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Abstract

Thoughtful use of simplifying assumptions is crucial to make systems biology
models tractable while still representative of the underlying biology. A useful
simplification can elucidate the core dynamics of a system. A poorly chosen
assumption can, however, either render a model too complicated for making
conclusions or it can prevent an otherwise accurate model from describing ex-
perimentally observed dynamics.

Here, we perform a computational investigation of linear pathway models
that contain fewer pathway steps than the system they are designed to emulate.
We demonstrate when such models will fail to reproduce data and how detri-
mental truncation of a linear pathway leads to detectable signatures in model
dynamics and its optimised parameters.

An alternative assumption is suggested for simplifying linear pathways. Rather
than assuming a truncated number of pathway steps, we propose to use the as-
sumption that the rates of information propagation along the pathway is homo-
geneous and instead letting the length of the pathway be a free parameter. This
results in a three-parameter representation of arbitrary linear pathways which
consistently outperforms its truncated rival and a delay differential equation
alternative in recapitulating observed dynamics.

Our results provide a foundation for well-informed decision making during
model simplifications.

1 Author summary

Mathematical modelling can be a highly effective way of condensing our un-
derstanding of biological processes and highlight the most important aspects of
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them. Effective models are based on simplifying assumptions that reduce com-
plexity while still retaining the core dynamics of the original problem. Finding
such assumptions is, however, not trivial.

In this paper, we explore ways in which one can simplify long chains of simple
reactions wherein each step is linearly dependent on its predecessor. After gen-
erating synthetic data from models that describe such chains in explicit detail,
we compare how well different simplifications retain the original dynamics. We
show that the most common such simplification, which is to ignore parts of
the chain, often renders models unable to account for time delays. However,
we also show that when such a simplification has had a detrimental effect, it
leaves a detectable signature in its optimal parameter values. We also propose
an alternative assumption which leads to a highly effective model with only
three parameters. By comparing the effects of these simplifying assumptions in
thousands of different cases and for different conditions we are able to clearly
show when and why one is preferred over the other.

Introduction

Biochemical reaction networks are often complicated and any attempt to de-
scribe them using mathematical models relies heavily on simplifying assump-
tions (1). Effective models are often built upon simplifying assumptions that
avoids over-fitting by using as few free parameters as possible while still captur-
ing the main properties of the biological system (2, 3). Thoughtful assumptions,
as well as robust methods to identify parameter values, and (semi) global ana-
lysis of dynamical behaviour within model spaces, are all essential when evalu-
ating models (4–7). However, assumptions that are beneficial in one setting may
be detrimental in another and it is important, although non-trivial, to identify
when this happens (8).

Multi-step processes are ubiquitous in biology. Examples are transcription
and translation, where an RNA polymerase or a ribosome can perform thousands
of sequential reactions before a protein is produced. Yet, in gene-regulatory
networks, this is often reduced to a one or two-step reaction of a transcription
factor which may lead to an mRNA before it leads to a finished protein (e.g.
1, 9–11). Another example is kinase cascades, where the product of a kinase
triggers the action of downstream kinases (12). A well known such cascade can
be found in the MAP kinases, which are triggered by the MAP kinase kinases,
which in turn is triggered by the MAP kinase kinase kinases (13–18). There
are also molecules which must undergo sequential multi-site phosphorylations
before they are activated and can pass on any signalling (19, 20). This is, for
example, important for the Drosophila circadian clock protein CLOCK who’s
inactivity, activity, and degradation are thought to be governed by its sequen-
tial states of phosphorylation (21). Sequential multi-step reactions can also
be important for signal perception and transduction pathways. One example
is the receptor-like kinase FLAGELLIN SENSING 2 which, upon detecting of
a pathogen, triggers a long chain of phosphotransfers, phosphorylations, and
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subcellular re-localisations that eventually leads to an immune response in Ar-
abidopsis thaliana (22, 23). Another well studied system is the TGFβ growth
factor, which similarly triggers a sequence of phosphorylation steps before af-
fecting the expression of downstream genes (24–26).

Linear pathways represent a large class of multi-step reactions which are both
biologically relevant and theoretically approachable. Multi-step pathways can
be represented as a chain of state changes where the activation rate of one state
is dependent on the activity of the previous state. The mechanisms by which
one active state regulates the activation of the next may be complicated but it
can be useful to approximate these as being linear. This is partly since it is a
minimally complex assumption and partly because many biochemical reactions
appear to be linear as long as they operate in a weakly activated manner, far
from saturation (12, 27).

Linear pathways are dynamically important and can entirely change the
qualitative behaviour of a model. Their main effects are to supply signal ampli-
fication/dampening and to provide delays in the signalling (12, 28). The amp-
litude modulation of the signalling is governed by the ratio between the ac-
tivation and inactivation rates; a pathway step will provide amplification if its
activation rate exceeds its inactivation rate. The time-delay, on the other hand,
is governed by the inactivation rates and by the length of the pathways (12, 27).
These time-delays can have a significant impact on how a biological system
works. A striking example of this is that delays are required for oscillations to
be possible (29, 30).

The modelling of linear pathways pose a specific set of challenges. Full
enumeration of the linear pathway greatly increases model complexity yet add
disproportionately little in terms of dynamical range. However, even if the
individual steps are of little dynamical significance, the aggregate effect of the
full pathway may not be. There is therefore a need for a simplifying assumption
which reduces the complexity of the linear pathway while still representing its
total effect.

A common way of simplifying linear pathways is to ignore most of the re-
action steps and assume that a model can recapitulate their effect using only
one or a few steps (3). While this assumption is often implicit, it is easy to
find examples where it has been used to simplify multi-step reactions such as
protein production (e.g. 7, 31–33); protein-to-protein signalling networks (e.g.
7, 32–34); protein modifications such as phosphorylations, methylations, and
ubiquitinations (e.g. 33, 34); and more. However, despite the frequent use of
such pathway truncation, little effort has been made to understand its general
consequences.

An alternative simplification is to represent the effect of the linear pathway
using a fixed time-delay in the model. Focusing on this aspect of the linear path-
way and assuming that all other aspects are negligible allows for a terse model
description using delayed differential equations (DDEs) (35–38). However, it is
not clear how such an assumption limits a model’s ability to recapitulate the
dynamics of the full system.

A third simplification is to make use of a gamma distributed delay. This
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approach models the output of the linear pathway as the convolution between
the input to the first pathway step and the probability density function of the
gamma distribution. This convolution has been used to describe delays in a di-
verse set of processes, including: drug uptake (39, 40), circadian clocks (41–43),
population dynamics (44) and even traffic jams (45). Similar to the fixed-delay
approach, it is commonly used as a method to introduce a delay without ex-
plicit regard to what the underlying cause of that delay is. It can be derived
from a chain of identical linear processes which indicates that it may be partic-
ularly relevant for linear pathways. However, an understanding of how well this
simplification can represent a general linear pathway is still missing.

Here, we analyse the dynamical effect of linear pathways. First, we focus
on what dynamical properties a model will be unable to reproduce when it is
simplified using pathway truncation. This analysis led us to a diagnostic tool
for revealing when such a model assumption has had detrimental effects.

Thereafter, we suggest the use of an alternative simplifying assumption and
demonstrate its effectiveness. Rather than assuming a fixed (and truncated)
pathway length, we assume a fixed rate of information propagation along a
pathway of dynamic length. This leads to a three-parameter model which can
recapture the dynamics of arbitrary linear pathways with high fidelity. The
assumption allows for a direct derivation of the gamma distributed delay and it
allows the model parameters to be anchored to the underlying biology. Further-
more, it outperforms the use of the reduced step approximation as well as the
fixed-delay approximation and it provides a building block for an operational
model inference approach (46).

Results

Linear pathway truncation causes different degrees of error
for different underlying distributions of reaction rates

We set out to explore the dynamical consequences of misrepresenting the number
of pathway steps in a model of a linear pathway. A main aim was to understand
whether and how a short (truncated) linear pathway model fails to reproduce
the dynamics generated by a longer pathway.

To investigate this, we first defined a model wherein a sequence of n states,
with concentrations X1, X2, . . . , Xn, each activates its successor. A step, i, in
such a pathway is linear if

dXi

dt
= αi ·Xi−1 − βi ·Xi, (1)

for some activation rate constant αi and degradation/inactivation rate constant
βi. We define the entire pathway as linear if this equation holds for all steps.
In this study, we specifically focus on the relationship between an input and
the output of a linear pathway and not on the relative concentrations along
the different pathway steps. We can thus define a set of new parameters, such
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that scaling is done by a single parameter, γ, and the response rate of pathway
step i to changes in the previous step is governed by a parameter ri (Methods).
This leads to a model that describes how an n-step linear pathway transforms
an input signal, I(t), to an output, as defined by the concentration of the n-th
step, which is given by

dX1

dt
= r1 · (γ · I (t)−X1) , (2)

dXi

dt
= ri · (Xi−1 −Xi) ∀ i ∈ {2, 3, . . . , n} . (3)

Synthetic data sets were generated using Eqs. 2-3 with different pathway
lengths, ndata ∈ {1, 2, . . . , 50}. The response rates were drawn from a log-
uniform distribution, ri ∼ 10U(−2,1), and the scaling parameters, γ, was set to
one.

The effects of misrepresenting the pathway length in a model was tested on
each set of synthetic data. Models with a fixed pathway step length (fixed-step
models) of nmodel = 1, 2, . . . , 5, respectively, were each treated with the same
input and initial conditions that was used for data generation and had their
parameters values (γ, ri ) optimised to fit the output dynamics of that data
(Methods). We first used the simplest possible model conditions to study how
well a model could perform when nmodel 6= ndata. Here, the pathway received
no input (I (t) = 0) but was instead initialised with a non-zero concentration of
the first, and only the first, pathway step. This could represent a sudden start
of a reaction at t = 0 where X1 passes on its signalling while being exponentially
depleted itself. In order to still have a parameter γ to scale the system and in
order to ensure that the reaction rate parameters do not affect this scaling, we set
the initial concentration toX1 (0) = γr1, which ensures that

∫∞
0
Xi (t) dt = γ ∀i.

We analysed how such models can reproduce the generated data and espe-
cially how the model/data fit depends on how many pathway steps were used to
generate that data (Fig. 1 and Figs. S1-S4). When nmodel ≥ ndata, the model
can perfectly reproduce the output dynamics, as expected, and provides a con-
trol for our numerical optimisation scheme (Fig. 1 and Figs. S1-S4). However,
despite the perfection in the input-output correspondence, the fitted model and
the data-generating model will not be precisely the same. While every optimal
reaction rate in the fitted model will also be found in the data-generating linear
pathway (Fig. 3b), they do not necessarily appear in the same order (Fig. 3c).
The order of the response rates along the pathway does not matter for the out-
put (27, 28). This means that optimising for an input-output relationship will
not provide any means of correctly inferring which rate belongs to which step.
Not only does the model correctly fit the data when nmodel = ndata, but also
when nmodel > ndata (Fig. 1 and Figs. S2-S4). During the optimisation proced-
ure, ’additional’ rates become fast enough to ’instantaneously’ pass information
from the previous step to the next (Fig. 3b), confirming that fast steps are less
dynamically relevant than slow steps (1, 27).

When the fitted model has fewer steps than the linear pathway which was
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Figure 1: Modelling linear pathways using a truncated number of pathway
steps. Two-step linear pathway models (Eqs. 2-3) were fitted towards synthetic
data. The data shown was generated by networks of step-lengths varying from 1
to 50. a-e) The worst model/data fits for a given length, ndata, of the model that
generated the data. Black lines show the synthetic data while simulations of
the fitted models are overlaid in colour. (f) The cost value for models optimised
towards 5000 different sets of synthetic data. Stars are the cost values resulting
from data wherein all the steps in the data-generating linear pathway have the
same reaction rates, ri = 1 ∀ i. The x-axis shows the number of steps in
the models that were used to generate the data. g-k) Examples of the best
model/data fits for different data pathway lengths, ndata.
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used to generate the data, nmodel < ndata, the fit is no longer guaranteed to be
perfect. Unsurprisingly, the model/data mismatch increases with the length of
the pathway that generated the data and decreases with the length of the model
used to fit the data (Fig. 1 and Figs. S1-S4).

There is a high variability in the ability of a truncated model to fit the
output dynamics (Fig. 1 and Figs. S1-S4). While small models cannot in general
represent arbitrary linear pathways, in some cases they are performing well.
For example, a two-step model can be good at reproducing the dynamics of
even a 10-step linear pathway (Fig. 1j), and a five-step model can accurately
describe the dynamics of some 25-step pathways (Fig. S4k). The optimised
model performance decreases with the homogeneity of the reaction rates of the
data-generating pathway (Fig. 2). When all the response rates of the data-
generating pathway are the same, the ability of models to fit the data quickly
decreases with the length of the pathway (Fig. 2, cf. Figs. 1a-e, stars in Fig. 1f).
Conversely, when the response rates are highly heterogeneous, even a heavily
truncated model is able to fit data from a long pathway (Fig. 2), again indicating
the different contributions of fast and slow steps to the resulting dynamics.

Detrimentally truncated models of linear pathways can be
identified by characteristic parameter values

While pathway length and response rate homogeneity are key determinants for
whether the truncation of a linear pathway reduces a model’s accuracy, these
features may often be unknown from experiments. Hence, it would be useful to
find characteristics of the (simplified) model to quantitatively identify when it
is performing badly.

One feature identified in our simulations is that the signalling peak in an
over-simplified model has a lower amplitude and increased temporal width than
that of the corresponding data (Fig. 1, Figs. S2-S4). This occurs when the
model must compensate for the delay that a multi-step reaction causes. The
compensation occurs in the form of slower response rates and that results in a
less sharply defined output curve (cf. 12).

Possibly more useful, a detrimentally truncated model created a clear signa-
ture in the optimised parameter values in our test case. The standard deviation
of the optimal response rate parameters decreases as ndata − nmodel increases
(Fig. 3a). When the model is much too small for recapitulating the data, all of
its rate parameter values end up being the same (Fig. 1a). The variability in
rate parameters hence provides a quantitative measure to detect detrimentally
truncated linear pathways.

An alternative assumption for model simplification improves
predictability of pathway output dynamics

An alternative approach for parameter reduction is to assume that every path-
way step has the same response rate (ri = r ∀i), and to treat the number of
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Figure 2: Response rate homogeneity of a linear pathway affect how well mod-
els can reproduce their dynamics. Models were fitted towards data that was
generated with different levels of response rate inhomogeneity. The synthetic
data was generated using an 11-step linear pathway model (Eqs. 2-3) with para-

meters γ = 1, ri = 10δ·(2·
i
10−1) ∀ i ∈ {0, 1, . . . , 10} where δ is a parameter that

governs the inhomogeneity of the rate parameters. For δ = 3, the rate para-
meters were thus logarithmically spread from 0.001 to 1000. a) The optimised
cost values of different models, plotted against the inhomogeneity parameter, δ,
used to generate the synthetic data. b-e) Samples of the model/data fit for the
optimised parameter sets, as marked in a). The fixed-rate model (Eqs. 4-5) is
compared with the two-step model (Eqs. 2-3) since they have the same number
of free parameters. f) The optimised value for the fixed-rate model parameter
n, depending on the inhomogeneity of the response rates.
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Figure 3: Analysis of optimised parameter values for the fixed-step models
(Eqs. 2-3). a) The standard deviation, normalized by the mean, of the optimized
two-step model parameters as well as for the parameters used to generate the
synthetic data. Circles shows the standard deviation normalized by the mean
for individual parameter sets and the solid lines are the mean of these values.
b) The optimised parameters of a model with three steps, fitted against data
generated using only two steps. The model parameter values are shown as
circles, and the corresponding parameter values used to generate the data are
shown as crosses. The green circles represent the model parameter values of the
superfluous pathway step. c) The same model run twice, but with the order of
its response rate parameters changed.
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pathway steps, n, as a free parameter. With this ’fixed-rate’ assumption we can
represent a linear pathway with the set of equations

dX1

dt
= r · (γ · I(t)−X1) , (4)

dXi

dt
= r · (Xi−1 −Xi) ∀ i ∈ {2, 3, . . . , n} . (5)

This simplified model has only three free parameters: γ for scaling, n for
pathway length, and r for the response rates of the pathway steps.

While this assumption of homogeneous reaction rates is natural when the
same process is repeated multiple times, such as a molecular motor walking
along a microtuble, or for the assembly of monomers into a polymer, it is not
true for most pathways. We analysed the effectiveness of the fixed-rate model by
individually fitting its three parameters towards each of the synthetic data sets
used above. The resulting model/data fits show that the fixed-rate assumption
is indeed well suited for modelling linear pathways, even when the reaction rates
of the data-generating network are highly heterogeneous (Fig. 4 and Fig. 2). Not
only does the fixed-rate model outperform the two-step truncated model, which
has the same number of parameters (Fig. 4), it also improves the prediction of
pathway dynamics compared to the five-step (6 parameters) truncated model
(cf. Fig. S4). Unlike the truncated, ’fixed-step’, models, the fixed-rate model’s
ability to fit data does not decrease with ndata (Fig. 4f). While the two-step
model had costs (for definition, see Methods) ranging from 0 to almost 1, the
fixed-rate model’s cost never exceeded 0.2 for our synthetic data sets. Indeed,
the fixed-rate model proved more able to fit the data than the fixed-step models
in a clear majority of cases (Figs. 4o and S6). This holds true for a wide range of
different inputs to the linear pathway (Fig. 5). Strikingly, the fixed-rate model
was almost unseperable from the output of the original model in most cases (blue
and black lines in Fig. 5). The fixed-rate assumption is thus highly effective at
simplifying a linear pathway, and the performance only decrease slightly when
the underlying pathway has heterogeneous reaction rates (Fig. 2).

A main limitation for the truncated models is that they perform badly in
capturing the delay of a signal output. Rather than introducing multiple path-
way steps in a model in order for it to capture a time-delay, such time-delays
can be introduced explicitly. We next aimed to compare such an approach of
modelling linear pathways to the use of the fixed-step and the fixed-rate formu-
lations. In order to make a fair comparison, we defined a DDE with three free
parameters. In this ’fixed-delay’ model, the last pathway step, Xn, responds to
an input at a rate governed by r, with a fixed time delay τ . Similarly to the
other models, a scaling parameter γ is also defined.

dXn

dt
= r · (γ · I (t− τ)−Xn) . (6)

We optimised the fixed delay model (Eq. 6) towards the same data used for
the previous models and compared their performance (Fig. 6). In most cases,
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Figure 4: Modelling linear pathways using the fixed-rate assumption for sim-
plification. The fixed-rate model (Eq. 4-5) was fitted towards synthetic data
generated by networks of step-lengths varying from 1 to 50. The data sets are
the same as those used for Figure 1. a-e) Examples of the worst model/data
fits for the fixed-rate model. Orange lines show simulations of the fitted model
and the black line shows the synthetic data. The grey line is the corresponding
fit using the two-step truncated model on the same data set. f) The cost value
for models optimised towards 5000 different sets of synthetic data. The x-axis
shows the number of steps in the model which were used to generate the data.
Blue circles are cost values for the fixed-rate model while grey dots are the cost
values for a two-step truncated model. The parameter sets used in figures a-e
and g-k are marked accordingly. g-k) Examples of the best model/data fits.
The fixed-rate model (green lines) almost completely matches the data (black
lines). l) The scaling parameter, γ, is accurately identified as 1 in all optimisa-
tions. m) The optimised values of n for different number of steps in the pathway
underlying the data. n) A comparison between the optimised value of r and the
smallest rate constant of the model that generated the data. o) A comparison of
the cost values when using either the fixed-rate model or a two-step truncated
model to fit the same data. Each circle represents a single synthetic data set.
Percentages indicate how many of the data sets had a higher (worse) cost value
for the respective models.
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Figure 5: Comparing the ability of the fixed-rate and the two-step model to
reproduce the dynamics of linear pathways which respond to different inputs.
Each pair of figures (a,b; c,d; ...; k,l) demonstrates the performance of the two
models for the different model inputs: no input, piecewise constant, ramp, step,
wave and noisy auto-activator, respectively (see Table 1). Figures a, c, e, g, i and
k compares the optimised cost values (lower is better) for the fixed-rate model
and the two-step model for each synthetic data set (5000 per input). Every
data set is represented by a low-opacity dot; colour saturation thus indicate the
density of similar values. Percentages indicate how often one model had a worse
cost than the other. The orange dot shows the geometric median of the cost
values for the different data sets. Figures b, d, f, h, j and l shows the model
and data dynamics for the median data set of the corresponding input. The
two-step model was chosen for the comparison since it has the same number of
free parameters as the fixed-rate model.
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this model performed better than the two-step truncated model but worse than
the fixed-rate model. While this DDE model is better able to achieve a delayed
response than the truncated model, it has issues with that response being too
abrupt. The fixed-rate model, on the other hand, is able to achieve the correct
time-delay while also accurately smoothing out the signalling over time.

Figure 6: Modelling of linear pathways using a fixed delay DDE model (Eq. 6)
compared to the two-step and the fixed-rate models. a) A cost value comparison
of the fixed-rate model and the DDE model for every data set generated with a
decaying input (Tab. 1, 5, 000 data sets). Every synthetic data set is represented
with a low opacity dot; color saturation thus indicate a high density of similar
values. The orange dot highlights the geometric median and that median data
set is used as an example in figure b). b) An example time trajectory where
the fixed-rate, two-step and DDE models have all been optimised to reproduce
a synthetic data set. c) A cost value comparison, similar to a), between the
two-step model and the DDE model. The orange dot shows the cost of the
trajectory displayed in b). d-f and g-i) Repeats of a-c) but using a step input
and a noisy input, respectively (Tab. 1). The synthetic data was generated with
pathway lengths, ndata, uniformly distributed between 1 and 50.
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Identifiability of biological parameters using the fixed-rate
modelling approach

It is of interest to analyse how well a fixed-rate model approach performs when
it comes to identifying the values of the parameters in the underlying biological
pathway. When a pathway is using the same reaction rates for all pathway steps,
the fixed-rate assumption is exact, and the parameter optimisation always finds
the correct values for the underlying parameters. However, the model performs
well even when representing a pathway with heterogeneous reaction rates, and
in this case the connection between the model parameters and the biological
system is less clear.

The parameter γ is a simple scaling parameter which was always set to 1
when we generated the synthetic data sets. Unlike for the fixed-step model
(Eqs. 2-3), the optimised values of γ for the fixed-rate model were all very
close to the true value (Fig. 4j). Both models are capable of ensuring that the
signalling is properly scaled between the input and the output. However, since
the fixed-step model is unable to correctly time its output, the optimisation
scheme will sometimes lead to the use of the scaling parameter to mitigate the
cost that this timing discrepancy creates. Since the fixed-rate model has much
better control over timing, this never became an issue during our study, and the
model always identified the correct value for the scaling parameter.

The parameter n represents the number of steps in the approximated path-
way, but since we relaxed the demands that all rates are equal the connection
between n and the number of steps in the biological (synthetic) data is not
exact. This parameter value does not predict precisely the length of the linear
pathway, but it does indicate a lower bound of the real pathway length (Fig. 4k).
While the predicted n seems to scale linearly with the length of the pathway,
the proportionality constant is dependent on the distribution from which the
reaction rates of the linear pathway are drawn. If these rates are (close to)
homogeneous, n will closely correspond to the number of steps in the system,
while if the rates are more heterogeneous, the n will underestimate the length
of the underlying pathway (Fig. 2f).

The parameter r of the fixed-rate model is related to the rates at which
information is being passed along the linear pathway. The optimised value of this
parameter cannot represent all rates in the pathway if these are heterogeneous.
Instead, the r parameter seems to approximately identify the slowest part of
the pathway since it is generally only slightly larger than the slowest reaction
rate in the linear pathway (Fig. 4).

Altogether, there is not a perfect identifiability of the underlying pathway
parameters when the fixed-rate model is optimised. Still, when analysing the
resulting parameter values, strong indications of the parameter values and path-
way structure of the original model can be found.
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Analytical solutions to the fixed-rate model extends its use-
fulness and dynamical range

For some simple inputs, the fixed-rate assumption allows for a concise and nu-
merically efficient analytical solution to the problem (27). The analytical solu-
tion to the fixed-rate model with I (t) = 0 and X̄ (0) = (γ · r, 0, 0, . . . , 0) yields
a scaled version of the probability density function (PDF) of the gamma distri-
bution (Methods, 27, 47), given by

Xn(t) =
γ · rn · tn−1 · e−r·t

Γ (n)
. (7)

Because of its close connection to the gamma distribution, we will refer to
this as the ’gamma model’. In this model, Γ is the gamma function (47) and,
just like in the fixed-rate model, γ is a scaling factor, n relates to the pathway
length and r to the response rates of the steps along the pathway. For Eq. 7 to be
an analytical solution to the fixed-rate model, n has to be an integer. However,
while the fixed-rate model cannot account for partial steps, the gamma model
can.

Relaxing the demand that n is an integer increases the freedom of the model
and thus possibly its ability to fit data compared to the fixed-rate model. To test
the analytical model for pathways with arbitrary reaction rates, we optimised
the fixed-rate model and the gamma model towards the same synthetic data
sets (Methods). The gamma model, with n ∈ [1,∞), improved performance
compared to the fixed-rate model in nearly all cases (Fig. 7, cf. Fig. S5, 27). In
most cases, the two models were approximately equivalent but the performance
difference became apparent in some cases, especially when ndata was small.

Many of the gamma model’s characteristics can be inferred directly from
its parameter values without needing to simulate the model. Since the gamma
model is closely connected to the gamma distribution, some of the characteristics
and statistics of the distribution are directly applicable to the model. The
mean of the gamma distribution identifies the time, thalf = n

r , at which half
the signalling will have occurred for Xn(t), the variance is given by V [t] = n

r2

and gives a measure of how the signalling peak is spread out over time. This
directly identifies that if nmodel < ndata the model peak must be more spread
out if the time of the peak is to match that of the data. The mode gives the
time at which the distribution/model reaches its peak value and is given by
tpeak = n−1

r ∀ n ≥ 1. If tpeak is a main target of the model fitting, this
relation can be used to reduce the size of the parameter space search.

The gamma model can be extended to allow for any integrable input. The
convolution between the gamma model and the input results in a gamma dis-
tributed delay model (Methods).

Xn (t) =

∫ t

0

γ · rn · (t− τ)
n−1 · e−r·(t−τ)

Γ (n)
· I (τ) dτ. (8)

This generalisation of the gamma model allows for (nearly) arbitrary in-
puts and thus greatly enhances the scope of the model. This, for example,
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Figure 7: Allowing a real-valued pathway length parameter, n, increases the
gamma model’s ability to recapitulate dynamics from arbitrary linear pathways.
a) The optimised cost values for the fixed-rate and the gamma models when
they are both optimised towards the same data sets in which the pathway has
no input (Tab. 1, 5000 data sets). The colour of the dots indicate the length
of the linear pathway which was used to generate the synthetic data set. b)
Demonstrating the model performances for the median data set, as denoted by
a green dot in (a). c, d) similar to a and b but using the generalised gamma
model (Eq. 8) and a noisy input (Tab. 1).
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enables its use with dynamical inputs or within feedback loops inside of DDEs.
The downside to this formulation is the need to evaluate an integral which is
computationally costly. The model is still restricted in the possible initial con-
centration of the pathway where it is applicable since its derivation assumes an
all zero initial concentration along the pathway. However, this restriction can
often be circumvented. By setting the start-time of the integral to be before the
start time of the actual simulation, it is possible to equilibrate the solution to
some arbitrary input before the simulation starts (Methods).

Discussion

Biology is full of multi-step pathways where each individual step is (at least
approximately) linearly dependent on the previous step. Transcription, transla-
tion, kinase cascades, sequential phosphorylation and signal transduction are all
examples of processes where this can apply. The full inclusion of such pathways
is seldom advisable when modelling biological systems since the added benefit in
dynamical range is outweighed by the disadvantage of an increased model com-
plexity. It is, therefore, common for such pathways to be simplified. However,
the manner in which such pathways are simplified is not always particularly
effective.

We demonstrate how the coarse-graining of a long linear pathway to a short
one (pathway truncation) often lead to a detectably incorrect temporal relation-
ship between the input and the output signal. This discrepancy is important to
understand not only because it can cause a model to quantitatively misrepresent
time-course data but also because signal timing can qualitatively alter dynamical
behaviour. Negative feedback loops, for example, can change from having a sta-
bilising effect to generating oscillations when the feedback is delayed (e.g. 1, 11).
It is, therefore, notable that when this simplification has adverse effects we could
identify a detectable signature in the form of homogeneity of the optimal re-
sponse rate parameters. This can be used as a model diagnostic and could prove
especially helpful for complex models where the source of model/data mismatch
is not always apparent from their design or output.

Next we asked whether there might be a way to remedy the shortcoming of
a truncated model without increasing the number of model parameters. Our
proposal is to assume that the signalling is being passed along the pathway
at a constant rate while the number of steps in not fixed. This assumption
allows for a three-parameter approximation of arbitrary linear pathways where
the pathway length is a tunable parameter. We showed that this ’fixed-rate’
assumption clearly outperformed both truncated pathway models and a DDE
model with an explicit time-delay parameter even if the original pathway had
highly heterogeneous rates for individual pathway steps. It also naturally leads
to a gamma distributed delay model where analytical solutions can be tractable
(see e.g. Beguerisse-Dı́az et al. 27).

For a model to be useful, it is important to retain information about the un-
derlying biological system even after the model assumptions have simplified real-
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ity. Much of the connection between the model parameters and real biological
processes is retained when the fixed-rate assumption is used for simplification
of a linear pathway. The pathway length parameter of the fixed-rate model, n,
provides a rough lower bound for the length of the real pathway. Also, the value
of its response rate parameter, r, is strongly correlated with the response rate of
the slowest step in the underlying system. This should be contrasted with the
truncated pathway model which still uses individual response rate parameters
for individual pathway steps. Intuitively, this may seem more closely related to
reality. However, when such a model is optimised to perform the action of a
longer pathway, these individual reaction rates become highly decoupled with
the response rates of any real pathway step. Rather than being tuned to rep-
resent real pathway steps, they are tuned to delay the response peak while not
sacrificing too much of the response sharpness. So the fixed-rate assumption
not only performs better than the alternatives, its individual components also
retains a closer connection with reality.

In the future it will be interesting to understand if the performance increase
in predicting a pathway’s input-output dynamics will hold also when a linear
pathway is part of a larger dynamical system, including multiple interactions
and feedbacks. Recently, Tokuda et al (43) showed that introducing distributed
delays (fixed-rate assumption) between nodes in circadian clock models allowed
for a parameters reduction. Given that they did not allow for fully dynamic
changes of pathway lengths (n), it would be interesting to see if this can im-
prove the model predictability. We limited the scope of this paper to that of
deterministic systems, only introducing stochasticity in the input to the path-
way, but it would also be interesting to see how the reasoning applies in a fully
stochastic description. Similarly, relaxing the linearity constraint in the under-
lying models would provide an additional interesting challenge for the suggested
fixed-rate models that can be analysed.

A mathematical model is defined by its underlying assumptions and can
be seen as merely acting as a logical device to deduce consequences of those
assumptions (48). A main part of model development is thus to find a set of as-
sumptions which accurately and concisely captures the nature of the dynamical
system under study. However, finding a good balance between detail and sim-
plicity is often non-trivial and requires some degree of craftsmanship, and the
better we understand the consequences of specific assumptions, the better we
become at striking this balance. In this context, we systematically investigate
the consequences of simplifying linear pathways by truncating the number of
steps in a pathway. We clearly demonstrate problems such simplifications may
cause. More importantly, we present how to detect these issues when they occur
and we provide an alternative approximation to remedy them. We hope this
will supply a foundation for well-informed decisions regarding when and how to
simplify the ubiquitous linear pathway.
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Methods

Model derivation

If we model an n−step linear pathway that follows Eq. 1 except that it receives
some input signal to the first step, X1, the dynamical equations can be written
as

dX1

dt
= β1 ·

(
α1

β1
· I (t)−X1

)
, (9)

dXi

dt
= βi ·

(
αi
βi
·Xi−1 −Xi

)
∀i ∈ {2, 3, . . . , n}. (10)

where αi is a production/activation rate, βi a degradation/deactivation rate
and I (t) is some upstream input. Assuming that the input is integrable, the
Laplace transform, L, of this system is (27, 47)

L (Xn) =
L (I) ·

∏n
i=1 αi∏n

i=1 (βi + s)
+

n∑
i=1

(
Xi (0) ·

∏n
k=1 αk∏n

j=i αj · (βj + s)

)
. (11)

Here, the first term describes the systems dynamics from rest, X̄ = (0, 0, . . . , 0),
and the second term compensates for the initial concentrations of the pathway
(27). This tells us that if the pathways starts from rest then all the produc-
tion terms, α, are linearly dependent. Utilising this, we define α1 = β1 · γ
and αi = βi ∀i ∈ {2, 3, . . . , n} so that we can use the single parameter, γ, to
scale the output. Changing the individual αi values would have changed the
effect that non-zero initial concentrations along the pathway would have. How-
ever, this effect is itself linearly dependent on the actual initial concentrations
X̄ (0). A transformation of X̄ (0) can therefore compensate for our parameter
reduction so that no dynamical range is lost at all for the model’s input-output
relationship. Since this simplification means that any change in the degrada-
tion parameter, β, no longer scales the output, we rename it r ≡ β and call it
a response rate parameter to better reflect its action. The result is the linear
pathway model we have been using in the paper, Eqs. 2-3.

The analysis of the models were made using different sets of inputs and initial
concentrations (Table 1). With these definitions, a model of pathway length n
with the ’Decaying’ input is identical to models of pathway length n+1 with the
’None’ input. The noisy input was generated using a Gillespie simulation of a
single, auto-activating, variable (49). The noisy time-course that this generated
was used as an input both during the generation of synthetic data and during
the subsequent model simulations.

Analytical solution of the fixed-rate model with no input

It is possible to find analytical solutions to Eqs. 4-5 for some simple inputs to
the linear pathway. Here, we demonstrate this for the case of no input (Tab. 1)
but the same has been done for more inputs in (27).
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Table 1: Model definition of linear pathways with different inputs. The models
are all defined by Eqs. 2-3, with inputs, I(t), and initial conditions, X̄(0), as
specified here.

Input type I (t) X̄ (0)
None 0 (γr1, 0, 0, . . . , 0)
Decaying γ · r1 · e−r1·t (0, 0, . . . , 0)
Step 1 (0, 0, . . . , 0)
Ramp t (0, 0, . . . , 0)
Wave 1 + sin (t) (γ, γ, . . . , γ)

Piecewise

{
1 if 0 < t < 100

0 otherwise
(0, 0, . . . , 0)

Noise

Gillespie (49) simulation of:{
dX
dt

= 0.1 + 0.9 · X
5+X

− 0.1 ·X
X (0) = 0

(0, 0, . . . , 0)

With I (t) = 0 and X̄ (0) = (γ · r, 0, 0, . . . , 0), the fixed-rate model reads

dX1

dt
= −rX1, (12)

dXi

dt
= r · (Xi−1 −Xi) , (13)

X̄(0) = (γ · r, 0, 0, . . . , 0). (14)

From here, we apply the Laplace transform, L, on both sides of Eqs 12-13,
utilising the fact that the Laplace transform of a function derivative, f ′, follows
L[f ′] = sL[f ]− f(0). This leads to

sL[X1]− γ · r = −r · L[X1],

sL[Xi] = r · (L[Xi−1]− L[Xi]) ,

which can be rearranged to get

L[X1] =
γ · r
s+ r

,

L[Xi] =
r

s+ r
L[Xi−1].

This can be recursed to solve for n steps leading to

L[Xn] =
γ · rn

(s+ r)n
,
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and the inverse transform of this yields

Xn(t) =
γ · rn · tn−1 · e−r·t

(n− 1)!
. (15)

By expanding the domain of n to that of the real numbers, we get the gamma
model (Eq. 7).

Derivation of the gamma distributed delay from the fixed
rate assumption

Laplace transforms and the transfer function provides a way of finding an ana-
lytical solution to the fixed-rate model with arbitrary inputs (47, 50).

The laplace transform of the fixed-rate model ODEs (Eqs 4-5), with initial
condition Xi (0) = 0 ∀i, is given by

L [Xn (t)] = γ
rn

(r + s)
nL [I (t)] .

From this, we can easily get the transfer function in the complex domain

G (s) =
L [Xn(t)]

L [I (t)]
= γ

rn

(r + s)
n . (16)

The transfer function in the time domain, g (t), is given by

g(t) = L−1 [G (s)] =
γ · rn · tn−1 · e−rt

(n− 1)!
. (17)

Here, we see that the transfer function in the time domain (also called the
weighting function) is essentially the gamma model. This transfer function can
be used to get an analytical solution to Xn (t) for almost any input (the input
needs to have a Laplace transform, even if we never have to calculate it). From
Eq. 16, we have that

L [Xn (t)] = G (s)L [I (t)] .

This equation is still in the complex domain but we can use the connection
between multiplication in the complex domain to convolution in the time domain
to get the desired function

L [Xn (t)] = G (s)L [I (t)] ,

⇔,

Xn (t) =

∫ t

0

I (τ) g (t− τ) dτ,

=

∫ t

0

I (τ)
γ · rn · (t− τ)

n−1 · e−r·(t−τ)

(n− 1)!
dτ. (18)

In order to improve the model’s ability to fit data, we can replace (n− 1)!
with Γ (n). This makes no difference for integer n but it expands the possible
domain of n to all real numbers greater than or equal to 1. After this, we end
up with the gamma distributed delay, scaled with γ, of eq. 8.
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Model simulation

Differential equations were solved using an algorithm with stiffness detection
that toggled between Tsitouras5 for non-stiff regions and Rosenbrock23 for stiff
regions (51–53). The integral of the gamma distributed delay model (Eq. 8) was
evaluated using Gauss-Kronrod quadrature.

For the wave input we needed an initial concentration of Xi(0) = γ ∀i.
For the gamma distributed delay model, this was achieved by using the input
function

I (τ) =

{
1, if τ < 0

1 + sin (τ) , if τ ≥ 0
.

and by starting the integration at a negative τ . The actual value used was based
on the mean and the standard deviation of the gamma distributions PDF

τmin = t− n

r
− 3 ·

√
n

r
.

Data generation

Synthetic data sets were generated using the fixed-step model (Eqs 2-3). The
procedure was to first draw an integer between 1 and 50 to be used as the
number of pathway steps, ndata. A response rate, ri was randomly drawn for
each of the ndata steps in the pathway. For most input types, the parameters ri,
were generated by transforming the uniformly random variable Yi ∼ U(−2, 1)
according to ri = 10Yi . However, since any too slow reaction rates will filter
out the dynamics of the noise and the wave input, the reaction rates for those
models were drawn from ri ∼ 10U(−1,1) and ri ∼ 10U(0,1), respectively. The
value of the scaling parameter, γ, was in all cases set to 1. The model was then
run and the resulting trajectory of the last pathway step, Xn(t), was stored for
use as the synthetic data set (5000 times for each input).

Fitness definition

In order to automatically evaluate the fitness of a model, an ’integral cost’ func-
tion was defined. The idea of this cost function is to measure the mismatch in
the area under the curve for the model and the data (Fig. 8). This is similar
to using the `1 norm, but it has a few advantages: It does not require the dif-
ferential equation solver to stop at the time-points where the data was sampled
and variations in sample density does not bias the cost value. We defined this
cost value as

C =

∞∫
−∞
|Xmodel(t)−Xdata(t)|dt

∞∫
−∞
|Xdata(t)|dt

. (19)
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Figure 8: Cost value definition. The cost value measures the normalised area
mismatch between the model output and that of the data. The area under the
data curve is used for the normalisation.

Numerically, C was calculated using Riemann sums and interpolations of
both the data and the model solution. The evaluations started at t = 0 and for
the ’None’, ’Step’, and ’Piecewise’ input types they continued until the model
derivatives were close to zero (absolute and relatives tolerance 10−8 and 10−6,
respectively) or until t = 5000, whichever came first. The ’Piecewise’ input
simulations were additionally prohibited from stopping before the end of the
piecewise constant input. Since the ’Ramp’, ’Wave’ and ’Noise’ inputs do not
allow for equilibration, we set fixed stopping times of t = 500, 30 and 200,
respectively.

Much of the analysis was also repeated using the more commonly used nor-
malised least square cost function. While the results are slightly different, they
did not change any of the conclusions in this work.

Model optimisation

The model parameters were all optimised to reproduce the time-trajectory of
each synthetic data set. The optimisation target was to minimise the cost value,
C, described above. For the actual optimisation, we used an adaptive differential
evolution algorithm following the /rand/1/bin/ scheme, with a radius limited
sampler that took 2,000 steps per free parameter of the model (54, 55). The
search space for the parameters of the different models were chosen to allow for
the time delays that the synthetic data could generate (Tab. 2). The sampling
space was linear for n and logarithmic for the other parameters.

Table 2: Parameter search space for the optimisation of the different models.

model γ r n τ

fixed step
[
10−3, 103

] [
10−3, 103

]
N/A N/A

fixed rate
[
10−1, 101

] [
10−2, 102

]
{1..30} N/A

gamma
[
10−4, 102

] [
10−3, 103

]
[1, 31] N/A

DDE
[
10−4, 102

] [
10−4, 101

]
N/A

[
10−2, 104

]
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Software availability

All the computational results were generated using the Julia programming lan-
guage (56). Differential equations were solved using DifferentialEquations.jl,
Gauss Kronrod quadrature was done with QuadGK.jl and optimisation was
done with BlackBoxOptim.jl (53, 55). The source code developed for this
project is openly available under the MIT licence at the Sainsbury Labor-
atory GitLab repository https://gitlab.com/slcu/teamHJ/publications/

Korsbo_et_al_2019. This repository also includes documentation and a tu-
torial aimed at making reproduction and reuse easy.

The software for the evaluation of the integral cost function can also be ac-
cessed independently at https://gitlab.com/slcu/teamHJ/niklas/CostFunctions.
jl.
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