bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

L

\K

f

¥

\——
E

R I F F L
STH U F F L E
A Supervised, Symmetry-Driven, GUI Toolkit for
Mouse Brain Stack Registration and Plane Assignment

Marcelo Cicconet and Daniel R. Hochbaum*

Harvard Medical School, Boston, MA

Abstract

Immunostaining of brain slices is a ubiquitous technique used throughout neuroscience for
the purposes of understanding the anatomical and molecular characteristics of brain circuits.
Yet the variety of distortions introduced, and the manual nature of the preparation, hinder the
use of the generated images from being rigorously quantified; instead most registration of brain
slices is done laboriously by hand. Existing automated registration methods rarely make use
of geometric shape information. When registering anterior-posterior brain slices, for example,
small errors between consecutive planes accumulate, causing the symmetry axis of a plane to
drift away from its starting position as depth increases. Furthermore, planes with imaging
artifacts — e.g. one half of the slice is missing — can cause large errors, which are difficult to fix
by changing global parameters. In this work we describe a method in which we register a set
of consecutive brain slices enforcing all slices to have a vertical axis of symmetry, and then pair
these slices optimally to planes from the Allen Mouse Brain Atlas via Dynamic Programming.
The pipeline offers multiple human-in-the-loop opportunities, allowing users to fix algorithmic
errors in various stages, including symmetry detection and pairwise assignment, via custom
graphical interfaces. This pipeline enables large-scale analysis of brain slices, allowing this
common technique to be used to generate quantitative datasets.

Keywords: stack registration, stack alignment, Allen Mouse Brain Atlas

Project page: github.com/hms-idac/RiffleShuffle

*MC with the HMS Image and Data Analysis Core; DRH with the Harvard University Society of Fellows, the
HMS Department of Neurobiology, and the Howard Hughes Medical Institute.

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

1 Introduction

This work describes — and serves as documentation for — an interactive toolkit aiming to register,
plane-by-plane, a set of mouse brain slices to the Allen Mouse Brain Atlasﬂ [2], as well as quantifying
puncta or difuse signal (e.g. from separate channels) in various labeled regions of the atlas.

The toolkit, available at github.com/hms-idac/RiffleShuffle, was developed using Matlalﬂ
R2018a, and consists of a series of code cells, which the user executes sequentially, setting the
appropriate parameters when needed, and adjusting possible algorithmic errors if necessary via
custom designed graphical user interfaces.

While the pipeline can be executed with minimal interaction once the proper parameters are
set, we found the ‘human in the loop’ approach to be critical due to the complexity of the task,
specially when the amount of available data is small and therefore less forgetful to small errors —
which in large datasets would possibly be dealt with by the law of large numbers.

Besides supervision, another feature that distinguishes this method from general registration
algorithms is its assumption, and use of, bilateral symmetry. Indeed the anterior-posterior slices of
the Allen Mouse Brain Atlas do display such property. Furthermore, assuming bilateral symmetry
simplifies registration, since the dimension of the space of parameters is reduced. Finally, enforcing
symmetry is a way to reduce the effect of error propagation in a sequence of pairwise registrations:
in symmetry-agnostic methods, small errors between consecutive planes accumulate causing the
symmetry axis of a plane to drift away from its starting position as depth increases.

There are three main phases: (1) pre-processing, (2) stack registration, (3) plane assignment.
The pre-processing phase consists of resizing images, computing masks and edge maps, as well as
detecting puncta if needed. Stack registration amounts to aligning the target dataset with itself
using symmetry as a guide. In plane assignment the slices of the target dataset are paired to
the slices of the atlas, starting from suggested bregma values, using a method similar to sequence
alignment — based on dynamic programming; after pairing, target slices are further adjusted to
Atlas slices using local non-linear deformations; finally, the amount of signal or spots intersecting
each labeled brain area is quantified.

2 Methods

2.1 Pre-Processing

First, the data is downsized, primarily to reduce computational cost without affecting the sub-
sequent steps. The pipeline assumes that each plane has two channels, one of which is used for
registration, and the other for quantification. In principle, they could be the same. There are two
options for quantification: puncta or diffuse signal. For diffuse signal, the user should keep in mind
that no background subtraction, or flat-field correction, or any other image-acquisition controls are
performed — they should be implemented beforehand if necessary. If the user chooses to quantify
puncta instead, there are two code cells to inspect the approximate size of puncta, as well as testing
how the chosen parameters for puncta detection work on selected image planes. Figure [I] has a
sample output of the puncta-measurement interface.

1® 2019 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://mouse.brain-map.org/
2The MathWorks, Inc., Natick, Massachusetts, United States.

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Figure 1: Output of the puncta-fitting GUI: pixel intensity map around puncta, reconstructed
gaussian, and reconstructed laplacian of gaussian.

Measurement implies finding the sigma of the 2D gaussian that best-fits a rectangular crop
around the puncta. For this we use a fitting algorithm developed by Nathan Orloﬂﬂ

Puncta detection is performed in two steps. First, a set of selected candidates is detected,
based on finding local maxima in the output of a laplacian-of-gaussian filtering of the image. These
candidates are then selected based on correlation to an ideal puncta (assumed to be a 2D gaussian
with the estimated sigma). For the initial candidate selection, a mask that separates the brain slice
from the background is used. This mask can be computed in various ways, but for the current
implementation we trained a machine learning model to perform such segmentation.

At this stage we also compute ‘contour likelihoods’, which are heat maps that highlight the
edges of the images. This is obtained using a separate machine learning model. These are the
images we use for self-registration (step 2) and assignment (step 3). Using edge likelihoods is not
only sufficient for registration, it is also helpful, since the target dataset typically has different
fine details compared to the Atlas, which if taken into account would make non-linear registration
difficult in step 3.

Figure [2] shows a sample output of this phase for a single plane.

Figure 2: Pre-processing output. I: channel used to compute mask and contour likelihood; Q:
channel to quantify, with locations of detected puncta overlayed; M: mask, C: contour likelihood.

2.2 Stack Registration

First, we run an automated symmetry detection algorithm [I] that finds the axis of bilateral sym-
metry in each plane independently and transforms the plane so that the new axis of symmetry
coincides with the vertical line splitting the image in two equal halves. For planes where the algo-
rithm fails to find the correct axis, adjustments can be made by running the global symmetry tool

— Figure 3

Shttps://www.mathworks.com/matlabcentral/fileexchange/41938-fit-2d-gaussian-with-optimization-toolbox

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Symmetry Tool —JoX -]

Eile Edit View |nsert JTools Desktop Window Help »

NS HS| AT EL- (2| 0E| e

SymTool 500

4] [77] [»]
vl [»)

aldq]

[»]

Done ‘

Figure 3: Controls and visualization for the global vertical symmetry adjustment tool.

In cases where a plane contains two partial brain slices, or even just one half of a slice, the user
can further adjust each half independently using the partial symmetry tool — Figure

Symmetry Tool JoX - Symmetry Tool (]
File Edt View lnsert Tools Desktop Window Help ~ Eile Edt View Insert Tools Desktop Window Help ~
NEES| AR 0DEL-(2|0E|aD NEES| R RAIUDEL-(E(0B|aD

Left vl
] 77| D]
4l i D
a4 | I
Done |

controls before adjustment after adjustment

Figure 4: Controls and visualization for the partial vertical symmetry adjustment tool, where
adjustments can be done independently to each half of the image.

This is followed by pairwise vertical registration, where each pair of consecutive planes is reg-
istered vertically. After this step the pairwise transformations are combined into a global vertical
registration, where the middle plane is used as an anchor against which all planes are registered. If
there is an error in pairwise vertical registration (leading to an error in global vertical registration),
it can be fixed using a pairwise vertical registration tool — Figure

At this point, the dataset is self-registered, except for minor local deformations. During the steps
above, corresponding masks and quantification channels (or puncta) are transformed accordingly.
The results are saved to file for plane assignment to the Allen Mouse Brain Atlas.

2.3 Plane Assignment

We start by reading and resizing the Atlas, to approximately match the scale of the dataset we just
worked on. Subsequently, the registered dataset (output of the previous phase) is loaded, and an
appropriate region of the Atlas cropped in the z dimension. This is done based on the estimated

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Vertical Registration Tool

Fle Edt View Inset Tools Desktop Window Help

DEde (R0 RL- (2|08 |nD

[727 [

|

Figure 5: Pairwise vertical registration tool.

range of bregmas covered by the dataset. For example, if the dataset contains slices with bregmas
linearly spaced between by and by, the Atlas is cropped so as to have planes only around those
bregmas, with some buffer on each side — the amount controlled by an adjustable parameter. We
further compute the 3D gradient magnitude of the Atlas, as this more closely resembles the edge
likelihoods of the dataset. Figure[6]shows an example of the resulting planes from Atlas and dataset
that become inputs to the pairwise assignment algorithm.

Figure 6: Left: planes of the subset of the Atlas to which the planes of the dataset will be aligned.
Right: dataset planes after self-registration.

Before pairwise assignment, however, the user has the option to further resize the Atlas’ planes
to match the scale of the dataset. Proper scaling increases both the accuracy and speed of the
matching algorithm.

Plane assignment is performed using a dynamic programming algorithm that maximizes the sum
of the plane-to-plane correlations. When computing candidates for pairing, the algorithm allows
some further re-scaling and vertical displacement to measure the correlation between candidate
pairs. Assignment is allowed within a certain range of the initially suggested positioning. For
example, if the initial guess for the bregma value of a plane is b, the final assigned bregma should
be within [b — €,b + €]. Figure [7] illustrates correlations for candidate matchings as well as final
assignment.

Results of the assignment are saved in a CSV table. If necessary, adjustments in this table can
be done to fix assignment errors — by running the appropriate code cell in the Matlab script.

At this point, the datasets are largely aligned. However, due to manual nature of sample
preparation, small deformations are introduced; thus an additional non-linear registration step is

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

correlations, mapped to [0, 1] optimal assignment

optimal assignment

Figure 7: Outputs from the plane assignment algorithm. The top left image shows restrictions
in bregma range. The top right image displays final assignment optimizing global correlation.
Both represent Atlas planes horizontally and dataset planes vertically. The bottom image displays
the actual plane assignment, as well as the possible candidates — this corresponds to the solution
illustrated in the top right.

performed. Here we deploy a registration method based on Maxwell’s Demons [3,[4], as implemented
by Matlab’s imregdemons function. Instead of using edge maps, however — as we did for the
registration algorithms so far — we deploy imregdemons on binary images of the outer contours of
the slices (see Figure[8). This helps the algorithm focus on small global adjustments, rather than
errouneously stretch small areas to fit local features in images that originated from distinct imaging
systems. Computation of the outer contours is based on steerable filtering and masks from the
Atlas. Figure [8]illustrates inputs and outputs from this step.

Having applied the transformations to the masks and quantification channels (or puncta loca-
tions) along the registration process, at last the dataset is ready for quantification.

We then read the Atlas label map, resize and crop it appropriately. If quantifying puncta,
we build a volume and approximate (z,y, z) puncta locations by their voxel location in order to
perform counting — to which we proceed. A quantification table, one line per label region, is saved
as a CSV file.

3 Remarks

Fast track mode. Once the pipeline is executed once, step by step, there’s the option to re-run
it in fast track mode. This is useful, for example, if the user wants to quantify both diffuse signal
and puncta: since only one type of quantification is possible at each run, the first would be done
step by step, setting parameters and quantifying one type of signal, and the second in fast track
mode, quantifying the other.

Parallel processing. In many steps the algorithm runs tasks in parallel, which speeds up the
process considerably. This requires Matlab’s Parallel Processing Toolbox. However the code should
run even if the toolbox is not available — albeit using a single processor, naturally.

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

before non-linear registration

after non-linear registration

Figure 8: Outer contours of sample dataset planes (red) overlaid with corresponding outer contours
of Atlas planes (green), before and after non-linear registration. Yellow color indicates overlap.

Intermediate steps record. Results of intermediate steps are saved to file for recording pur-
poses. The output names (either folders or files) always start with the name of the folder containing
the dataset. Output data is saved in the same folder where the input folder is located.

Non-linear registration. Optionally, non-linear registration can be performed on the edge maps,
as in previous registration steps. The use of outer contours, as described in the text above, occurs
when the variable for ‘interior contour dependence’ is active.

Machine learning. In pre-processing, we used machine learning models to obtain masks and
contours. Code and instructions for training similar models is released with the package containing
code for registration, in case the user wants to adopt the same approach.

Alternative approaches. It is a standard practice in scientific reports to only discuss the final
version of the working method. For the record, however, we would like to point out some alternative,
abandoned techniques. (1) We originally intended to perform 3D registration, but opted for 2D
slice-by-slice registration and alignment due to its relative simplicity and the fact outputs are easier
to inspect. (2) An earlier version of the pipeline used external (i.e. not built in Matlab) tools for
non-linear registration; no comparison of accuracy was made, the Matlab solution being adopted
for simplicity.

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/781880; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

Nomenclature. The toolkit is named after the card shuffling techniqueﬂ based on resemblance
with the task it is designed to perform (half the ‘deck’ of planes is the target dataset, the other half
is the Allen Atlas, and shuffling — if performed by a magician — intercalates planes according to the
correct assignment). Alternative naming attempts based on acronyms failed.

References

[1] M. Cicconet, D. G. C. Hildebrand, and H. Elliott. Finding mirror symmetry via registration
and optimal symmetric pairwise assignment of curves. IEEE ICCV, Detecting Symmetry in the
Wild Workshop, 2017. Venice, Italy.

[2] E. S. Lein et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature,
445:168-176, 2007.

[3] J. P. Thirion. Image matching as a diffusion process: an analogy with maxwells demons. Medical
Image Analysis, 2:3:243-260, 1998.

[4] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient
non-parametric image registration. Neurolmage, 45:1:61-72, 2009.

“https://en.wikipedia.org/wiki/Shuffling#Riffle

https://doi.org/10.1101/781880
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Pre-Processing
	Stack Registration
	Plane Assignment

	Remarks

