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SUMMARY 
The replication stress response which serves as an anti-cancer barrier is activated not only by DNA 

damage and replication obstacles, but also oncogenes, mystifying how cancer evolves. Here, we 

identify that oncogene expression, similar to cancer therapies, induces single stranded DNA 

(ssDNA) gaps that reduce cell fitness, unless suppressed by translesion synthesis (TLS). DNA fiber 

analysis and electron microscopy reveal that TLS restricts replication fork slowing, reversal, and 

fork degradation without inducing replication fork gaps. Evidence that TLS gap suppression is 

fundamental to cancer, a small molecule inhibitor targeting the TLS factor, REV1, not only disrupts 

DNA replication and cancer cell fitness, but also synergizes with gap-inducing therapies. This work 

illuminates that gap suppression during replication is critical for cancer cell fitness and therefore a 

targetable vulnerability. 

 

INTRODUCTION 

The replication stress response is activated in response to DNA lesions or intrinsic replication fork 

barriers, and it is critical to ensure the accurate transmission of genetic material to daughter cells 

(Berti and Vindigni, 2016). In response to stress, replication forks slow and remodel into reversed 

fork structures and this local fork response confers a signal to arrest DNA replication throughout 

the cell (Mutreja et al., 2018; Neelsen and Lopes, 2015). Cells either undergo replicative 

senescence or engage in DNA repair or other transactions that restart stalled DNA replication forks. 

The replication stress response is also induced by oncogenes, making it a critical barrier to cancer 

(Bartkova et al., 2005; Bartkova et al., 2006; Di Micco et al., 2006; Dominguez-Sola et al., 2007; 

Gorgoulis et al., 2005; Mailand et al., 2000; Neelsen et al., 2013; Yang et al., 2017). While 

oncogenes activate the DNA damage response, replication has been shown to accelerate and slow 

(Alevizopoulos et al., 1997; Neelsen et al., 2013; Santoni-Rugiu et al., 2000). These disparate 

findings could reflect distinct experimental systems or kinetics of analysis. Moreover, while 

checkpoint deficiency propels oncogenic transformation, (Bartkova et al., 2005; Bartkova et al., 

2006; Di Micco et al., 2006), the oncogene-inducing lesion that limits fitness and is eventually 

overcome in cancer remains unknown. Here, we further queried how cellular replication responds 

to replication stress induced by drugs or oncogene expression. 
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A pathway known for tolerating DNA damage that interferes with replicative polymerases, is 

translesion synthesis (TLS). TLS polymerases are recruited to bypass replication blocking lesions 

when the replicative polymerases are not functional or physically blocked (Kannouche and 

Lehmann, 2004). TLS polymerases have been implicated in bypassing DNA damage induced by 

chemotherapies such cisplatin providing rational for TLS inhibition in cancer therapy (Doles et al., 

2010; Wojtaszek et al., 2019; Xie et al., 2010b).  However, we recently proposed a competing 

model in which single-stranded DNA (ssDNA) gaps underlie the mechanism-of-action of genotoxic 

therapies and that gap suppression is the key factor that confers resistance (Panzarino et al., 2019; 

Cong et al., 2019). 

 

Here, we propose that the primary function of TLS is gap suppression (GS) to confer 

chemoresistance and overcome oncogene induced replication stress.  Specifically, we show that 

TLS maintains continuous replication to limit ssDNA gaps induced by replication stress, oncogenes, 

or chemotherapy. We identify several cancer cell lines dependent on TLS for replication and fitness 

suggesting a TLS rewiring is essential for cancer initiation and/or evolution. Importantly, a small 

molecule inhibitor targeting the TLS factor, REV1, not only disrupts DNA replication and cancer cell 

fitness, but also synergizes with gap-inducing therapies. This work demonstrates that gap 

suppression is the fundamental mechanism of overcoming the anti-cancer barrier and that TLS 

inhibition is critical for therapy response. 

 

 
RESULTS  

TLS limits replication fork slowing during stress  
To test the hypothesis that TLS avoids the replication stress response (Figure 1A), we sought to 

induce TLS and study its impact on the replication fork dynamics using DNA fiber spreading 

analysis. TLS is induced by the DNA helicase FANCJ when either its DNA damage induced 

acetylation or BRCA1 binding are blocked (Xie et al., 2010a; Xie et al., 2012). Here, we employed 

the FANCJ interaction defective BRCA1 mutant, FANCJS990A, that promotes TLS via the 

polymerase polh (Xie et al., 2010a). We complemented FANCJ K/O U2OS, osteosarcoma cancer 

cells and FANCJ-null FA-J patient immortalized fibroblast cells, with FANCJS990A (pro-TLS), 

FANCJWT (control), or vector (V) and found as expected that both FANCJWT and FANCJS990A 
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elevated mitomycin C (MMC) or cisplatin resistance as compared to vector (Figure 1B, S1A and 
S1B) (Peng et al., 2018; Xie et al., 2010a). In order to track the actively replicating fork, cells were 

labeled with sequential pulses of iodo-2′-deoxyuridine (IdU) and 5-chloro-2′-deoxyuridine (CldU) 

and the DNA tract lengths were measured. DNA fiber spreading analysis revealed that under 

unchallenged conditions, control or pro-TLS U2OS or FA-J complemented cell lines had similar 

tract lengths indicating that TLS induction did not impact normal replication progression. (Figure 
S1C). However, when CldU labeling was co-incident with 0.5mM hydroxyurea (HU), a dose that 

does not completely deplete nucleotide pools, but activates replication stress (Koc et al., 2004), or 

following ultraviolet radiation (UV), control cells had an expected reduction in tract lengths as 

compared to untreated control suggesting replication fork slowing during stress (Figure 1C and 
S1D). Notably, the DNA tracts in the pro-TLS cells failed to fully shorten during stress and appeared 

significantly longer than the control (Figure 1C). Further verifying that TLS contributes to the 

unrestrained replication, tracts fully shortened when the pro-TLS cells were treated with the TLS 

inhibitor (TLSi) that targets the C-terminus domain of REV (Korzhnev and Hadden, 2016; Sail et 

al., 2017) (Figure 1C).  
 

One possibility for the longer tracts and the failure to slow replication in the pro-TLS cells could be 

a more rapid restart of stalled forks and/or the firing of new origins upon stress. However, this did 

not appear to be the case, based on the analysis of replication restart and new origin firing. In 

particular, after an initial IdU label, followed by a brief HU treatment, and final CldU label, control 

and pro-TLS cells readily incorporated CldU as compared to the vector complimented FANCJ null 

FA-J cells, that displayed replication restart defects and the aberrant activation of dormant origins 

(Figure S1E). Together, these findings suggest that TLS induction overcomes fork slowing, but 

does not alter restart or dormant origin firing in response to stress.  

TLS promotes replication fork progression during stress without ssDNA gap induction  

Failure to slow replication during stress is associated with fork degradation, genomic instability, and 

low fitness (Lossaint et al., 2013; Neelsen and Lopes, 2015; Peng et al., 2018). We reasoned that 

TLS-dependent replication during stress could avoid this outcome because ssDNA gaps are 

avoided. To test this hypothesis, replication tracts were analyzed as before, but with or without S1 

nuclease treatment. Indeed, we observed that pro-TLS cells generated significantly longer tracts 

that were maintained even after S1 nuclease treatment (Figure 1C and S1F). Given that S1 
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nuclease degrades DNA fibers with ssDNA gaps, within the labelled replication tracts, not 

observable in the standard DNA fiber assay (Quinet et al., 2017), these findings further indicate 

that the failure to slow is not associated with re-priming or new origin firing. In contrast, tract 

shortening with S1 nuclease occurred in FANCJ null cells or in cells expressing the FANCJK52R 

(helicase dead) or TLS inactivating mutant FANCJS990A+K52R (pro-TLS+ helicase dead) (Cantor et 

al., 2001; Xie et al., 2010a)  (Figure S1F). Collectively these findings indicate that in response to 

stress, TLS not only disrupts fork slowing, but continues with the replication without generating 

ssDNA gaps.  

 

TLS avoids fork reversal and degradation  
We predicted that continued replication during stress limited fork reversal and in turn protected 

replication forks from degradation.  To investigate the frequency of reversed fork intermediates in 

cells with or without TLS induction, we analyzed the fine replication fork architecture by employing 

psoralen cross-linking coupled to Electron Microscopy (EM). Following 4mM HU treatment, we 

found a significant increase in the reversed fork structures in the control cells (~28% reversed 

forks), whereas pro-TLS cells exhibited significantly lower frequency (~11%) of fork reversal events 

(Figure 1D). Collectively, these results suggest that TLS restricts fork reversal. 

 

Next, to asses fork degradation, we analyzed the ratio of CldU to IdU tract lengths following 

sequential pulses with IdU and CldU followed by HU treatment (Schlacher et al., 2011) (Figure 
1E). Compared to control, the pro-TLS cells had a modestly enhanced CldU to IdU tract length 

ratio, consistent with less degradation upon stress (Figure 1E and S1G). Moreover, pro-TLS cells 

also maintained fork integrity following a prolonged period of replication stress (Data not shown). 

Additionally, in fork degradation-prone BRCA2-deficient PEO1 ovarian cancer cells(Sakai et al., 

2009) (Kolinjivadi et al., 2017; Mijic et al., 2017; Schlacher et al., 2011; Taglialatela et al., 2017), 

ectopic expression of the pro-TLS mutant not only enhanced fork protection, but also conferred 

cisplatin resistance as forks failed to fully slow as compared to control (Figure 1F and S1H). Taken 

together, these findings indicate that TLS provides fork protection through suppression of fork 

remodeling similar to the loss of fork remodelers (Kolinjivadi et al., 2017; Peng et al., 2018; 

Vujanovic et al., 2017). 

TLS disrupts the global replication stress response without ssDNA induction   
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During stress, fork slowing and remodeling promote the global arrest of DNA replication and 

maintain genomic stability (Mutreja et al., 2018) (Figure 1A). Thus, TLS interference with fork 

slowing in response to stress could limit the global arrest of DNA replication. To test this idea, an 

asynchronous population of the control or the pro-TLS U2OS cell lines were either left untreated or 

treated with varying doses of HU while also being labeled with 5-ethynyl-2′-deoxyuridine (EdU) to 

track active replication. The efficiency of replication was quantified by scoring the number of EdU 

positive cells. Under unperturbed conditions, the EdU incorporation was similar between the control 

and pro-TLS U2OS cells, further suggesting that TLS does not impact the gobal replication in 

unchallenged conditions (Figure 2A). However, upon HU treatment, we observed that EdU 

incorporation was significantly reduced in the control U2OS cells, mimicking the replication fork 

slowing as studied by the DNA fiber assay (Figure 2A). Moreover, the pro-TLS U2OS cells, 

continued to incorporate EdU not only in HU, but also following treatment with ultraviolet radiation 

(UV) (Figure S2A) again suggesting that TLS promotes replication during stress.  

Inhibition of the checkpoint kinase ATR also enables replication during stress (Mutreja et al., 2018) 

(Figure 2A). Given that ATR inhibition is toxic to cells (Couch et al., 2013), we considered that a 

key difference between TLS activation and ATR inhibition was ssDNA gap induction. To test 

whether replication during stress differed by ssDNA gap induction, we performed non-denaturing 

immunofluorescence following incorporation of 5-chloro-2′-deoxyuridine (CldU). In the presence of 

HU, we observed that the ATRi lead to wide-spread global ssDNA gaps, whereas by comparison 

to control, the pro-TLS cells appeared resistant to gap formation (Figure 2A). Collectively, these 

findings indicate that TLS, unlike ATR inhibition, promotes replication during stress but without 

genome wide ssDNA gap induction.  

To verify that unrestrained replication without ssDNA gaps is a distinct feature of TLS and not 

limited just to TLS-driven by FANCJ, we next depleted the negative regulator of TLS, p21 (Avkin et 

al., 2006). Depletion of p21 elevated continuous “ungapped” replication during HU treatment as 

compared to the control (Figure 2C and S2B). Importantly, in either pro-TLS system, FANCJS990A 

driven or on p21 depletion, the TLSi disrupted EdU incorporation and induced ssDNA gaps (Figure 
2B, 2E and S2C). Notably, in unchallenged cells the TLSi did not interfere with EdU incorporation 

(Figure 2B) suggesting that the addition of stress was a pre-requisite to induce TLS-dependent 
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replication.  Collectively, these findings indicate that TLS is a robust mechanism for continuation of 

replication during stress without ssDNA gap formation. 

Oncogene expression induces ssDNA gaps and reduces cell fitness  
Oncogene activation is associated with replication stress that serves as a barrier to cancer  

(Bartkova et al., 2005; Bartkova et al., 2006; Di Micco et al., 2006; Dominguez-Sola et al., 2007; 

Gorgoulis et al., 2005; Mailand et al., 2000; Neelsen et al., 2013; Yang et al., 2017). Given our 

findings, we sought to test the hypothesis that oncogene induced stress can be offset by TLS. To 

test this hypothesis, we generated cells stably infected with either empty vector -or CCNE1 vector 

that encodes the oncogene cyclin E1 in a doxycycline inducible manner (DOX-ON system) (Figure 
3A). As previously reported, we observed that cyclin E1 expression did not alter EdU incorporation 

(Alevizopoulos et al., 1997; Lukas et al., 1997; Santoni-Rugiu et al., 2000) (Figure 3B, 3C, S3A 
and S3B). However, there was a significant induction of genome wide ssDNA as well as loss of 

clonogenic capacity, both of which were suppressed by TLS maintained by expression of the 

FANCJS990A mutant (Figure 3B, 3C, S3A and S3B). Similar findings were observed in another well-

established U2OS cyclin E1 inducible system (TET-OFF system) (Lukas et al., 1997). Upon cyclin 

E1 over-expression (OE), as compared to the normal ectopic levels (NE), EdU incorporation was 

maintained, but ssDNA was induced and clonogenic survival was reduced unless counteracted by 

TLS achieved by p21 depletion (Figure 3D, 3E, 3F and S3C). Furthermore, co-incubation of the 

TLSi restored cyclin E induced ssDNA gaps and the reduced clonogenic capacity of the pro-TLS 

cells (Figure 3C and 3F). Collectively these findings indicate that TLS buffers oncogene induced 

stress to promote “ungapped” replication and survival.  

 
Cancer cells show TLS dependence  
If TLS overcomes the loss of fitness due to oncogene expression, then cancer evolution could favor 

TLS activation. To screen for a TLS rewiring in cancer, we tested the ability of distinct cancer cell 

types to replicate during stress. Remarkably, we found that replication robustly continued in the 

breast cancer cell line, MCF7, the endometrial cancer cell line, HeLa, the colon cancer cell line, 

HCT15, the lung cancer cell lines, A549 and NCI-H522, and the leukemia cell line, MOLT-4 (Figure 
4A, S4A and S4B). Moreover, the TLSi curtailed replication during stress and induced ssDNA gaps 

in these cell lines (Figure 4A and S4B). Notably, MCF7 cells also showed a flattened morphology 
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suggestive of senescence (Figure 4A). HeLa cells halted replication and induced ssDNA even in 

the absence of HU (Figure 4A), consistent with a pro-TLS phenotype even in unchallenged 

conditions. In contrast, similar to U2OS cells, the immortalized retinal pigment epithelial, RPE cell 

line ceased to replicate in low dose HU (Figure S4A). 

 

Consistent with a TLS rewiring, cancer cell lines with TLS-dependent replication lost clonogenic 

capacity upon treatment with the TLSi (Figure 4B). Moreover, early passage ovarian cancer ascites 

cells from two different patients were highly sensitive to the TLSi (Figure 4B). In contrast, the TLSi 

did not affect the colony forming capacity of the non-TLS dependent cell lines like RPE, U2OS and 

human mammary epithelial cell line, HMEC (Figure S4C). Additionally, TLS dependent Hela cancer 

cells showed dependence on the TLS factor FANCJ for replication and cellular fitness. Namely, 

FANCJ K/O in HeLa cells significantly reduced DNA replication and impaired clonogenic capacity 

(Figure S5A and S5B). Interestingly, along with the expected cisplatin sensitivity, p21 levels were 

also elevated in the FANCJ K/O HeLa cells and p21 depletion eventually improved replication, 

fitness and suppressed ssDNA gaps, unless TLS was inhibited (Figure S5A, S5C and S5D). Taken 

together, these findings reveal that distinct cancer cell lines rely on TLS for continuous replication 

and fitness indicating TLS is a cancer vulnerability.  

 
Gap inducing therapies are also evaded by TLS 
Currently, there is a major clinical effort to combat cancer by induction of replication stress through 

inhibition of ATR or the mitotic checkpoint kinase, Wee1 (Bukhari et al., 2019). Given that these 

drugs induce replication gaps (Figure 2A) (Couch et al., 2013; Forment and O'Connor, 2018; Yang 

et al., 2017), we considered that if gaps were the sensitizing lesion, TLS could also interfere with 

their effectiveness. Indeed, compared to the non-TLS dependent cells, the pro-TLS U2OS cells 

had greater clonogenic survival following ATRi or Wee1i, inhibitor MK1775 (Figure 5A, 5B and 
S6A-D). Similarly, the pro-TLS cancer cell line, HCT15, also showed resistance to both the ATRi 

and Wee1i (Figure 5A, 5B and S6A-D) (Bukhari et al., 2019). However, when co-incubated with 

the TLSi, the pro-TLS U2OS or HCT15 cell lines were re-sensitized suggesting a more potent 

therapeutic response when TLSi is used in combination with ATRi or Wee1i (Figure 5A, 5B and 
S6A-D). Collectively, these findings demonstrate that TLS overcomes replication stress from 

oncogene expression that explains the prevalence of cancer cells rewired to depend on TLS for 
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replication and fitness. This TLS rewiring mitigates the effectiveness of drugs such that inhibit ATR 

and Wee1, that induce gaps, suggesting the greater clinical potential of targeting TLS as a cancer 

therapy (Figure 5C). 

 

DISCUSSION: 

The replication stress response is a robust protective barrier that arrests or eradicates cells that 

are undergoing replication stress. Thus, cancers that overcome this barrier are expected to 

suppress the stress response by some mechanism. Based on our work, we predict that rewired 

replication that favors TLS is an essential adaptation to blunt oncogene induced replication stress 

that otherwise rapidly induces ssDNA gaps and limits fitness (Figure 5C). In support of this model, 

distinct cancer cells rely on TLS for fitness and to replicate during extrinsic or intrinsic stress. 

Mechanistically, we uncover that TLS curtails the slowing and remodeling of replication forks and 

the global replication arrest response while also suppressing ssDNA gaps that are toxic to cells 

(Chen et al., 1997; Forment and O'Connor, 2018; Gagna et al., 2000; Huang et al., 1996; Naruse 

et al., 1994; Nur et al., 2003; Peitsch et al., 1993; Tidd et al., 2000). Collectively, our findings 

highlight the importance of replication gaps as a cancer vulnerability that could be leveraged by 

TLS inhibition alone or in conjunction with gap inducing therapies in a wide range of cancers.  

FIGURE LEGENDS  

Figure 1. TLS limits replication fork slowing, reversal, degradation and gap induction.           
(A) Model to test whether TLS promotes unrestrained replication without gaps upon replication 

stress. Following DNA fiber analysis were performed in complemented U2OS FANCJ K/O cells.  
(B) Western blot analysis with the indicated Abs of WCE from U2OS CRISPR control and FANCJ 

CRISPR knockout (K/O) cells and FANCJ K/O cells complemented with empty vector (V), wild-type 

(WT) FANCJ and the FANCJ-BRCA1 binding deficient mutant (S990A).  

(C) Experimental schematic and quantification of CldU tract length after co-incubation with 0.5mM 

HU or 2J/m2 of UV or along with TLSi and quantification of CldU track length following -/+ S1 

nuclease.  

(D) Quantification of the frequency of fork reversal following treatment with 4mM HU for 2h. 

Following number of replication intermediates were analyzed; untreated sample - 94 for (Control) 
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and 84 for (pro-TLS), while for HU treated –130 for (Control) and 176 for (pro-TLS) from two 

independent experiments.  

(E-F) Experimental schematic and quantification of CldU/IdU ratio and western blot analysis with 

the indicated Abs of WCE from PEO1 cells expressing empty vector (V), FANCJWT (WT), and the 

FANCJ-BRCA1 binding deficient, FANCJS990A (pro-TLS). For every DNA fiber assay analysis, each 

dot represents one fiber.  Experiments were performed in biological triplicate with at least 100 fibers 

per replicate. Bars represent the mean ± SD. Statistical analysis according to two-tailed Mann-

Whitney test. All p values are described in Statistical methods. 

 

Figure 2. TLS promotes global replication during stress and suppresses ssDNA gaps.  
(A) Experimental schematic, representative immunofluorescence images and quantification of EdU 

and ssDNA positive cells. Cells were stained for EdU using the ClickiT chemistry and for ssDNA 

using CldU specific Ab under non-denaturing conditions and DAPI. Percent EdU and ssDNA 

positive cells were quantitated from around 300 cells counted from multiple fields.  

(B) Experimental schematic and representative immunofluorescence images at 100X following 

label with EdU in presence or absence of HU and/or TLSi and stained for EdU using the ClickiT 

chemistry and stained for ssDNA using ssDNA specific antibody and DAPI.  

(C) Western blot analysis with the indicated Abs of whole cell extract (WCE) from U2OS cells 

expressing shRNA against NSC or p21.  

(D-E) Experimental schematic and quantification of EdU and ssDNA positive cells. Cells were 

stained as described above. Experiments were performed in biological triplicate. Bars represent 

the mean ± SD. Statistical analysis according to two-tailed Mann-Whitney test. All p values are 

described in Statistical methods. 

 

Figure 3. TLS overcomes oncogene induced stress response and promotes cell fitness.  
(A) Western blot analysis with the indicated Abs of WCE from FANCJWT or FANCJS990A 

complemented FANCJ K/O U2OS cell lines stably infected with either only vector (V) or vector with 

CCNE1 gene. The cells were treated with 1ug/ml dose of doxycycline for  24hrs to induce cyclin 

E1 expression.  
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(B and E) Experimental schematic and quantification of EdU and ssDNA positive cells. Cells were 

stained as previously described in Figure 2.  

(C) Representative images and quantification of the colony formation assay with and without 

doxycycline induced cyclin E1 expression.  

(D) Western blot analysis with the indicated Abs of WCE from U2OS cells inducibly expressing 

cyclin E1 and upon p21 depletion by using shRNA against NSC or p21. NE denotes normal level 

of cyclin E1 while OE denotes cyclin E1 overexpression.  

(F) Representative images and quantification of the colony formation assay in NSC vs p21 depleted 

U2OS cyclin E1 NE or OE cells. Experiments were performed in biological triplicate. Bars represent 

the mean ± SD. Statistical analysis according to two-tailed Mann-Whitney test. All p values are 

described in Statistical methods. 

 

Figure 4: TLS subverts the replication stress response to promote cancer fitness.  
(A) Experimental schematic and quantification of EdU and ssDNA positive cells. Cells were stained 

as previously described in Figure 2.  

(B) Representative images and quantification of the colony formation assay with and without 

continuous presence of TLSi (20 µM). Experiments were performed in biological triplicate. Bars 

represent the mean ± SD. Statistical analysis according to two-tailed Mann-Whitney test. All p 

values are described in Statistical methods. 

 

Figure 5: TLS as a gap suppression mechanism in cancer that can be re-sensitized by using 
the TLSi.  
(A-B) Quantification of the colony formation assay after dose dependent treatment with ATR and 

WEE1i alone or in combination with TLSi.  

(C) Model summarizing that TLS is a replication stress avoidance mechanism in cancer. 

Experiments were performed in biological triplicate. Bars represent the mean ± SD. Statistical 

analysis according to two-tailed Mann-Whitney test. All p values are described in Statistical 

methods. 
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Supplemental Figures 

Figure S1. TLS does not impact replication restart or new origin firing.  
(A) Cell survival assays with U2OS FANCJ K/O complemented cells (complemented with FANCJWT 

(WT), empty vector (V) and the FANCJ-BRCA1 binding deficient, FANCJS990A (pro-TLS)  treated 

with increasing concentrations of MMC.  

(B) Western blot analysis with the indicated Abs of lysates from FA-J cells complemented with 

FANCJWT (control), empty vector (V) and the FANCJ-BRCA1 binding deficient, FANCJS990A (pro-

TLS), the FANCJ helicase dead mutant (K52R) and the FANCJ-BRCA1 binding deficient and 

helicase dead (K52R) double mutant.  

(C) Experimental schematic and the quantification of CldU tract length under unchallenged 

conditions as observed in the U2OS and the FA-J complemented control or pro-TLS cells.  

(D) Experimental schematic and the quantification of CldU tract length after co-incubation with 

0.5mM HU or 2J/m2 of UV.  

(E) Experimental schematic and quantification of CldU tract length, percent CldU tract with IdU, 

percent only IdU and percent only CldU tract.  

(F) Experimental schematic and quantification of CldU track length following -/+ S1 nuclease.  

(G) Experimental schematic and quantification of CldU/IdU ratio.  

(H) Experimental schematic and quantification of CldU tract length. Cell survival assays with above 

three cell lines under increasing concentrations of cisplatin. Data represent the Mean percent ± s.d. 

of survival from three independent experiments. For every DNA fiber assay analysis, each dot 

represents one fiber. Experiments were performed in biological triplicate with at least 100 fibers per 

replicate. Bars represent the mean ± SD. Statistical analysis according to two-tailed Mann-Whitney 

test. All p values are described in Statistical methods. 

 

Figure S2. TLS overcomes replication stress associated ssDNA gaps.  
(A) Experimental schematic, representative images and quantification of the EdU positive cells after 

UV treatment.  

(B) Experimental schematic and representative images of EdU and ssDNA positive cells. Staining 

performed as described in main Figure 2. Experiments were performed in biological triplicate with 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/781997doi: bioRxiv preprint 

https://doi.org/10.1101/781997


at least 100 fibers per replicate. Bars represent the mean ± SD. Statistical analysis according to 

two-tailed Mann-Whitney test. All p values are described in Statistical methods. 

 

Figure S3. TLS counteracts oncogene induced replication stress response. 
(A and C) Experimental schematic, representative images and quantification of the EdU and ssDNA 

positive cells. Staining performed as described in main Figure 2.  

(B) Representative images of the colony formation assay upon doxycycline induction. Experiments 

were performed in biological triplicate with at least 100 fibers per replicate. Bars represent the mean 

± SD. Statistical analysis according to two-tailed Mann-Whitney test. All p values are described in 

Statistical methods. 

 

Figure S4. TLS re-wiring of cancer cells promotes unrestrained replication during stress. 
(A) Experimental schematic and quantification of EdU positive cells. Cells were stained for EdU 

using the ClickiT chemistry and DAPI. Percent EdU positive cells were quantitated from around 

300 cells counted from multiple fields.  

(B) Experimental schematic and representative immunofluorescence images of EdU and ssDNA 

positive cells. Cells were stained as described previously in main figure 2.  

(C) Representative images of the colony formation assay with and without continuous presence of 

TLSi (20 µM). Experiments were performed in biological triplicate with at least 100 fibers per 

replicate. Bars represent the mean ± SD. Statistical analysis according to two-tailed Mann-Whitney 

test. All p values are described in Statistical methods. 

 

Figure S5. FANCJ promotes TLS by suppressing the negative regulator, p21 
(A) Western blot analysis with the indicated Abs of whole cell extract (WCE) from HeLa CRISPR 

control and FANCJ CRISPR knockout (K/O) cells and HeLa FANCJ K/O cells expressing shRNA 

against NSC or p21. Experimental schematic and quantification of EdU positive cells. Cells were 

stained as previously described in main Figure 2.  

(B-D) Representative images and quantification of the colony formation assay.  
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(C) Experimental schematic and quantification of EdU and ssDNA positive cells performed as 

described in main Figure 2. Experiments were performed in biological triplicate with at least 100 

fibers per replicate. Bars represent the mean ± SD. Statistical analysis according to two-tailed 

Mann-Whitney test. All p values are described in Statistical methods. 

 

Figure S6. TLSi as a promising cancer therapy 
 (A-D) Representative images of the colony formation assay after dose dependent treatment with 

ATR and WEE1i alone or in combination with TLSi.  

 

 

 

EXPERIMENTAL PROCEDURES  

Cell lines 
U2OS, PEO1, HeLa, MCF7, HCT15 and A549 cell lines were grown in DMEM supplemented with 

10% fetal bovine serum and penicillin and streptomycin (100 U/ml each). U2OS cells inducibly 

overexpressing cyclin E (U2OS-CE) were maintained in DMEM supplemented with 10% fetal 

bovine serum (FBS; Invitrogen, Cat. No. 10500), penicillin-streptomycin-glutamine (Invitrogen, Cat. 

No. 10378-016), G418 400 µg/ml (Invitrogen, Cat. No. 10131-027), puromycin 1 µg/ml (Sigma, Cat. 

No. P8833) and tetracycline 2 µg/ml (Sigma, Cat. No. T7660). Right before the experiment, the 

cells were split into two aliquots. One aliquot was cultured in media without tetracycline to induce 

cyclin E overexpression (OE cells) and the other in media with 1µg/ml doxycycline to maintain low 

levels of ectopic cyclin E expression (NE cells). MOLT4 and NCI-H522 cell lines were grown in 

RPMI supplemented with 10% fetal bovine serum and penicillin and streptomycin (100 U/ml each). 

HMEC cell line was grown in DMEM supplemented with 15% fetal bovine serum and penicillin and 

streptomycin (100 U/ml each).  FA-J cells (EUFA30-F) were immortalized with human telomerase 

reverse transcriptase (hTERT) (Peng et al., 2007) and cultured as previously described (Achar et 

al., 2015; Litman et al., 2005). Stable FA-J pOZ complemented cell lines were generated and 

selected as previously described (Peng et al., 2007). U2OS and HeLa FANCJ K/O CRISPR cell 

lines were generated as previously described (Peng et al., 2018). Stable U2OS FANCJ K/O and 
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PEO1 pLenti complemented cell lines were generated by blasticidin selection (5 μg/ml). Stable 

HeLa and U2OS shRNA knockdown cell lines were generated by puromycin selection (0.25 and 

0.5ug/ml respectively).  

 

Human Subjects 

Malignant ovarian cancer cells were recovered from ascitic fluids from ovarian cancer patients by 

the University of Massachusetts Medical School (UMMS) Biorepository and Tissue Bank. Patient 

consent was obtained prior to specimen collection under an UMMS Institutional Review Board 

(IRB)-approved protocol (H4721). Malignant ovarian cancer cells were recovered from ascitic fluids 

by centrifugation at 200 g and cryopreserved in RPMI media supplemented with 10% FBS and 10% 

DMSO. Cells were slowly frozen at -80° C in an isopropanol bath overnight and stored long term in 

the vapor phase of a liquid nitrogen freezer. The consent process included conditions for sharing 

de-identified samples and information with other investigators. No identifiable information will be 

shared at any time per Health Insurance Portability and Accountability Act guidelines. 

 
Plasmid and shRNA Constructs   
The WT and S990A FANCJ pLentiviral vectors were a gift from J Chen (Yu et al., 2003). The WT 

and S990A pOZ vectors were generated as previously described (Peng et al., 2007). HeLa FANCJ 

K/O and U2OS cells were infected with pLK0.1 vector containing shRNAs against non-silencing 

control (NSC) or one of three shRNAs against p21/CDKN1A (A) (Target region – 3’UTR - 

CGCTCTACATCTTCTGCCTTA), (B) (CDS - GAGCGATGGAACTTCGACTTT) and (C) (CDS - 

GTCACTGTCTTGTACCCTTGT). pInducer20 empty vector and pInducer20 Cyclin E1 plasmids 

were obtained from Addgene. The FANCJ K/O U2OS cells complemented with FANCJ WT or 

FANCJS990A were further infected with the respected virus to express the empty vector or Cyclin 

E1 in a doxycycline inducible manner. shRNAs were obtained from UMMS shRNA core facility.  

Drugs and reagents 
The following drugs were used in the course of this study: Cisplatin (Sigma-Aldrich), was prepared 

as a 1mM solution in saline per the manufacturer’s instructions. MMC (Sigma-Aldrich), was 

prepared by dissolving 0.5mg/mL in water. HU (Sigma), was prepared fresh in complete media 

prior to experiments per the manufacturer’s instructions. The ATR inhibitor, VE-821 (Selleckchem) 
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and WEE1i, MK-1775 (Selleckchem) were prepared as a 15mM and 5mM solutions in DMSO 

respectively. 5-chloro-2′-deoxyuridine (CldU) and 5-Iodo-2′-deoxyuridine (IdU) were obtained from 

Sigma-Aldrich. Click-iT EdU Alexa Fluor 488 Imaging Kit was obtained from Invitrogen. 

Concentration and duration of treatment are indicated in the corresponding figures and sections. 

Immunoblotting and Antibodies  
Cells were harvested, lysed and processed for Western blot analysis as described previously using 

150mM NETN lysis buffer (20mM Tris (pH 8.0), 150mM NaCl, 1mM EDTA, 0.5% NP-40, 1mM 

phenylmethylsulfonyl fluoride, 10mg/ml leupeptin, 10mg/ml aprotinin). For cell fractionation, we 

isolated cytoplasmic and soluble nuclear fractions with the NE-PER Kit (Thermo) according to the 

manufacturer’s protocol; to isolate the chromatin fraction, the insoluble pellet was resuspended in 

RIPA buffer and sonicated in a BioRuptor according to the manufacturer’s protocol (Medium power, 

20 minutes, 30 seconds on, 30 seconds off at 4°C). Proteins were separated using SDS–PAGE 

and electro-transferred to nitrocellulose membranes. Membranes were blocked in 5% not fat dry 

milk(NFDM) phos-phate-buffered saline (PBS)/Tween and incubated with primary Ab for overnight 

at 4°C. Antibodies (Abs) for Western blot analysis included anti-bactin (Sigma-Aldrich), anti-FANCJ 

(E67), anti-Vinculin (Sigma-Aldrich), anti-Cyclin E1 (abcam) and anti-p21 (BD Pharmingen),. 

Membranes were washed, incubated with horseradish peroxidase-linked secondary Abs 

(Amersham) for 1h at room temperature and detected by chemiluminescence (Amersham).  
 
Immunofluorescence 
Immunofluorescene was performed as described previously (Cantor et al., 2001). Cells were grown 

on coverslips in 10 µM BrdU for 48 h before the treatment with drugs. Cells were then treated with 

the aforementioned drugs for 2h. After treatment, cells were washed with PBS and pre-extracted 

(0.5% Triton X-100 made in phosphate-buffered saline (PBS) on ice. Cells were then fixed using 

4% Formalin for 15 min at RT. Fixed cells were then incubated with primary Abs against BrdU 

(Abcam) at 37°C for 1h. Cells were washed and incubated with secondary Abs for 1 h at room 

temperature. After washing, cover slips were mounted onto glass slides using Vectashield 

mounting medium containing DAPI (Vector Laboratories). For EdU labeling, staining was carried 

out with Click-iT EdU imaging kit (Invitrogen) according to the manufacturer's instructions. 
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DNA Fiber Assays 
To directly visualize replication fork dynamics, we established single molecular DNA fiber analysis. 

In this assay, progressing replication forks in cells were labeled by sequential incorporation of two 

different nucleotide analogues, 5-Iodo-2’-deoxyuridine (IdU, 50μM) and 5-Chloro-2’-deoxyuridine 

(CldU, 50μM), into nascent DNA strands for the indicated time and conditions. After nucleotide 

analogues were incorporated in vivo, the cells were collected, washed, spotted (2.5μl of 105 

cells/ml PBS cell suspension) and lysed on positively charged microscope slides (Globe Scientific, 

#1358W) by 7.5μl spreading buffer (0.5%SDS, 200mM Tris-Hcl pH 7.4, 50mM EDTA) for 8 min at 

room temperature. Individual DNA fibers were released and spread by tilting the slides at a 45 

degree. After air dry, the fibers were fixed by 3:1 methanol: acetic acid at room temperature for 3 

min. After air dry again, fibers were rehydrated in PBS, denatured with 2.5M HCl for 30 min, washed 

with PBS and blocked with blocking buffer (3% BSA and 0.1%Trition in PBS) for 1 hour. Next, slides 

were incubated for 2.5h with primary Abs for (IdU: 1:100, mouse monoclonal anti-BrdU, Becton 

Dickinson 347580; CldU: 1:100, rat monoclonal anti-BrdU, Abcam 6326) diluted in blocking buffer, 

washed several times in PBS, and then incubated with secondary Abs (IdU: 1:200, goat anti-

mouse, Alexa 488; CldU: 1:200, goat anti-rat, Alexa 594) in blocking buffer for 1h. After washing 

and air dry, the slides were mounted with Prolong (Invitrogen, P36930). Finally, the visualization of 

green and/or red signals by fluorescence microscopy (Axioplan 2 imaging, Zeiss) will provide 

information about the active replication directionality at single molecular level. 

S1 Nuclease Fiber Assay 
As described previously, cells were exposed to 50uM IdU to label replication forks, followed by 

50uM CldU with 0.5mM HU for 1h. Subsequently, cells were permeabilized with CSK buffer (100 

mM NaCl, 10 mM MOPS, 3 mM MgCl2 pH 7.2, 300 mM sucrose, 0.5% Triton X-100) at room 

temperature for 8 minutes, followed by S1 nuclease (20U/ml) in S1 buffer (30 mM Sodium Acetate 

pH 4.6, 10 mM Zinc Acetate, 5% Glycerol, 50 mM NaCl) for 30 minutes at 37C. Finally, cells were 

collected by scraping, pelleted, resuspended in 100-500ul PBS; 2ul of cell suspension was spotted 

on a positively charged slide and lysed and processed as described in the DNA fiber assay section 

above 
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Electron microscopy 
For the EM analysis of replication intermediates, 5–10 × 106 U2OS cells treated with or without 

4mM HU were collected and genomic DNA was cross-linked by two rounds of incubation in 

10 μg ml−1 4,5′,8-trimethylpsoralen (Sigma-Aldrich) and 3 min of irradiation with 366 nm UV light on 

a precooled metal block10,26. Cells were lysed and genomic DNA was isolated from the nuclei by 

proteinase K (Roche) digestion and phenol-chloroform extraction. DNA was purified by isopropanol 

precipitation, digested with PvuII HF in the proper buffer for 3–5 h at 37 °C and replication 

intermediates were enriched on a benzoylated naphthoylated DEAE–cellulose (Sigma-Aldrich) 

column. EM samples were prepared by spreading the DNA on carbon-coated grids in the presence 

of benzyl-dimethyl-alkylammonium chloride and visualized by platinum rotary shadowing. Images 

were acquired on a transmission electron microscope (JEOL 1200 EX) with side-mounted camera 

(AMTXR41 supported by AMT software v601) and analyzed with ImageJ (National Institutes of 

Health). EM analysis allows distinguishing duplex DNA—which is expected to appear as a 10 nm 

thick fiber, after the platinum/carbon coating step necessary for EM visualization—from ssDNA, 

which has a reduced thickness of 5–7 nm. The criteria used for the unequivocal assignment of 

reversed forks include the presence of a rhomboid structure at the junction itself in order to provide 

a clear indication that the junction is opened up and that the four-way junction structure is not simply 

the result of the occasional crossing of two DNA molecules25. In addition, the length of the two arms 

corresponding to the newly replicated duplex should be equal (b = c), whereas the length of the 

parental arm and the regressed arm can vary (a ≠ b = c ≠ d). Conversely, canonical Holliday junction 

structures will be characterized by arms of equal length two by two (a = b, c = d). 

 
Viability assays 
Cells were seeded onto 96 well plates (500 cells per well, performed in triplicates for each 

experiment) and incubated overnight. Next day the cells were treated with increasing dose of MMC 

for 1 hr in serum-free media or cisplatin or TLSi and maintained in complete media for 5 days. 

Percent survival was measured using CellTitre-Glo viability assay (Promega) photometrically in a 

microplate reader (Beckman Coulter – DTX 880 Multimode detector).  
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Colony Formation Assay 
For colony formation assays either 500 or 1000 cells per well were seeded into 6 well plates and 

were treated continuously with or without different drugs as mentioned in the respective figures. 

Once the colonies had developed, the cells were fixed with 90% methanol and then stained with 

0.05% (w/v) crystal violet solution. Plates were then imaged using ChemiDocTM Touch Imaging 

System (BioRad) and number of colonies were counted using the Cell Profiler software version 

3.1.5 from Broad Institute.  

 
Statistical Methods 
Statistical differences in DNA fiber assay, S1 Nuclease assay, Immunofluorescence and colony 

forming assays were determined using a two-tailed Mann-Whitney test. Statistical analysis was 

performed using Excel and GraphPad Prism (Version 7.0). In all cases, ns: not significant (p > 

0.01), **p < 0.01, *p< 0.001, and ****p < 0.0001. 
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