2017). Zebrafish has two homologous 

genes for dnajb1, dnajb1a (ENSDARG00000099383) and dnajb1b (ENSDARG00000041394), 

located in chromosomes 3 and 1 respectively. In addition, there are also two homologous genes 

for prkaca, prkacaa (ENSDARG00000100349) and prkacab (ENSDARG00000016809), also 

located in chromosomes 3 and 1 respectively. Here, using the hepatocyte-specific fabp10a 

promoter, we overexpressed a zebrafish dnajb1a-prkacaa chimera, with 91.6% identity and 97% 

similarity with its human counterpart (Fig. 1B). Using the transposase system, we generated a 

stable line, referred to as Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerullean). This was generated in 

the pigment-deficient Casper background to enable non-invasive live imaging at later 

developmental stages. To facilitate liver visualization, we outcrossed the FLC line to a transgenic 

line expressing egfp-l10a, Tg(fabp10a:egfp-l10) (Table 1) (Fig. 2A). To determine if overexpression 

of dnajb1a-prkacaa fusion transcript was able to induce tumorigenesis in zebrafish, we dissected 

livers from 8 and 12-month-old FLC and control fish and performed a blinded, conventional 

histopathological evaluation of hematoxylin and eosin-stained sections. Compared with controls, 

FLC livers are larger and display mildly disrupted hepatocellular architecture, characterized by 

increased thickness of hepatocellular cords.  Hepatocytes from FLC livers also have vesiculated 

chromatin and prominent and sometimes multiple nucleoli (Fig.2 C).  In 1/8 fish at 8 months and an 

additional 1/7 fish at 12 months (Fig. 2B), unencapsulated masses are noted within the hepatic 

parenchyma.  Masses lack typical hepatic architecture and consist of disorganized sheets of well-

differentiated hepatocytes traversed by blood vessels (Fig. 2C). Staining with Masson’s trichrome 
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yielded no difference in collagen deposition between FLC livers and controls (data not shown). Our 

findings suggest that dnajb1a-prkacaa overexpression specifically in hepatocytes can induce 

features associated with tumorigenesis in vivo in zebrafish. 

FLC transgenic larvae display early malignancy features. Zebrafish larvae are a valuable 

model to study the early cellular and molecular events involved in liver cancer progression (de 

Oliveira et al., 2019; Huang et al., 2017; Nguyen et al., 2012; Yan et al., 2015; Yan et al., 2017; 

Zhao et al., 2016). Next, we wanted to determine if FLC transgenic larvae displayed early 

malignancy features. Liver size is a common measurement used to quantify liver disease 

progression (de Oliveira et al., 2019; Evason et al., 2015; Yan et al., 2015). Liver area and liver 

volume were increased in 7 days post-fertilization (dpf) FLC larvae compared to control siblings 

(Fig. 3A-C; Suppl. Movie S1 and S2). We next took advantage of the optical accessibility of 

zebrafish larvae to evaluate the size of hepatocytes in vivo by non-invasive live imaging. We 

outcrossed the FLC transgenic line, Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerullean), with a line that 

expresses Kras in the hepatocyte membrane, Tg(fabp10a:mCherry-Kras) (Table 1). In FLC larvae, 

we observed an increase of hepatocytes area and diameter (Fig.3 D-F). Altogether, these data 

suggest that ectopic expression of dnajb1a-prkacaa fusion in hepatocytes induces hepatomegaly 

and that 7dpf FLC larvae can be used to study early FLC progression.  

Aberrant PKA induces innate immune cell infiltration in the liver area.  

Increased infiltration of neutrophils and macrophages has been associated with liver cancer 

progression (de Oliveira et al., 2019; Yan et al., 2015). It is still unclear how J-PKAca affects the 

immune cell composition in the liver microenvironment. We next outcrossed the FLC transgenic 

fish with labeled hepatocytes, Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerullean)/(fabp10a:EGFP-l10), 

with the double transgenic neutrophil and macrophage labeled line, Tg(mpeg1-mCherry-

caax/lyzc:bfp) (Table 1) (Fig. 4A). We found that overexpression of the aberrant PKA increases 

both neutrophil and macrophage infiltration to the liver area in FLC transgenic larvae compared to 
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control siblings (Fig. 4A-C). Time lapse-movies of the liver microenvironment area (Suppl. Movie 

S2) revealed robust recruitment of neutrophils to livers of FLC transgenic larvae compared to 

control siblings at this early phase. Livers of FLC larvae also exhibited an increased presence of 

macrophages in association with transformed hepatocytes that exhibited a round shape (Suppl. 

Movie S3 and S4). Overall, these data suggest that the presence of J-PKAca triggers an 

inflammatory response in the liver of FLC larvae.  

FLC transgenic larvae have increased pro-inflammatory macrophages and Caspase-a 

activity in the liver. In our previous work, we found that the presence of pro-inflammatory 

macrophages in the liver microenvironment at early stages of progression in HCC larvae is 

associated with increased tumorigenesis in a model of non-alcoholic fatty liver disease-associated 

HCC (NAFLD-associated HCC) (de Oliveira et al., 2019).  Nothing is known about the effect of J-

PKAca on macrophage polarization in vivo. To identify pro-inflammatory macrophages, we 

outcrossed the FLC transgenic line, Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerullean), with a reporter 

line of TNFα expression, Tg(tnfa:egfp) (Table 1). TNFα is a main molecular player in liver disease 

progression (Jang et al., 2014) and is mostly expressed by resident macrophages in the liver 

(Nakashima et al., 2013; Tosello-Trampont et al., 2012). We found that FLC transgenic larvae have 

increased numbers of TNFα-positive macrophages compared to control siblings (Fig. 4A-B). In a 

recent study with a FLC murine model, a ssGSEA analysis for select functionally annotated gene 

sets showed an upregulation of genes associated with the inflammasome complex ((Kastenhuber 

et al., 2017). We therefore sought to determine if dnajb1a-prkacaa fusion transcript induces 

inflammasome activation via the activation of caspase-a, the zebrafish homologue for human 

caspase-1 (Angosto et al., 2012; Tyrkalska et al., 2016). Using FAM-FLICA assay, we found that 

caspase-a activity is significantly increased in the liver of FLC transgenic larvae compared to 

controls (Fig. 4C-D). Overall, our data suggest that J-PKAca promotes a pro-inflammatory liver 

microenvironment at early stages of FLC progression. 
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Pharmacological inhibition of TNF-alpha secretion and caspase-a activity decreases 

inflammation and FLC progression. Zebrafish larvae are a powerful tool for small molecule 

screening in disease models(Wiley et al., 2017). Current therapeutic options for FLC patients are 

limited. Therefore, we decided to use a pharmacological approach to target inflammation and 

address its effect on FLC early progression. Our findings demonstrated an increase of pro-

inflammatory macrophages (TNF-alpha positive) and caspase-a activity in the liver of FLC larvae 

(Fig. 4).  Therefore, we next tested if inhibition of TNF-alpha secretion and caspase-a with 

pentoxifylline (PTX) and Ac-YVAD-CMK (C1INH), respectively, affected innate immune cell 

infiltration and liver size in FLC transgenic larvae. We observed that both treatments significantly 

decreased liver size as well as macrophage and neutrophil recruitment to the liver of FLC 

transgenic larvae (Fig. 5A-D). We also tested the effects of metformin on FLC. We and others have 

shown that metformin decreases inflammation and associated liver disease progression (de 

Oliveira et al., 2019; Li et al., 2019; Satapati et al., 2015). Surprisingly, we found that metformin 

treatment of FLC larvae did not affect liver size or macrophage infiltration (Fig. 5A-C). However, a 

small decrease in neutrophil infiltration was observed in FLC larvae treated with metformin (Fig. 5 

A and D). Overall, our data suggest that TNF-alpha secretion and caspase-a activity mediate FLC-

associated liver inflammation and may represent a new target to limit FLC progression.  
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Discussion 

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare pediatric liver cancer with few effective 

therapeutic options. The fusion chimera DNAJB1-PRKACA (J-PKAcα) has been identified as a 

unique driver of FLC (Graham et al., 2015; Honeyman et al., 2014; Simon et al., 2015). Here we 

report a zebrafish model for FLC generated by hepatocyte-specific ectopic expression of the 

zebrafish form of DNAJB1-PRKACA, dnajab1a-prkacaa. We find that the dnajab1a-prkacaa fusion 

transcript induces early hepatomegaly and inflammation in the liver area. One striking feature is 

that onset of inflammation is early and is characterized by the presence of TNFa positive 

macrophages, a feature that is not present in the standard catenin model of HCC (de Oliveira et 

al., 2019). In addition, this model provides a powerful tool to identify small molecules that alter 

inflammation and liver enlargement induced by dnajab1a-prkacaa. 

Our findings show that the J-PKAcα fusion is sufficient to induce early stages of tumorigenesis, 

including liver enlargement and inflammation. However, there was a low incidence of mass 

formation in adult fish observed with dnajab1a-prkacaa. FLC transgenic fish develop masses, 

suggesting that, as in murine models, overexpression of dnajab1a-prkacaa is sufficient to drive 

tumorigenesis in vivo. However, FLC incidence was surprisingly low (1/8 at 8-months of age and 

1/7 at 12-months). This may be due to low expression level or use of only one homologue of the 

DNAJB1 and PRKACA genes, the alpha form, dnajab1a-prkacaa, due to its higher identity and 

similarity with the human DNAJB1-PRKACA. However, the beta form dnajb1b-prkacab may have 

an important role in the liver acting in parallel with the alpha form and therefore affecting different 

pathways.  In the future, it would be interesting to investigate whether the incidence of FLC 

tumorigenesis in zebrafish is increased by overexpression of dnajb1b-prkacab alone or combined 

with dnajab1a-prkacaa. In addition, as in the murine model, the masses found in FLC transgenic 

zebrafish lack markers of fibrosis seen in human FLC. This feature might be a crucial step for the 

progression of the disease and might be achieved with the use of fibrotic simulants (Kastenhuber 
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et al., 2017). It is also possible that the activation of additional signaling pathways such as WNT/β-

catenin (Kastenhuber et al., 2017) might be used to enhance dnajb1a-prkacaa tumorigenesis in 

vivo in zebrafish.  

The function and activity of J-PKAcα has been another major focus of study in the field since drugs 

that target PKA activity could be a potential therapeutic option for FLC patients. Up to now, most 

data suggest that J-PKAcα fusion is enzymatically active and necessary for tumorigenesis in vivo 

(Kastenhuber et al., 2017). PKA activity mostly exerts an anti-inflammatory role (Campo et al., 

2012) and is a major regulator of innate immune cells (Serezani et al., 2008). Several clinical drugs 

that target cAMP/PKA signaling pathway increase cAMP and are used to reduce inflammation and 

treat inflammatory disorders (Banner and Trevethick, 2004; Serezani et al., 2008). Importantly, 

immune cells are a main source of trophic support for transformed cancer cells and can play a role 

in the early progression of cancer (Feng et al., 2010; Giese et al., 2019; Powell and Huttenlocher, 

2016) including liver cancer (Yan et al., 2015; Yan et al., 2017; Zhao et al., 2016). The role of J-

PKAcα on the innate immune system is completely unclear. Using fluorescent labeled transgenic 

zebrafish larvae as a model, we and others are able to visualize the early interactions between 

immune cells and transformed hepatocytes and study the immune mechanisms involved in liver 

disease and cancer progression through non-invasive live imaging (de Oliveira et al., 2019; Yan et 

al., 2015; Yan et al., 2017). In theory, we would predict that the chimeric protein J-PKAcα would 

inhibit the innate immune response.  Surprisingly, we observed the opposite- increased innate 

immune inflammation in our FLC transgenic model with increased neutrophil and macrophage 

infiltration into the liver, as well as.an increase of TNFα-positive macrophages. These data suggest 

that the J-PKAcα fusion protein promotes a pro-inflammatory liver microenvironment. The 

presence of uncontrolled fibrosis (Ward and Waxman, 2011) , NF-κB activation (Li et al., 2010) and 

increased levels of CD68 (Ross et al., 2011), usually known as a cytoplasmic marker of 

macrophages and neutrophil granules (Ross et al., 2011), also suggests the presence of 
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leukocytes in the liver microenvironment of FLC patients. Furthermore, dual oxidase 1 (DUOX1) is 

positively regulated by the cAMP/PKA cascade (Rigutto et al., 2009). DUOX1 is a main source of 

reactive oxygen species (ROS) production, such as hydrogen peroxide (H2O2), in epithelial tissues, 

including the liver. DUOX1 is overexpressed in liver tumors and further has been identified as a 

potential prognostic marker in HCC patients (Chen et al., 2016; Lu et al., 2011). H2O2 induces 

leukocyte recruitment and an inflammatory response after tissue damage (Candel et al., 2014; de 

Oliveira et al., 2015; de Oliveira et al., 2014; Niethammer et al., 2009; Razzell et al., 2013; Yoo et 

al., 2011) but also at early stages of cancer progression (Feng et al., 2010). Interestingly, murine 

and human FLC tumors show up-regulation of genes associated to ROS pathways, including 

enzymes involved in detoxifying ROS (Kastenhuber et al., 2017). It would be interesting to 

investigate if DUOX1/H2O2 signaling pathways are involved in the observed pro-inflammatory effect 

of J-PKAcα in our FLC zebrafish model. Moreover, we found increased caspase-a activity in the 

liver of FLC larvae, indicating increased activation of the inflammasome, in agreement with 

previous findings in human and murine FLC tumors (Kastenhuber et al., 2017).  

Recurrence after complete surgical resection is common in FLC patients (Kassahun, 2016) . The 

therapeutic strategies available for these patients with FLC relapse are limited and often not 

effective. Therefore, the discovery of new and improved therapeutic targets is a primary goal in this 

field. FLC zebrafish larvae models could be a powerful tool to aid in the identification of new drug 

targets using small molecule screening. Importantly, zebrafish larvae models display similar 

features of liver cancer progression (Goessling and Sadler, 2015; Huo et al., 2019; Lam et al., 

2006; Li et al., 2014; Li et al., 2013; Wrighton et al., 2019; Zheng et al., 2013). Here we used a 

pharmacological approach to inhibit TNFα secretion and caspase-a activity in FLC larvae, since 

both TNFα and caspase activity were increased.  We found that inhibition of both TNFα secretion 

and caspase-a activity both reduced innate immune cell infiltration in the liver as well as liver size, 

an established marker for liver disease progression (de Oliveira et al., 2019; Evason et al., 2015; 
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Lam et al., 2006; Nguyen et al., 2012; Zheng et al., 2014). These findings support the potential of 

these approaches to reduce inflammation and decrease FLC progression. Further studies, with 

other FLC in vitro and in vivo models are needed to confirm the potential of these drugs to reduce 

FLC progression or recurrence.  

Here we report a new FLC zebrafish model with unmatched non-invasive live imaging capabilities 

and scalability amenable to high-throughput drug screening. Overall, our findings support the idea 

that non-resolving inflammation might be fueling the liver microenvironment and contributing to 

FLC pathology. In addition, we found that pharmacological inhibition of TNFα secretion and 

caspase-a activity might be targets to treat inflammation and progression in FLC. In the future, it 

will be interesting to address how the FLC pro-inflammatory liver environment modulates the 

adaptive immune system; zebrafish models might be key tools in unraveling such mechanisms and 

finding new and improved therapeutic targets for FLC. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/781583doi: bioRxiv preprint 

https://doi.org/10.1101/781583
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Materials and Methods: 

Zebrafish husbandry and maintenance 

All protocols using zebrafish in this study were approved by the University of Wisconsin-Madison 

Institutional Animal Care and Use Committee. Adult zebrafish and embryos up to 5 days post-

fertilization (dpf) were maintained as described previously (de Oliveira et al., 2019). At 5 dpf, larvae 

were transferred to 15cm petri dishes and kept in E3 media without methylene blue until 7dpf. For 

all experiments, larvae were anesthetized in E3 media without methylene blue containing 0.16 

mg/ml Tricaine (MS222/ethyl 3-aminobenzoate; Sigma-Aldrich). Zebrafish lines used are 

summarized in Table 1. 

Generation of Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerulean), Tg(fabp10a:egfp-l10a) and 

Tg(fabp10a:mcherry-Kras)  lines 

For Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerulean) , DNA coding sequence for dnajb1a-prkacaa 

fusion gene was PCR amplified from a plasmid synthetized by IDT using following primers:  

Fw: 5’- CTTTGTGTTGATCGGGTACCGCCACCATGGGAAAAGATT -3’ 

Rv: 5’- CTGATTATGATCTAGACTAGAATTCAGCAAACTCCT -3’ 

Resulting PCR products were gel purified, and cloned using InFusion kit (Clontech) into an 

expression vector containing fabp10a promoter, minimal Tol2 elements for efficient integration and 

an SV40 polyadenylation sequence (Yoo et al., 2012), previously digested with KpnI and XbaI and 

gel purified. F0 Casper larvae were obtained by injecting 3 nL of 12.5 ng/mL DNA plasmid and 

17.5 ng/mL in vitro transcribed (Ambion) transposase mRNA into the cell of one-cell stage embryo. 

F0 larvae were raised to breeding age and crossed to adult Casper zebrafish. Founders were 

screened for Cerullean positive eye using a Zeiss Axio Zoom stereomicroscope (EMS3/SyCoP3; 

Zeiss; PlanNeoFluar Z 1X:0.25 FWD 56mm lens).  
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For Tg(fabp10a:egfp-l10a) DNA coding egfp-l10a was PCR amplified from a plasmid (Davenport et 

al., 2016), using following primers:  

Fw: 5’- CTTTGTGTTGATCGggtaccGCCACCATGGTGAGCAAGGGCGAGGA -3’ 

Rv: 5’- CTGATTATGATCTAGACTAATACAGACGCTGGGGCTTGC -3’ 

Resulting PCR products were gel purified and cloned using InFusion kit (Clontech) into an 

expression vector containing fabp10a promoter sequence, minimal Tol2 elements for efficient 

integration and an SV40 polyadenylation sequence, previously digested with KpnI and XbaI and 

gel purified. Casper fish were injected and screened for EGFP expression in the liver as described 

above.  

For Tg(fabp10a:mCherry-Kras) DNA coding Kras was PCR amplified from a plasmid (Freisinger 

and Huttenlocher, 2014), using following primers:  

Fw: 5’- ACGAGCTGTACAAGTCCGGAATGACTGAATATAAACTTGTGGTGGTG -3’ 

Rv: 5’- CTGATTATGATCTAGATTACATAATTACACACTTTGTCTTTGACTTCT -3’ 

Resulting PCR products were gel purified and cloned using InFusion kit (Clontech) into an 

expression vector containing fabp10a promoter sequence, mCherry sequence, minimal Tol2 

elements for efficient integration and an SV40 polyadenylation sequence, previously digested with 

BspEI and XbaI and gel purified. Casper fish were injected and screened for mCherry expression 

in the liver as described above.  

Liver dissection and Histology 

Adult zebrafish (8 and 12 months of age) were euthanized by tricaine overdose and the livers 

removed by dissection.  Livers were fixed in 10% formalin overnight.  Samples were coded to 

facilitate blinded histopathologic evaluation.  The livers were paraffin-embedded and 4um sections 
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were prepared and stained with hematoxylin and eosin.  Slides were evaluated by a board-certified 

veterinary pathologist (RH). 

Live imaging 

All live imaging was performed using a zWEDGI device as previously described (Huemer et al., 

2017). For time-lapse imaging, the loading chamber was filled with 1% low melting point agarose 

(Sigma) in E3 to retain the larvae in the proper position. Additional Tricaine/E3 was added as 

needed. All images were acquired with live larvae with the exception of FLICA staining. Images 

were acquired on a spinning disk confocal microscope (CSU-X; Yokogawa) with a confocal 

scanhead on a Zeiss Observer Z.1 inverted microscope equipped with a Photometrics Evolve 

EMCCD camera using a Plan-Apochromat 20x/0.8 M27 air objective with a 5μm interval. For 

larvae with large livers, 2x2 tile images were taken.  

Liver and hepatocytes size measurements. 

For liver size measurements, 7dpf Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerulean) were outcrossed 

with Tg(fabp10a:egfp-l10a). For hepatocyte measurements, Tg(fabp10a:dnajb1a-

prkacaa_cryaa:Cerulean) were outcrossed with Tg(fabp10a:mCherry-Kras). Liver area, liver 

volume, hepatocyte area and hepatocyte diameter were measured as previously described (de 

Oliveira et al., 2019). 

Quantification of neutrophil and macrophage recruitment  

To quantify leukocyte recruitment we outcrossed double transgenic FLC line carrying the EGFP-

L10a as a liver marker, Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerulean)/(fabp10a:egfp-l10a), with a 

double-transgenic line with labelled macrophages and neutrophils, Tg(mpeg1-mCherry-

caax/lyzc:bfp). After live imaging, Z series images were reconstructed in 2D maximum intensity 

projections (MIP) on ZEN pro 2012 software (Zeiss). Neutrophils, macrophages and counted within 
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50μm from liver. Area of the liver was measured in each larva and used to normalize number of 

innate immune cells per liver area.  

TNF�positive macrophages imaging and quantification 

To assess TNFα-positive macrophages in the liver area we outcrossed the FLC line, 

Tg(fabp10a:dnajb1a-prkacaa_cryaa:Cerulean), with a double transgenic line labelled for 

macrophages and expressing EGFP under the TNFα promoter, (Tg(mpeg1:mCherry-

caax/TNFα:egfp))(Miskolci et al., 2019). After live imaging, Z series images were 3D reconstructed 

on Imaris software. Using the Imaris spots tool, total macrophages (mpeg1:mCherry-caax positive 

cells) were counted within 50μm from liver. TNFα positive macrophages (double positive 

mpeg1:mcherry/Tnfα:egfp cells) were quantified similarly. Z series images were reconstructed on 

Zen software to create maximum intensity projections. 

Drug treatment 

Larvae were treated with metformin (MET), pentoxifylline (PTX) and Ac-YVAD-CMK (C1INH) as 

described previously (de Oliveira et al., 2019) (REF Sylwia paper). Briefly, we dissolved metformin 

(Enzo Life Sciences) in E3 without methylene blue at a final concentration of 50 µM. Pentoxifyline 

and AC-YVAD-CMK were first reconstituted in DMSO and later diluted 1000x in E3 without 

methylene blue at final concentration of 50 µM and 100 µM, respectively. Larvae were treated with 

these drugs from 3 to 7dpf. Drugs were freshly prepared and replaced daily.  

Caspase-1 activity assay 

Larvae with 6dpf were incubated with FAM-FLICA (Immunochemistry Technologies) at 1:300 for 

12h. Next day, larvae were washed with E3 and fixed in PIPES/1.5%Formaldehyde buffer at 4C.  

overnight. Larvae were washed 3 times with PBS 1x and livers were carefully dissected with the 

use of forceps on a stereomicroscope (Leica MZ 9.5). After dissection, livers were immersed in 

PBS and images were acquired on a spinning disk confocal microscope (CSU-X; Yokogawa) with 
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a confocal scanhead on a Zeiss Observer Z.1 inverted microscope equipped with a Photometrics 

Evolve EMCCD camera using a EC Plan-Neofluor 40x/0.75 M27 air objective with a 1μm interval. 

Mean Intensity fluorescence was measured on maximum intensity projections using Image J. 

Statistical analysis  

All data plotted comprise at least three independent experimental replicates. Estimated Marginal 

Means (EMMs) analysis in R (www.r-project.org) (Vincent et al., 2016) was performed on pooled 

replicate experiments, using Tukey method when comparing more than two treatments. Graphical 

representations were done in GraphPad Prism version 6.  
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Table 1: Zebrafish lines used in this study 

Fish lines ZFIN 
reference Target Genetic 

Background Reference 

Casper roya9; 
mitfaw2 - Casper 

White, RM  
et al., 
2008 

Tg(fabp10a: dnajb1a-
prkacaa_cryaa:Cerrulean) - 

Hepatocytes 
(screened for 
eye marker) 

Casper This paper 

Tg(fabp10a: egfp-L10a) - Hepatocyte 
Ribosomes 

Casper This paper 

Tg(fabp10a: dnajb1a-
prkacaa_cryaa:Cerrulean/fabp10a:egfp-

l10a) 
- Hepatocytes Casper This paper 

Tg(fabp10a: mCherry-Kras) - 
Hepatocytes 
membrane Casper This paper 

Tg(mpeg1-mCherry-caax) - Macrophages Albinos 
Bojarczuk, 

A et al.; 
2016 

Tg(lyzc:bfp) - Neutrophils AB 
De 

Oliveira et 
al., 2019 

Tg(mpeg1-mCherry-caax/lyzc:bfp) - 
Macrophages 

and 
Neutrophils 

AB This paper 

Tg(tnfa:gfp/mpeg1:mCherry-caax)) - 

Macrophages 
and TNFa 
expressing 

cells/tissues 

AB/Albinos 
Miskolci, V 

et al., 
2019 
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Figure Legends: 

Figure 1: Schematic of DNAJB1-PRKACA chimera in FLC. (A) Chromosomic position, 

Exon/Intron diagram of dnajb1 and prkaca genes, and fusion product after heterogenic deletion of 

400Kb observed in FLC patients; (B) Clustal Omega alignment of human (Hs) and zebrafish (Dr) 

aa sequences corresponding to Exon 1 of Dnajb1a (blue) and to Exon 2-10 of Prkacaa (red) 

(Identity: 91.6% , Similarity: 97%). 

Figure 2: Overexpression of Dnajb1a-Prkacaa can induce liver masses at adult stages. (A) 

Representative maximum intensity projections of 7day post-fertilization (dpf) FLC larvae 

(Tg(fabp10a:dnajb1a-prkacaa)/Tg(fabp10a:egfp-L10a)) and Control siblings (Tg(fabp10a:egfp-

L10a)); (B) Chi-square graphs showing percentage of larvae with masses; (C) Representative 

images of H&E staining of the livers of 12 month old fish at 10X and 40X magnification. Yellow 

outlines delineate masses.  

Figure 3: Overexpression of Dnajb1a-Prkacaa modulates liver morphology. (A) 

Representative maximum intensity projections of 7dpf FLC larvae (Tg(fabp10a:dnajb1a-

prkacaa)/Tg(fabp10a:egfp-L10a)) and Control siblings (Tg(fabp10a:egfp-L10a)); (B-C) Graphs 

showing liver area (B) and liver volume (C). (D) Representative maximum intensity projections of 

7dpf FLC larvae (Tg(fabp10a:dnajb1a-prkacaa)/Tg(fabp10a:mCherryKras)) and Control siblings 

(Tg(fabp10a:mCherryKras)).; (E-F) Graphs showing hepatocyte area (E) and diameter (F). Scale 

bar= 20μm. Data are from at least 3 independent experiments. Analysis performed in EEM in R. 

Dot-plots show mean ± SEM, p values are shown in each graph.  

Figure 4: Overexpression of Dnajb1a-Prkacaa induces liver inflammation. (A) Representative 

maximum intensity projections of 7dpf FLC larvae (Tg(fabp10a:dnajb1a-prkacaa)/Tg(fabp10a:egfp-

L10a)/Tg(lyzC:bfp)/Tg(mpeg1:mCherry-caax)) and Control siblings (Tg(fabp10a:egfp-

L10a)/Tg(lyzC:bfp)/Tg(mpeg1:mCherry-caax)); (B-C) Graphs showing macrophage (B) and 
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neutrophil (C) density at liver area. Scale bar= 40μm. Data are from at least from 3 independent 

experiments. Analysis performed in EEM in R. Dot-plots show mean ± SEM, p values are shown in 

each graph.  

Figure 5: FLC larvae show increased pro-inflammatory macrophages and increased 

Caspase 1 activity at the liver area. (A) Representative maximum intensity projections of 7dpf 

FLC larvae (Tg(fabp10a:dnajb1a-prkacaa_cryaa;Cerulean)/Tg(tnfa:gfp)/Tg(mpeg1:mCherry-caax)) 

and Control siblings (Tg(tnfa:gfp)/Tg(mpeg1:mCherry-caax)); (B) Graph showing ratio of Tnfα-

positive macrophage over total macrophages at liver area (C) Representative maximum intensity 

projections of 7dpf FLC larvae (Tg(fabp10a:dnajb1a-prkacaa_cryaa;Cerulean) and Control wild 

type siblings; (D) Graph showing mean intensity fluorescent quantification  at liver area; Scale bar= 

20μm. Data are from at least from 2 independent experiments. Analysis performed in EMM in R. 

Dot-plots show mean ± SEM, p values are shown in each graph. a.u.f= arbitrary units of 

fluorescence. 

Figure 6: Pharmacological inhibition of TNF-alpha secretion and Caspase-a activity reduces 

inflammation and FLC progression. (A) Representative maximum intensity projections of 7dpf 

FLCa larvae (Tg(fabp10a:dnajb1a-prkacaa)/Tg(fabp10a:egfp-

L10a)/Tg(lyzC:bfp)/Tg(mpeg1:mCherry-caax) and Control siblings (Tg(fabp10a:egfp-

L10a)/Tg(lyzC:bfp)/Tg(mpeg1:mCherry-caax)) treated with 50μM Pentoxifylline (PTX), 50μM 

Metformin (MET) and 100 μM Ac-YVAD-CMK (C1INH). (B-C) Graphs showing liver area (B) 

macrophage and (C) neutrophil density. Scale bar= 40μm. Data are from at least 3 independent 

experiments. Analysis performed in EEM in R. Dot-plots show mean ± SEM, p values are shown in 

each graph.  
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