Taxonomic Description template

1	Escherichia ruysiae sp. nov., isolated from an
2	international traveller
3	
4	Boas C.L. van der Putten ^{1,2#} , S. Matamoros ¹ , D.R. Mende ³ , COMBAT consortium [†] , C. Schultsz ^{1,2}
5	¹ Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, the Netherlands
6 7	² Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, the Netherlands
8 9	³ Department of Applied Evolutionary Biology, Amsterdam UMC, University of Amsterdam, the Netherlands
10	
11	[#] Corresponding author, email address: boas.vanderputten@amsterdamumc.nl
12	[†] Members listed in supplementary file 1
13	
14	Keywords: Escherichia, bacterial taxonomy, Enterobacteriaceae
15	
16	ABSTRACT
17	The Escherichia genus comprises four species and at least five lineages currently not assigned to any
18	species, termed 'Escherichia cryptic clades'. We isolated an Escherichia strain from an international
19	traveller and resolved the complete DNA sequence of the chromosome and an Incl multi-drug
20	resistance plasmid using Illumina and Nanopore whole-genome sequencing (WGS). Strain OPT1704 $^{ op}$
21	can be differentiated from existing <i>Escherichia</i> spp. using biochemical (VITEK2) and genomic tests
22	(average nucleotide identity [ANI] and digital DNA:DNA hybridisation [dDDH]). Phylogenetic analysis
23	based on alignment of 16S rRNA sequences and 682 concatenated core genes showed similar
24	results. Our analysis further revealed that strain OPT1704 ^{T} falls within <i>Escherichia</i> cryptic clade IV,
25	and is closely related to cryptic clade III. Combining our analyses with publicly available WGS data of

- 26 cryptic clades III and IV from Enterobase confirmed the close relationship between clades III and IV
- 27 (>96% interclade ANI), warranting assignment of both clades to the same novel species. We propose
- 28 E. ruysiae sp. nov. as a novel species, encompassing Escherichia cryptic clades III and IV (type strain
- 29 OPT1704^T = NCCB 100732^T = NCTC 14359^T).

31 Author notes

- 32 The Genbank accession number for the 16S rRNA gene sequence of strain OPT1704^T is LR745848.
- 33 The Genbank accession number for the complete genome sequence of strain OPT1704^T is

34 CABVLQ00000000.

35

36 Introduction

37	Within the Escherichia genus, four species are recognized; E. coli (1), E. fergusonii (2), E. albertii (3)
38	and most recently, E. marmotae (4). Several species were assigned to the Escherichia genus
39	previously, but have now been moved to other genera, such as <i>E. vulneris</i> (now <i>Pseudescherichia</i>
40	vulneris (5)), E. blattae (now Shimwellia blattae (6)), E. adecarboxylata (now Leclercia
41	adecarboxylata (7)) and E. hermannii (now Atlantibacter hermannii (8)). All four Escherichia species
42	have been associated with the potential to cause animal and/or human disease (9–12). Several
43	Escherichia strains cannot be assigned to any of the four existing species. Based on analysis of
44	genetic data, these strains cluster into several groups, which were termed 'Escherichia cryptic clades'
45	(13,14). Recently, cryptic clade V was formally recognized as a separate species (<i>E. marmotae</i>),
46	leaving five cryptic clades that have not been delineated at the species level. Here we report the
47	novel species <i>Escherichia ruysiae</i> sp. nov., isolated from faecal material of an international traveller.
48	Escherichia ruysiae sp. nov. encompasses the closely related Escherichia cryptic clades III and IV.

49

50 Isolation and Ecology

51	We discovered a cryptic clade IV strain in our collection, previously identified as extended spectrum
52	beta-lactamase (ESBL) producing <i>E. coli</i> as part of the COMBAT study, which investigated the
53	acquisition of ESBL-producing Enterobacteriaceae (ESBL-E) during international travel (15). This
54	isolate, OPT1704 ^T , was further characterized in detail.
55	The strain was isolated from a human faecal sample provided immediately after an individual's
56	return from a one-month journey to several Asian countries. No ESBL-E were detected in a faecal
57	sample collected immediately before departure, suggesting the ESBL gene, and possibly strain
58	OPT1704 ^T , were acquired during travel. The traveller reported diarrhoea during travel but no
59	antibiotic usage. No ESBL-E were isolated in follow-up faecal samples, suggesting loss of the
60	OPT1704 ^T strain or the ESBL gene within one month after return from travel.

61

62 Genome Features

63	The whole-genome sequence of strain OPT1704 $^{ extsf{T}}$ was determined using a combination of the
64	Illumina HiSeq and Oxford Nanopore Technologies (ONT) sequencing platforms. The Illumina
65	sequencing run yielded a total of 6.3×10^6 paired-end reads, with a mean read length of 151 bp.
66	Illumina reads were downsampled using seqtk (version 1.3-r106, https://github.com/lh3/seqtk) to
67	provide a theoretical coverage depth of 100X with the assumption that the OPT1704 ^{T} has a genome
68	size of approximately 5×10^6 bp. The ONT sequencing run yielded a total of 2.5×10^4 reads, with a
69	mean read length of 9078 bp before filtering. ONT reads were filtered on length and on read identity
70	using Filtlong (version 0.2.0, https://github.com/rrwick/Filtlong) with Illumina reads as a reference,
71	leaving 1.5×10 ⁴ reads with a mean length of 12580 bp. This provided a theoretical coverage depth of

72	~38X of ONT reads. The combined assembly using Unicycler (version 0.4.6 (16)) of Illumina and
73	Nanopore reads resulted in a completely assembled genome, consisting of one circular chromosome
74	and one circular plasmid. The GC content of the complete OPT1704 $^{ extsf{T}}$ genome was 50.6%.
75	Putative resistance and virulence genes were predicted from the draft genome using ABRicate with
76	the CARD (17) and VFDB (18) databases. OPT1704 $^{ op}$ harbours 6 resistance genes on its Incl plasmid,
77	associated with reduced susceptibility to fluoroquinolones (<i>qnrS1</i>), aminoglycosides (<i>aph(6)-ld</i> &
78	aph(3'')-Ib), cephalosporins (blaCTX-M-14), trimethoprim (dfrA14) and sulphonamides (sul2),
79	corresponding with its reduced susceptibility to fluoroquinolones (norfloxacin, MIC: 2 mg/L and
80	ciprofloxacin, MIC: 0.5 mg/L), cephalosporins (cefuroxime, MIC: >32 mg/L and cefotaxime, MIC: 4
81	mg/L) and trimethoprim-sulfamethoxazole (MIC: >8 mg/L), assessed using VITEK2 (BioMérieux).
82	However, strain OPT1704T was susceptible to tobramycin (MIC: \leq 1 mg/L) and gentamicin (MIC: \leq 1
83	mg/L) despite presence of aminoglycoside resistance genes. Furthermore, several putative virulence
84	genes were predicted from the genome sequence associated with siderophore function (chuX, entS,
85	fepABD), fimbriae (fimBCDGI), a type II secretion system (gspGHI) and capsular polysaccharide
86	biogenesis (kpsD). These predicted virulence genes, when present in Escherichia coli, are not
87	typically associated with a specific clinical syndrome such as diarrhoeal disease.

88 Physiology and Chemotaxonomy

Strain OPT1704^T formed circular, grey-white colonies on a Columbia sheep (COS) blood agar plate.
Individual cells were observed under a light microscope and were rod-shaped and approximately 1
by 2 μm in size. The strain was shown to be Gram-negative, non-motile, oxidase-negative and
catalase-positive. The strain was capable to grow in the absence of oxygen. On COS blood plates, it
showed growth in the temperature range of 20-42 °C. The strain was also able to grow in NaCl
concentrations ranging from 0% to 6% in lysogeny broth. MALDI-TOF (Bruker) and VITEK2
(BioMérieux) systems both identified OPT1704^T as *E. coli* with high confidence scores (score>2 for

96	MALDI-TOF and "Excellent identification" for VITEK2). Comparison of the output of the VITEK2
97	biochemical test with published biochemical reactions of other Escherichia species revealed that E.
98	<i>ruysiae</i> sp. nov. str. OPT1704 ^T is distinct from other <i>Escherichia</i> species based on a biochemical
99	profile (table 1) (2–4,19). One biochemical reaction, lysine decarboxylation, cannot be performed by
100	strain OPT1704 ^T , but can be performed by all other <i>Escherichia</i> species. This reaction is typically
101	mediated by the cadA gene (20), which is missing in OPT1704 ^{T} but present in other <i>Escherichia</i> .

103 16S rRNA and whole-genome phylogeny

104 Next, we calculated 16S rRNA sequence similarities, ANI values and digital DNA:DNA hybridisation

105 (dDDH) values between OPT1704^T and type strains of the four other *Escherichia* species,

106 representative genomes of the other three *Escherichia* cryptic clades, and *S. enterica* serovar

107 Typhimurium (table 2). Representative genomes for the *Escherichia* cryptic clades I, II, III and VI were

- selected from Enterobase (21), using the genomes with the highest contiguity. Clades VII and VIII in
- 109 Enterobase only consisted of a single strain and were not used in further analyses. We used three

separate tools to calculate average nucleotide identity (ANI) (fastANI (22), OrthoANIu (23) and ANI

111 calculator from Enveomics (24)) and the DSMZ Genome-to-Genome Distance Calculator to calculate

- digital DNA:DNA hybrisation (dDDH) (25). 16S rRNA genes were extracted from whole genomes
- using barrnap (version 0.9, https://github.com/tseemann/barrnap) and similarity was assessed using
- 114 snp-dists (version 0.6, https://github.com/tseemann/snp-dists).

```
115 OPT1704<sup>T</sup> showed 98.7-98.9% 16S rRNA sequence similarity to E. coli ATCC 11775<sup>T</sup>, E. fergusonii
```

- 116 ATCC 35469^T and *E. marmotae* HT073016^T, which would not warrant assignment to a novel species
- based on the current threshold for species delineation (less than 98.7% sequence similarity).
- 118 However, the threshold for species delineation on the basis of 16S rRNA sequence has changed
- often and thresholds of up to 99% sequence similarity have been proposed previously (Kim 2014). In

120	contrast, ANI analysis and dDDH did support assignment of OPT1704 ^T to a novel species, together
121	with the representative strain of <i>Escherichia</i> cryptic clade III (table 2). The analyses also confirmed
122	that OPT1704 ^T falls within the <i>Escherichia</i> genus. This novel species, encompassing both <i>Escherichia</i>
123	cryptic clades III and IV, was assigned <i>E. ruysiae</i> sp. nov. with OPT1704 ^T as the proposed type strain.
124	To gain a better understanding of the <i>Escherichia</i> genus, we produced two phylogenies, based on
125	16S rRNA sequence (Fig. 1) and on an alignment of 682 core genes (Fig. 2). In short, rRNA genes were
126	predicted from whole genomes using barrnap (version 0.9, https://github.com/tseemann/barrnap)
127	and a tree was generated using FastTree (version 2.1.10 (26)). For the core gene alignment, genomes
128	were first annotated with Prokka (version 1.14.0 (27)) and a core gene alignment was produced
129	using Roary (version 3.12.0 (28)) and MAFFT (version 7.307 (29)). The phylogeny was inferred using a
130	generalised time reversible model using base frequencies from the SNP alignment and free rate
131	heterogeneity (GTR+F+R4 model) in IQ-tree (version 1.6.6 (30)), as advised by ModelFinder (31).
132	Phylogenies were rooted on the <i>Salmonella enterica</i> serovar Typhimurium str. LT2 ^T genome. Both
133	phylogenies showed that strain OPT1704 $^{ au}$ clusters closely with the strain MOD1-EC7259 from
134	Escherichia cryptic clade III, and away from the current Escherichia species.
135	Chun et al. (32) proposed that strains with >95-96% genome-wide ANI between each other should
136	be assigned to the same species. If cryptic clades III and clade IV would share >95-96% ANI, this
137	would mean both clades should be assigned to the same novel species, <i>E. ruysiae</i> . To assess this for
138	a larger number of strains than the type strains presented in table 2, we downloaded all available
139	WGS from clade III and clade IV strains from Enterobase and compared ANI between all genomes
140	using fastANI (version 1.1 (22)). This analysis revealed that within 32 clade III genomes, the median
141	ANI is 98.6% (range: 97.7%-99.9%), while within 31 clade IV genomes, the median ANI is 98.9%
142	(range: 98.6%-99.9%). Between clade III and clade IV genomes, the median ANI is 96.6% (range
143	96.2%-96.8%). This suggests clades III and IV should be assigned to the same novel species, E. ruysiae
144	sp. nov.

145 Currently, no IJSEM guidelines exist for the delineation of subspecies based on genomic data.

146 However, E. ruysiae could potentially be delineated further into two subspecies (representing the

147 current clades III and IV, respectively) in the future, after a type strain for cryptic clade III has been

identified.

149

150 **Description of** *E. ruysiae* sp. nov.

151 *Escherichia ruysiae* (ruy'si.ae N.L. fem. n. after Anna Charlotte Ruys, professor of microbiology at the 152 University of Amsterdam from 1940 to 1969). Cells are Gram-negative, facultatively anaerobic, non-153 sporulating, non-motile rods with a size of approximately 1 by 2 μ m. Colonies are circular, convex, 154 grey-white and semi-transparent when grown overnight at 37 °C on COS sheep blood agar plates. 155 The species is catalase-positive and oxidase-negative and grows at temperatures between 20 and 42 156 °C and NaCl concentrations between 0% and 6% w/v. In the VITEK2 GN biochemical test set it yields 157 a positive result for Beta-Galactosidase, D-Glucose, D-Maltose, D-Mannitol, D-Mannose, D-Sorbitol, 158 D-Trehalose, Saccharose/Sucrose, D-Tagatose, Gamma-Glutamyl-Transferase, Fermentation Glucose, 159 Tyrosine Arylamidase, Succinate Alkalinisation, Alpha-Galactosidase, Ornithine Decarboxylase, 160 Courmarate, Beta-Glucoronidase, 0/129 Resistance (Comp.Vibrio.) and Ellman and negative for Ala-161 Phe-Pro-Arylamidase, Adonitol, L-Pyrrolydonyl-Arylamidase, L-Arabitol, D-Cellobiose, H₂S 162 Production, Beta-N-Acetyl Glucosaminidase, Glutamyl Arylamidase Pna, Beta-Glucosidase, Beta-163 Xylosidase, Beta-Alanine Arylamidase Pna, L-Proline Arylamidase, Lipase, Palatinose, Urease, Citrate 164 (Sodium), Malonate, 5-Keto-D-Gluconate, L-Lactate Alkalinisation, Alpha-Glucosidase, Beta-N-Acetyl-165 Galactosaminidase, Phosphatase, Glycine Arylamidase, Lysine Decarboxylase, L-Histidine 166 Assimilation, Glu-Gly-Arg-Arylamidase, L-Malate Assimilation and L-Lactate Assimilation.

- 168 The 16S rRNA sequence is deposited in ENA under accession LR745848. Raw Illumina and Nanopore
- 169 whole-genome sequencing data, as well as the complete genome assembly are deposited under
- 170 project PRJEB34275.

AUTHOR STATEMENTS

- 173 Funding information
- 174 The COMBAT study was funded by Netherlands Organization for Health, Research and Development
- 175 (ZonMw; 50-51700-98-120) and EU-H2020 programme (COMPARE, 643476).
- 176 Acknowledgements
- 177 The authors would like to thank Rob Weijts and Patricia Brinke for their help in phenotypic
- 178 characterization of type strain OPT1704^T of *Escherichia ruysiae* sp. nov. and Arie van der Ende for the
- 179 helpful discussions. We thank SURFsara (www.surfsara.nl) for the support in using the Lisa Compute
- 180 Cluster.
- 181 Ethical statement
- 182 Not required.
- 183 Conflicts of interest
- 184 None.

185

ABBREVIATIONS

187 ONT: Oxford Nanopore Technologies

- 188 MIC: Minimum Inhibitory Concentration
- 189 COS: Columbia agar + Sheep blood
- 190 dDDH: digital DNA:DNA hybridisation
- 191 ANI: Average Nucleotide Identity
- 192 SNP: Single Nucleotide Polymorphism

193

194 **REFERENCES**

- 195 1. Castellani A, Chambers AJ. Manual of tropical medicine. William Wood; 1919.
- Farmer JJ, Fanning GR, Davis BR, O'Hara CM, Riddle C, Hickman-Brenner FW, et al. Escherichia
 fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from
 clinical specimens. J Clin Microbiol. 1985 Jan 1;21(1):77.
- Huys G, Cnockaert M, Janda JM, Swings J. Escherichia albertii sp. nov., a diarrhoeagenic species
 isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol.
 2003;53(3):807–10.
- Liu S, Jin D, Lan R, Wang Y, Meng Q, Dai H, et al. Escherichia marmotae sp. nov., isolated from
 faeces of Marmota himalayana. Int J Syst Evol Microbiol. 2015;65(7):2130–4.
- Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades
 within the family Enterobacteriaceae and support the reclassification of several polyphyletic
 members of the family. Infect Genet Evol. 2017;54:108–127.
- Priest FG, Barker M. Gram-negative bacteria associated with brewery yeasts: reclassification of
 Obesumbacterium proteus biogroup 2 as Shimwellia pseudoproteus gen. nov., sp. nov., and
 transfer of Escherichia blattae to Shimwellia blattae comb. nov. Int J Syst Evol Microbiol.
 2010;60(4):828–833.

211	7.	Tamura K, Sakazaki R, Kosako Y, Yoshizaki E. Leclercia adecarboxylata Gen. Nov., Comb. Nov.,
212		formerly known asEscherichia adecarboxylata. Curr Microbiol. 1986;13(4):179–184.
213	8.	Hata H, Natori T, Mizuno T, Kanazawa I, Eldesouky I, Hayashi M, et al. Phylogenetics of family
214		Enterobacteriaceae and proposal to reclassify Escherichia hermannii and Salmonella
215		subterranea as Atlantibacter hermannii and Atlantibacter subterranea gen. nov., comb. nov.
216		Microbiol Immunol. 2016;60(5):303–311.
217	9.	Russo TA, Johnson JR. Medical and economic impact of extraintestinal infections due to
218		Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect. 2003
219		Apr 1;5(5):449–56.
220	10.	Savini V, Catavitello C, Talia M, Manna A, Pompetti F, Favaro M, et al. Multidrug-Resistant
221		Escherichia fergusonii: a Case of Acute Cystitis. J Clin Microbiol. 2008 Apr 1;46(4):1551.
222	11.	Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y, Ichihara S, et al. Clinical significance of
223		Escherichia albertii. Emerg Infect Dis. 2012 Mar;18(3):488–92.
224	12.	Liu S, Feng J, Pu J, Xu X, Lu S, Yang J, et al. Genomic and molecular characterisation of
225		Escherichia marmotae from wild rodents in Qinghai-Tibet plateau as a potential pathogen. Sci
226		Rep. 2019;9(1):1–9.
227	13.	Gangiredla J, Mammel MK, Barnaba TJ, Tartera C, Gebru ST, Patel IR, et al. Draft Genome
228		Sequences of Escherichia albertii, Escherichia fergusonii, and Strains Belonging to Six Cryptic
229		Lineages of Escherichia spp. Genome Announc. 2018 May 3;6(18):e00271-18.
230	14.	Walk S. The "Cryptic" Escherichia. EcoSal Plus [Internet]. 2015; Available from:
231		https://www.asmscience.org/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0002-2015
232	15.	Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ, Goorhuis A, et al.
233		Import and spread of extended-spectrum β -lactamase-producing Enterobacteriaceae by
234		international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect
235		Dis. 2017 Jan 1;17(1):78–85.
236	16.	Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from
237		short and long sequencing reads. PLOS Comput Biol. 2017 Jun 8;13(6):e1005595.
238	17.	McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The Comprehensive
239		Antibiotic Resistance Database. Antimicrob Agents Chemother. 2013 Jul;57(7):3348–57.

240 241	18.	Chen L. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2004 Dec 17;33(Database issue):D325–8.
242 243	19.	Abbott SL, O'Connor J, Robin T, Zimmer BL, Janda JM. Biochemical properties of a newly described Escherichia species, Escherichia albertii. J Clin Microbiol. 2003;41(10):4852–4854.
244 245	20.	Snider J, Houry WA. MoxR AAA+ ATPases: a novel family of molecular chaperones? J Struct Biol. 2006;156(1):200–209.
246 247 248	21.	Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M, Brown D, et al. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30(1):138–152.
249 250 251	22.	Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018 Nov 30;9(1):5114.
252 253	23.	Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017 Oct;110(10):1281–6.
254 255	24.	Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016 Mar;4:e1900v1.
256 257 258	25.	Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013 Feb;14(1):60.
259 260	26.	Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One. 2010;5(3).
261 262	27.	Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul 15;30(14):2068–9.
263 264	28.	Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Nov 15;31(22):3691–3.
265 266	29.	Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.

- 267 30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic
- 268 Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol. 2014 Nov
- 269 3;32(1):268-74.
- Xalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model
 selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587.
- 272 32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal
- 273 standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol
- 274 Microbiol. 2018 Jan 1;68(1):461–6.
- 275

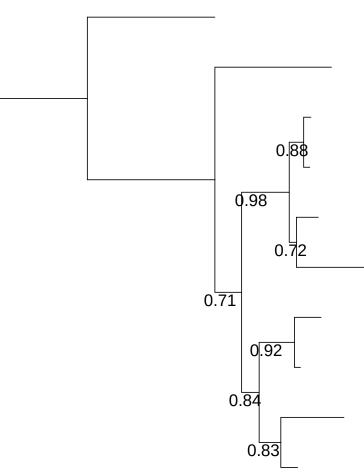
277 FIGURES AND TABLES

- 278 **Table 1.** Comparison of biochemical markers which differentiate *E. ruysiae* sp. nov. from other
- 279 Escherichia species. + and indicate that \geq 85% of tested strains is positive or negative for that
- biochemical marker, respectively. Data for *E. albertii, E. coli, E. fergusonii* and *E. marmotae*
- summarised from literature (Abbott 2003, Huys 2003, Farmer 1985, Liu 2015).

	E. ruysiae	E. albertii	E. coli	E. fergusonii	E. marmotae			
ONPG	+	+	+	+	?-?			
Lysine decarboxylase	-	+	+	+	+			
Ornithine decarboxylase	+	+	+*	+	2–2			
Fermentation of:								
Adonitol	-	?–?	?–?	+	?-?			
d-Xylose	-	?–?	+	+	+			
Cellobiose	-	?–?	?-?	+	?-?			
d-Sorbitol	+	?–?	+	2—2	+			

²⁸²

*50-85% of *E. coli* possess this biochemical property.

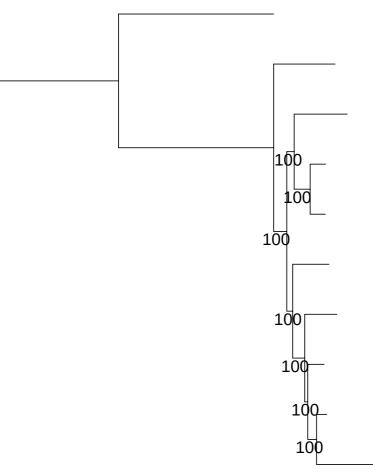

- **Table 2.** Comparison of OPT1704^T 16S rRNA and whole-genome sequence with type strains of *E*.
- 285 albertii, E. coli, E. fergusonii, E. marmotae, representative genomes of Escherichia cryptic clades I, II,
- 286 III and VI and S. enterica serovar Typhimurium. In bold are the values that warrant assignment of
- 287 OPT1704^T to a novel species (<98.7% 16S rRNA sequence similarity, <95-96% ANI, <70% dDDH). ANI:
- average nucleotide identity, dDDH: digital DNA:DNA hybridisation.

	E. ruysiae sp. nov.						
	OPT1704 ^T						
	16S rRNA sequence similarity (%)	ANI (%, fastANI)	ANI (%, OrthoANlu)	ANI (%, ANI calculator Enveomics)	dDDH (%)		
<i>E. albertii</i> NBRC 107761 ^T	98.6	90.0	90.0	89.2	39.8		
<i>E. coli</i> ATCC 11775 ^T	98.7	92.8	92.4	92.0	48.3		
<i>E. fergusonii</i> ATCC 35469 ^T	98.9	89.4	88.2	89.7	36.7		
<i>E. marmotae</i> HT073016 ^T	98.9	92.2	92.2	91.4	47.1		
<i>S. enterica</i> Typhimurium LT2 ^T	97.5	82.1	80.7	81.8	24.0		
<i>Escherichia</i> cryptic clade I 89-3506	99.0	92.5	92.1	91.8	47.8		
<i>Escherichia</i> cryptic clade II MOD1-EC7253	99.2	92.0	91.7	91.0	45.5		
<i>Escherichia</i> cryptic clade III E4694	99.7	96.6	96.5	96.3	70.8		
<i>Escherichia</i> cryptic clade VI UHCL_3L	98.4	91.6	91.7	91.3	45.9		

- **Figure 1**. 16S phylogeny of *E. ruysiae* str. OPT1704^T with type strains of other *Escherichia spp.*, other
- 291 Escherichia cryptic clades and Salmonella enterica serovar Typhimurium as outgroup. Numbers
- indicate bootstraps on a scale of 0 to 1. Phylogeny available at
- 293 https://itol.embl.de/tree/14511722611197561579189697

294

- 296 **Figure 2**. Phylogeny based on 682 concatenated core genes including *E. ruysiae* OPT1704T with type
- 297 strains of other *Escherichia spp.*, other *Escherichia* cryptic clades and *Salmonella enterica* serovar
- 298 Typhimurium as outgroup. Numbers indicate bootstraps on a scale of 0 to 100. Phylogeny available
- 299 at https://itol.embl.de/tree/14511722711358151579253758



Salmonella enterica ser. Typhimurium str. LT2^T(RefSeq: NC_003197) *Escherichia* cryptic clade VI str. UHCL 3L (SRA: SRR8602198) *E. fergusonii* str. ATCC 35469^T(RefSeq: NC 011740) Escherichia cryptic clade I str. 89-3506 (RefSeg: NZ CP027520) *E. coli* str. ATCC 11775^T(RefSeq: NZ_AGSE01000004) *E. albertii* str. NBRC 107761^T (RefSeq: NZ BBMY01000235) *E. ruysiae* str. OPT1704^T(Genbank: CABVLQ01000001) Escherichia cryptic clade III str. MOD1-EC7253 (SRA: SRR9172035)

E. marmotae str. HT073016^T (RefSeq: NZ_CP025979)

Escherichia cryptic clade II str. E4694 (Genbank: PDIB0000000)

Tree scale: 0.1 🛏 🛶 🛶

Salmonella enterica ser. Typhimurium str. LT2^T(RefSeq: NC 003197) *E. albertii* str. NBRC 107761^T (RefSeq: NZ_BBMY01000235) *E. marmotae* str. HT073016^T(RefSeq: NZ CP025979) Escherichia cryptic clade III str. MOD1-EC7253 (SRA: SRR9172035) *E. ruysiae* str. OPT1704^T(Genbank: CABVLQ01000001) Escherichia cryptic clade II str. E4694 (Genbank: PDIB0000000) *Escherichia* cryptic clade VI str. UHCL 3L (SRA: SRR8602198) *E. coli* str. ATCC 11775^{T} (RefSeq: NZ AGSE01000004) Escherichia cryptic clade I str. 89-3506 (RefSeg: NZ CP027520)

E. fergusonii str. ATCC 35469^T (RefSeq: NC_011740)