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Abstract

Government regulators and others concerned about toxic chemicals in the environment
hold that a mechanistic, causal explanation of toxicity is strongly preferred over a
statistical or machine learning-based prediction by itself. Elucidating a mechanism of
toxicity is, however, a costly and time-consuming process that requires the participation
of specialists from a variety of fields, often relying on animal models. We present an
innovative mechanistic inference framework (MechSpy), which can be used as a
hypothesis generation aid to narrow the scope of mechanistic toxicology analysis.
MechSpy generates hypotheses of the most likely mechanisms of toxicity, by combining
a semantically-interconnected knowledge representation of human biology, toxicology
and biochemistry with gene expression time series on human tissue. Using vector
representations of biological entities, MechSpy seeks enrichment in a manually-curated
list of high-level mechanisms of toxicity, represented as biochemically- and
causally-linked ontology concepts. Besides predicting the canonical mechanism of
toxicity for many well-studied compounds, we experimentally validated some of our
predictions for other chemicals without an established mechanism of toxicity. This
framework can be modified to include additional mechanisms of toxicity, and is
generalizable to other types of mechanisms of human biology.

Author summary

Several recent computational methods have displayed excellent performance in
predicting toxicity outcomes [1–3] of chemicals. Yet, to our knowledge, there is to date
no computational approach to generate mechanistic hypotheses to answer why these
chemicals elicit a toxic response. There is great value in understanding the mechanism of
toxicity for a chemical that appears to elicit an adverse response. Novel small molecule
development is one example, where a chemical that failed initial toxicological screenings
could be assessed to evaluate the actual mechanism of toxicity, greatly reducing research
time and expenses on subsequent ones. The value of a mechanistic awareness of toxicity
also applies to pharmacovigilance, when researching rare adverse effects of a drug in
subsets of the population. The development of oncological chemotherapeutics is another
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example, where certain mechanisms of cytotoxicity can actually be desirable to
eliminate different types of tumor cells. More importantly, the costs, time expenditure,
and ethical concerns of toxicity animal models, make in vitro and in silico approaches an
enticing alternative. We present a solution that uses a combination of gene expression
assays and biomedical knowledge to address the gap of answering the why question.

Introduction

We currently have access to a wealth of biological, chemical and medical structured
information represented in domain-specific ontologies. These ontologies elucidate diverse
relationships between its constituent entities, like protein-protein interactions, or
participation of enzymes (or chemicals) in biological processes, at specific cellular
compartments. The Gene Ontology [4, 5] (GO) is the most commonly used, and a
variety of tools exist to seek enrichment of particular concepts [6–8] or even specific
pathways [9]. Our knowledge of molecular biology and biochemistry, however, goes well
beyond what is described in GO, and it can be complemented by other ontologies and
public databases that describe interactions between enzymes and/or chemicals.

In the case of in vitro toxicology studies involving gene expression assays (also
referred to as “transcriptomics”), the simplest approach is to take the results of
differential transcriptomics analysis and seek GO concept enrichment to gain clues of
the underlying biological behavior of the treated cells. This is sometimes useful, yet
often provides a somewhat disconnected list of terms that vary in specificity. The GO
enrichment approach could be expanded by seeking enrichment of particular pathways,
among databases like the Kyoto Encyclopedia of Genes and Genomes [10] (KEGG) or
Reactome [11]. However, this output results in a list of possibly related biological
pathways that are not necessarily tailored to the study’s domain (e.g. toxicology).
Moreover, current pathway enrichment strategies don’t take into account the sequential
order in which the experimentally-significant expression changes occur.

The use of artificial intelligence to infer mechanistic behavior in biology or other
disciplines is still at a nascent stage. Most of the computational work on biological
mechanisms has been focused on their representation [12,13], and studies aimed at
elucidating a mechanism of toxicity have generally been targeted to specific compounds,
or narrow classes of them. Prior work in seeking enrichment of adverse outcome
pathways (AOPs [14], which are the most common representation for chemical-specific
toxicity), was focused on targets like pulmonary fibrosis [15] or fatty liver [16].
Computational approaches are sometimes faced with skepticism, particularly as the
techniques become increasingly “black box”-like [17]. A hypothesis generation tool that
produces mechanistic narratives backed by curated existing knowledge, however, would
result in a more attractive alternative as scientists can validate the plausible
explanations offered. Moreover, scientists could highlight any potential mistakes,
adjusting our web of knowledge accordingly, and having the entire community benefit
from it.

The idea of computationally-generated explanations is not new, as Schank [18]
proposed a framework for this in 1986. At that time, the breadth of scope and lack of
computational power resulted in explanation patterns remaining mostly as a theoretical
exercise. However, we now have the tools to make it possible. Here we present a
computational framework (Fig. 1) to produce mechanistic hypotheses of toxicity from in
vitro assays. Taking a time series gene expression experiment as input, MechSpy uses a
graph representation of our current knowledge of molecular biology and biochemistry, to
generate a transparent narrative for each of the three most likely mechanisms of toxicity
taking place, linking experimental events to different mechanism steps.
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Fig 1. Overview of MechSpy’s mechanistic inference process. The knowledge
graph (a) of semantically-integrated ontologies and databases and the transcriptomics
data (d), in light purple frames, are our inputs. After adding new edges to the graph by
deductively closing it (b), MechSpy uses node2vec to generate dense vector embeddings
of each node (c). We also perform differential expression analysis on the transcriptomics
data (d), and obtain a list of the top N most significant changes in gene expression (e).
Based on these changes, and using the embeddings for genes and all mechanism steps,
MechSpy generates an enrichment score for each mechanism (f). Using the original
knowledge graph (a) and the significant genes across time (e), it then produces both a
narrative (g) and a graphical explanation (h) for each of the three most enriched
mechanism.

Materials and methods

Toxicity mechanisms

Many mechanisms in biology can be represented as an ordered sequence of ontology
concepts. After an extensive literature review, we curated a list of high-level
mechanistic toxicology descriptions. A total of 11 high-level mechanisms were curated,
based on a mechanistic toxicology textbook [19], which we were able to represent as
causally-linked concepts from the gene ontology. After parsing the textual description of
a mechanism, we listed the sequence of key events that would summarize it at a high
level. For each of these events, we looked for the GO concept that most closely
represented it. The mechanisms with their respective steps, which represent events at a
molecular level that must follow a sequential order, are listed in Table 1. We attempted
to capture with these some of the most common ways a toxicological insult results in an
adverse cellular outcome.
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Table 1. Mechanisms of toxicity evaluated.

M1: Triggering of caspase-mediated apoptosis via release of cytochrome C

1. Positive regulation of mitochondrial membrane permeability GO:0035794
2. Positive regulation of release of cytochrome C from mitochondria GO:0090200
3. Caspase activation GO:0006919
4. Apoptotic DNA fragmentation GO:0006309
5. Intrinsic apoptotic signaling pathway in response to DNA damage GO:0008630

M2: ATP depletion from calcium homeostasis disruption, resulting in necrosis

1. Regulation of calcium ion transport GO:0051924
2. Positive regulation of cytosolic calcium ion concentration GO:0007204
3. Positive regulation of mitochondrial membrane permeability GO:0035794
4. Negative regulation of ATP biosynthetic process GO:2001170
5. Necrotic cell death GO:0070265

M3: Increased cytosolic calcium, resulting in calpain-mediated cytoskeletal damage

1. Regulation of calcium ion transport GO:0051924
2. Positive regulation of cytosolic calcium ion concentration GO:0007204
3. Calcium-dependent cysteine-type endopeptidase (calpain) activity GO:0004198
4. Microtubule severing GO:0051013
5. Necrotic cell death GO:0070265

M4: Xenobiotic-induced oxydative stress

1. Membrane lipid catabolic process (peroxidation) GO:0046466
2. Aldehyde oxidase activity GO:0004031
3. Oxidation-reduction process GO:0055114
4. Cellular response to redox state GO:0071461
5. Cellular response to oxidative stress GO:0034599
6. Regulation of oxidative stress-induced cell death GO:1903201

M5: Mitochondria-mediated toxicity by inhibition of electron transport chain
1. Negative regulation of mitochondrial electron transport, NADH to ubiquinone GO:1902957
2. Negative regulation of mitochondrial ATP synthesis coupled proton transport GO:1905707
3. Negative regulation of ATP biosynthetic process GO:2001170
4. Cellular response to reactive oxygen species GO:0034614
5. Mitochondrial DNA repair GO:0043504

M6: Inhibition of tissue repair by cell cycle disruption
1. Negative regulation of G0 to G1 transition GO:0070317
2. Negative regulation of cell cycle G2/M phase transition GO:1902750
3. Negative regulation of mitotic cell cycle GO:0045930
4. Positive regulation of cell cycle arrest GO:0071158
5. Positive regulation of apoptotic process GO:0043065

M7: Endoplasmic reticulum stress (by chemical or a metabolite covalently bound to proteins)
1. Endoplasmic reticulum unfolded protein response GO:0030968
2. Positive regulation of signal transduction GO:0009967
3. Positive regulation of protein folding GO:1903334
4. Positive regulation of chaperone-mediated protein folding GO:1903646
5. Response to endoplasmic reticulum stress GO:0034976
6. Positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic
signaling pathway

GO:1902237

M8: Triggering of estrogen receptor (ER) activity
1. Protein homodimerization activity GO:0042803
2. Estrogen response element binding GO:0034056
3. Estrogen receptor activity GO:0030284
4. Intracellular estrogen receptor signaling pathway GO:0030520
5. Cellular response to estrogen stimulus GO:0071391

M9: Triggering of aryl hydrocarbon receptor (AHR) activity
1. Aryl hydrocarbon receptor binding GO:0017162
2. Protein heterodimerization activity GO:0046982
3. Glutathione transferase activity GO:0004364
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4. Glucuronosyltransferase activity GO:0015020
5. Negative regulation of cell cycle phase transition GO:1901988

M10: Triggering of androgen receptor (AR) activity
1. Protein dimerization activity GO:0046983
2. Androgen receptor binding GO:0050681
3. Androgen receptor signaling pathway GO:0030521

M11: Triggering of peroxisome proliferator-activated receptor gamma (PPAR-γ) alteration
of fatty acid metabolism
1. Peroxisome proliferator activated receptor binding GO:0042975
2. Fatty acid binding GO:0005504
3. Positive regulation of fatty acid biosynthetic process GO:0045723
4. Negative regulation of fatty acid beta-oxidation GO:0031999
5. Positive regulation of lipid storage GO:0010884
6. Oxidative phosphorylation uncoupler activity GO:0017077

These mechanisms of toxicity were manually curated from the literature, and every
mechanism step was represented using an ontology concept. The enrichment of each
mechanism step is expected to happen following the sequential order in which they
are described here.

These mechanisms can be considered as cell-focused, different from AOPs which go
beyond the cellular scope and towards organ- and individual-specific responses. These
mechanisms were reviewed by several members of the Toxicology department at the
University of Colorado, Anschutz medical campus. We surveyed the literature for
evidence of mechanistic explanations of toxicity for every compound used in the
exposure assays we tested. The possible mechanism labels and literature sources for
each of these chemicals are listed in Supplemental Table S1. MechSpy selects the three
most likely high-level mechanisms of toxicity for each transcriptomics time series, and
produces a putative explanation for each.

Knowledge graph

A knowledge graph (KG) is a more powerful tool to employ than any ontology by itself,
as it provides much richer contextual information for any concept, and can uncover
relations between entities that would be missed in separate ontologies. We extended a
KG [20] (Fig. 1.a) that was generated by semantically integrating multiple open
biomedical ontologies (OBOs [21]) and other sources of publicly available linked open
data. An ontology is a formal representation of entities or concepts, and the relations
between them. Ontologies employ a directed acyclic graph (DAG) representation,
usually described as a list of “triples” (subject, predicate, object). The KG included
concepts from the Gene Ontology [4, 5], Protein Ontology [22], Cell Ontology [23],
Human Phenotype Ontology [24], Human Disease Ontology [25], and Chemical Entities
of Biological Interest [26], among others, in a semantically-consistent fashion. Only
human entities and the relations between them were included. Several public databases
were also used to incorporate additional directed edges into the KG, e.g. the Cellular
Toxicogenomics Database [27], Reactome [28], the STRING database [29], the AOP
Wiki [30], the National Cancer Institute thesaurus [31], and Uniprot [32].

This KG focuses on concepts directly related to human biology, rather than those
involving model organisms. Fig. 2 illustrates the richness of information that can be
extracted from these interconnected sources. Once the knowledge graph was built, the
ELK reasoner [33,34] was run to deductively close and complete the graph (Fig. 1.b),
adding new edges for transitive relations where applicable. For example, the “DFFA”
gene participates in the “Apoptosis-induced DNA fragmentation” pathway, and the
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“Apoptosis-induced DNA fragmentation” pathway has part in the “Apoptotic DNA
fragmentation” biological process, so a new edge is added to represent “DFFA
participates in the apoptotic DNA fragmentation biological process”. The graph was
used both in its original form to generate the mechanistic narratives, and in its
deductively-closed form to generate vector embeddings for its nodes.

Fig 2. Illustrative knowledge graph sample. Example of how ontology concepts
and database sources are interconnected in the KG extended from the PheKnowLator
project [20].

Data sources

Since the KG is focused on human biology, we sought out publicly available time series
datasets that used human cells, from different tissue types. The raw human microarray
data (Fig. 1.d) used as input was sourced from the Open TG-Gates [35] database, the
carcinoGENOMICS [36] project and Netherlands Toxicogenomics Centre projects
available in the diXa Data Warehouse [37], as well as other publicly available
tobacco-related human microarray datasets [38–41] in ArrayExpress [42] that used
human nasal, buccal and bronchial epithelial tissue. These sources provided a variety of
time series gene expression experiments, at different time points and using different
human cell types. Specifically, we used samples from Open TG-Gates that featured 3
time points, 3 replicates for each condition and 3 doses of exposure (low, medium, and
high, varying by each chemical). Other samples from Open TG-Gates were also chosen
as canonical examples of toxicity mechanisms from Urs A. Boelsterli’s textbook [19].
For all other data sources, we used any time series which had at least two time points
with significant differentially-expressed genes.

We used gene expression time series from diXa studies DIXA-002 (liver cells
HepaRG and HepG2), DIXA-003 (kidney cells RPTEC/TERT1), DIXA-004 (lung
epithelial cells BR200, BR234, BR259, BR234/CDK4, and BR234/p16), and DIXA-078
(HepG2 liver cells). Using the Limma [43] R package with robust multiarray average
(RMA) background correction and normalization, the control and treatment replicates
were contrasted to determine the most significant gene expression changes at each time
point, based on a p-value cutoff of 0.05 (Fig. 1.e). The only exception was for the
DIXA-004 lung epithelium samples, since only a single replicate per condition was
available, so we had to rely on fold change to determine the most significant genes. We
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evaluated a total of 239 different exposure time series, out of which 221 resulted in the
prediction of at least one mechanism of toxicity with sufficient statistical confidence.

Mechanistic inference

The inference step (Fig. 1.f) consists of scoring each curated mechanism, based on how
much the affected gene nodes in the KG (corresponding to the differential analysis
findings) relate to the GO nodes describing the mechanism steps. The three
mechanisms of toxicity with the highest ranking are then presented as the most likely
candidates. We used a latent vector representation (embedding) of each node in the KG,
a popular tool in natural language processing applications [44], to determine mechanism
enrichment scores. The idea of generating dense real number vector representations of
language tokens can be applied to KGs, with techniques to generate embeddings for
either nodes or edges. These are generated by models that predict the most likely node,
based on the context (neighboring) nodes. Thus, two nodes with a similar vector
representation in semantic space are expected to have a closely related meaning. A
recent review [45] provides a good summary of the current models. One such algorithm
to generate node embeddings from a graph is node2vec [46], which utilizes random
walks from the node in question up to a number of hops away, with a bias for depth or
breadth configurable by hyperparameters. This was our method of choice to create
vector embeddings to represent the different kinds of entities represented in our graph
(biological processes, genes, proteins, biochemical reactions, etc). Using an emphasis on
breadth (--directed --dimensions 32 --q 3, for best performance with our
deductively closed graph) we created 32-dimensional vector representations of all
109,255 nodes (Fig. 1.c).

Cosine distance is an established way to compare vector embeddings, and an
appropriate metric for this study, since we focused on similar hyperdimensional
orientation to denote similar meaning. For each experimental time point j, MechSpy
collected the embeddings for the (up to) 100 most significant genes. These embeddings
were then averaged to obtain the centroid (~gj) of all those gene vectors, which
represented the significant expression changes, as a whole, at that time point (Fig 3).
From this average vector ~gj , MechSpy calculated the cosine distance to each mechanism
step of every curated mechanism. In order to use this as a weight rather than a distance
(such that a larger magnitude equals a stronger enrichment), it substracted the cosine
distance value from 1 to use it as an enrichment score (also known as cosine similarity).

The sequential order in which the mechanism steps are described (and enriched)
matters. If a set of genes are closely related to the last step of a mechanism, for
example, we value their contribution in the last time points of our experimental time
series, more than in the first ones. Therefore, we devised a weighting scheme that
prioritized the contributions to each mechanism step corresponding to the current time
point (Fig. 3, in purple). Given a mechanism Mx = [mx0,mx1, . . . ,mxi] with i steps,
and an experimental time series T = [t0, t1, . . . , tj ] with j time points, MechSpy
segments M in |T | bins. These bins were used for a sequential weighting scheme, to
penalize genes that enrich mechanism steps out of proper sequential order. A vector ~wj

of size |Mx| was used to weight enrichment scores at each time point. Having bj as the
bin index corresponding to the current time point, and bs as the bin index being
evaluated, the weight for each bin was calculated as:

wbj ,bs = 1− abs(bj − bs)
2 |T |

Thus, each of the values exi,j of an enrichment vector ~ex,j of |Mx| dimensions (Fig.
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Fig 3. Summary of the mechanistic inference architecture, showing the use
of vector embeddings generated using node2vec, and our sequential order
penalty scheme to find the score of a particular mechanism. In this
hypothetical example we have 3 experimental time points, and a mechanism composed
of 5 causally-linked steps. For every time point, the n most significant gene changes
(where 1 ≤ n ≤ 100) are averaged into a single vector. MechSpy then generates a
preliminary enrichment vector e∗x,j , which consists of the cosine similarity value between
that time point’s gene aggregation and each mechanism step, subtracted from 1. The
sequential penalty filter (in purple, dividing the 5 mechanism steps in 3 bins) gives less
weight to mechanism steps that don’t correspond to the time point in question, with an
increasing penalty the farther away we are from our corresponding bin. Finally, the
weighted enrichment vectors for each time point are combined such that the maximum
score for each mechanism step is kept ( ~ex), and the score for this mechanism is the
mean of these maximum values.

3, bottom), containing the enrichment score for each of the i steps in mechanism x at
time point j, were calculated as:

exi,j
=
[
1− cosine distance

(
~gj , ~mxi

)]
wbj ,bi

=

[
1− ~gj · ~mxi∥∥~gj∥∥ ‖ ~mxi‖

]
wbj ,bi

To test whether sequential order of enrichment improved our predictions, we
pseudo-randomly shuffled time points for all time series (ensuring they were always in

September 24, 2019 8/22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/782011doi: bioRxiv preprint 

https://doi.org/10.1101/782011
http://creativecommons.org/licenses/by/4.0/


incorrect order), and recalculated all mechanism enrichment scores. The resulting
accuracy was lower across all data stratifications, particularly for the top-scoring
mechanism, which demonstrated the need for MechSpy’s sequential penalty scheme.

Since the cosine similarity and weight penalty are bounded in [0, 1], so is the
enrichment score for each mechanism step. The maximum values of the enrichment
vectors for each experimental time point j were then combined into a single overall
enrichment vector ~ex for mechanism Mx (Fig. 3, bottom). The ~ex vector featured the
highest scores achieved for each mechanism step. The final enrichment score for
mechanism x (scoreMx

) was the average of ~ex elements. The mechanisms used in this
study were relatively short; if significantly longer mechanisms are defined, it would be
advisable to calculate the median of all final mechanism step scores (rather than the
mean) to obtain the final enrichment score, to prevent outliers from effecting a
significant change. This procedure was repeated for every curated mechanism. Thus,
our set of predictions P is defined as:

scoreMx =
1

i

∑
i

max
j

~exi,j

P := argmax
Mx∈M,|M |=3

{scoreMx
⇐⇒ p valx ≤ 0.05, ∀x}

The three mechanisms with the highest score in P that were deemed statistically
significant (see below) became the ones suggested as most likely.

Statistical significance

In order to determine the statistical significance of these predictions, we evaluated how
they would compare to a pseudo-random assortment of genes. To this end, we employed
a bootstrap approach where MechSpy calculated the final score for each mechanism,
using random draws of the same number of genes originally used at each time point.
Given that all microarray public samples used the same chip (Affymetrix Human
Genome U133 Plus 2.0), the genes were randomly drawn from all probes available in it,
represented by their ontology concepts in the KG. After 1000 simulations, MechSpy
generated an empirical distribution of mechanism scores under the equivalent
experimental conditions, whose median it used to compare our real mechanism score
against. The resulting p-value for each mechanistic prediction was therefore calculated
as:

p valx =
(# simulated scores ≥ scoreMx) + 1

1001

This empirical p-value, which at 1000 iterations has a lower bound of 9.99×10−4,
was used to discard mechanistic predictions that were not significant, based on a cutoff
of 0.05. Mechanisms that scored below the median of random simulations were also
dropped. The rest of the mechanisms were sorted in descending order by their final
enrichment score to determine the three most likely predictions.

Performance evaluation

Chemicals can elicit different mechanisms of toxicity which can depend on dosage and
tissue type. For nearly half of the assays evaluated, we have more than one possible
correct label of expected mechanisms. We thus decided to present the top-three most
likely mechanisms, considering that MechSpy is a hypothesis generation aid. The
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existence of multiple correct labels in addition to the lack of a real gold standard, made
the evaluation difficult in traditional terms of performance and recall. To calculate
precision, a “positive” sample was defined as having at least one of the expected
mechanisms among the predictions evaluated (top, top-two or top-three).

We used the precision for all assays of the top-scoring mechanism, then among the
top-two, and among the top-three, as a global performance metric. This metric was
applicable to any experiment for which we had at least one statistically significant
prediction. In other words, those assays for which the gene expression data was not
sufficient to produce at least one mechanistic prediction, were ignored. The datasets
were then stratified by two criteria: chemicals with only one known mechanism of
toxicity, and chemicals with two known mechanisms of toxicity. Taking into account
that not all assays we tested were conducted at toxic doses, these precision values
represent a lower bound estimate of performance. Therefore, a third stratification
dimension used was to consider only assays for the highest dose available, for each
chemical and cell type combination. The results at high exposure doses likely reflect the
most realistic performance of MechSpy.

Mechanistic narratives

Another aspect of MechSpy’s novelty is that it’s not simply a mechanism prediction
tool: for each toxicity mechanism, MechSpy produces a narrative (Fig. 1.g) of a
putative explanation. Using the non-deductively-closed version of the KG, for each of
the top-three ranked mechanisms, MechSpy searched for paths connecting the most
significant genes at each time point j with each of the mechanism steps. It prioritized
those up/downregulated genes at the time points that corresponded to each mechanism
step (based on our binning strategy described in Methods). Fig. 4 presents an example
narrative generated for liver cells exposed to a 400µM concentration dosage of diclofenac
sodium for up to 24 hours, for which “ATP depletion due to calcium homeostasis
disruption” (M2) was predicted as one of the most likely mechanism of toxicity.

This narrative was limited by default to paths from genes to mechanism steps no
farther than two hops away in our KG (to focus on closely related entities), or more if
intersecting at Reactome entities, such as pathways or biochemical reactions. This
limitation can, however, be easily relaxed to include many other possible pathways. The
mechanistic explanation also includes a list of suggested gene knockouts, to help
experimentally validate these claims. This list is sorted by significance among all time
points, and could help discover new genes with a key role in the enriched mechanism. A
visualization of each putative mechanistic explanation (Fig. 1.h) is also presented as a
network diagram. Fig. 5 shows the generated diagram corresponding to the same
example narrative presented in Fig. 4.

Experimental validation

We sought out experimental validation for two of the chemicals without a well-known
mechanism of toxicity: adapin and chlorpromazine. The selection of chemicals and
mechanistic hypotheses to test was based on mechanisms consistently predicted by
MechSpy at all concentrations, or at least at the two higher concentrations on the tissue
used in the time series. The MITO-ID kit from Enzo Life Sciences was used to assess
mitochondrial-mediated toxicity. This kit measures a shift in mitochondrial membrane
potential from excited membrane to depolarized membrane (both markers of
mitochondrial toxicity), and compromised plasma membrane integrity (a marker of cell
death). We validated our predictions of mitochondial toxicity using HUH7, a
hepatocyte-derived carcinoma cell line. These results were also confirmed on an
additional hepatocyte cell line, HepG2, and further evaluated on an orthogonal cell line
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Fig 4. Mechanistic narrative generated for a time series of diclofenac
sodium exposure. Example of a generated mechanistic narrative for a particular
transcriptomics time series, generated by MechSpy.

(HCT116, human colorectal carcinoma cells) to assess tissue specificity. For experimental
details and outcomes in all cell lines, see Supplemental Experimental Details.

Results

From the time series assays (several hours apart) MechSpy has been able to predict the
most likely mechanisms of toxicity, starting with a set of compounds for which a
“canonical” mechanism has been established (based on a mechanistic toxicology
textbook [19]). As a proof of concept, we utilized assays from Open TG-Gates [35] that
used chemicals with an established most likely mechanism in the literature [19], and for
which we had at least two time points with any significantly up/down-regulated genes.
For this subset of experiments, we could predict the canonical mechanism(s) as the top
choice with a precision of 0.594, and of 0.812 among both the top-two and top-three.
This subset of experiments included exposure concentrations that were most likely not
toxic. Looking only at the highest dose used for each compound, our precision for the
most likely mechanism is 0.615 and we were guaranteed to make a correct prediction
among the top-two most likely already. With these encouraging results, we moved on to
include the rest of chemicals in Open TG-Gates for which we had 3 time points, 3
replicates and 3 exposure doses (low, medium and high, which varied substantially
depending on the compound), as well as other public gene expression time series
(diXa-002, diXa-003, diXa-004, diXa-078, E-MTAB-4740, E-MTAB-4742,
E-MTAB-5157, and E-MTAB-5697).

For all experiments using chemicals which we could label with one or more possible
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Fig 5. Graphical mechanistic explanation example, generated by MechSpy.
The sequence of events should be followed top to bottom, left to right. Nodes in dark
gray are the significant gene changes along the multiple time points (in order), and
purple nodes represent the mechanism steps enriched.

mechanisms based on the scientific literature, one or more of our top-three predictions
matched its expected label with a precision of 0.747. If we only considered the highest
dose per chemical and cell type, this precision raised to 0.843. A sample of MechSpy’s
predictions with their respective empirical p-values is shown in Table 2. Besides looking
at the highest dose for each chemical and cell type, we further stratified the assays
regarding whether there was only one known mechanism of toxicity, or two at most.
The performance for these various ways to segment the public datasets are displayed in
Table 3. Taking the sequential order of the mechanism steps in mind, when calculating
the enrichment scores, contributed to this performance. The accuracy obtained was also
significantly better than a baseline estimated from random draws of three mechanisms,
for every compound with known mechanisms of toxicity (Fig. 6).

It is worth reiterating that many of these chemicals don’t act via a single mechanism
of toxicity, so the accuracy for the strongest enrichment score is actually a lower-bound
estimate. The actual mechanistic landscape is likely better represented by a
combination of these top enriched mechanisms. The full list of mechanistic hypotheses
for all time series is available in Supplemental Table S2. Some of the predictions can be
linked to known toxicity endpoint organs. Clonidine, for example, has known
cardiotoxicity issues [47] at high doses. This is very common with the predicted
mitochondria-mediated toxicity, since cardiomyocytes are highly energy-demanding cells
and this adverse mechanism results in a sharp decrease in ATP synthesis. While the
strongest hypothesis is that it triggers apoptosis via caspase release [48] (M1), MechSpy
predicted it acted via mitochondrial-mediated toxicity (M5) with a higher score than
M1 for all concentrations and cell types.

Some of the chemicals used in the public datasets don’t have a well-established
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Table 2. MechSpy predictions for a subset of the time series evaluated.

Chemical used Dose Known mech-
anisms

#1 Predicted
mechanism

#2 Predicted
mechanism

#3 Predicted
mechanism

acetaminophen 200µM M2, M4, M5 M1 (6.99E-03) M4 (8.99E-03) N/A
acetaminophen 1mM M2, M4, M5 M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
acetaminophen 5mM M2, M4, M5 M4 (9.99E-04) M2 (9.99E-04) M1 (9.99E-04)
aflatoxin B1 0.24µM M4 M5 (9.99E-04) M1 (9.99E-04) M2 (9.99E-04)
aflatoxin B1 1.2µM M4 M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
aflatoxin B1 6µM M4 M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
benzyl alcohol 10mM M1 M1 (9.99E-04) M4 (9.99E-04) M5 (9.99E-04)
cyclosporin A 1.2µM M1, M5 M5 (9.99E-04) M4 (1.40E-02) M1 (9.99E-04)
cyclosporin A 6µM M1, M5 M5 (9.99E-04) M1 (9.99E-04) M2 (3.00E-03)
diclofenac 16µM M2, M7 M2 (9.99E-04) M4 (6.99E-03) M8 (7.99E-03)
doxorubicin 2µM M5 M4 (9.99E-04) M1 (9.99E-04) M2 (9.99E-04)
doxorubicin 10µM M5 M5 (9.99E-04) M4 (9.99E-04) M1 (9.99E-04)
glibenclamide 4µM M2 M4 (9.99E-04) M5 (3.00E-03) M1 (3.00E-02)
glibenclamide 20µM M2 M4 (9.99E-04) M2 (9.99E-04) M5 (2.00E-03)
imipramine 100µM M1, M11 M9 (7.99E-03) M10 (2.00E-03) M11 (2.00E-02)
isoniazid 400µM M4 M4 (9.99E-04) M2 (9.99E-04) M1 (9.99E-04)
isoniazid 2mM M4 M4 (9.99E-04) M2 (9.99E-04) M5 (9.99E-04)
isoniazid 10mM M4 M4 (9.99E-04) M2 (9.99E-04) M5 (9.99E-04)
rotenone 2µM M5 M5 (9.99E-04) M1 (9.99E-04) M9 (9.99E-04)
sulfasalazine 30µM M4 M5 (4.30E-02) M2 (1.20E-02) M3 (9.99E-04)
sulfasalazine 150µM M4 M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)

Mechanistic inference results for a few of the 239 time series evaluated, that utilized chemicals with well-established mechanisms of
toxicity at a variety of concentrations, some of which are examples in Boelsterli’s textbook [19]. The bolded predictions are those that
match the known mechanisms for that chemical.

Table 3. MechSpy performance across multiple levels of stratification.

Stratification # time series Top Precision Top-2 Precision Top-3 Precision

Only one known mechanism 117 0.376 0.598 0.632

Only two known mechanisms 88 0.432 0.648 0.852

Highest dose per chemical/cell type 108 0.463 0.694 0.843

Highest dose per chemical/cell type, only
one known mechanism

61 0.443 0.705 0.754

Highest dose per chemical/cell type, only
two know mechanisms

39 0.436 0.615 0.949

All assays 221 0.430 0.647 0.747
We display here the precision for the top-scoring mechanism, as well as among the top-two and top-three scoring mechanisms for time
series.

mechanism of toxicity to date. We experimentally validated one of the generated
mechanistic hypotheses for two of those, adapin and chlorpromazine. MechSpy
consistently predicted mitochondrial-mediated toxicity for the two highest
concentrations, as one of the three most likely mechanisms. Additionally, we exposed
these chemicals to a human colorectal carcinoma cell line (HCT116), to evaluate
whether the toxicity was specific to the cell types in question. MechSpy’s prediction
that these chemicals affect liver tissue was confirmed using HUH7 cells and HepG2
hepatocyte-derived carcinoma cells, and tested on an unrelated cell line (HCT116) to
assess tissue specificity. Fig. 7 shows validation of our predictions using Huh7 cells, and
the rest of assay outcomes are made available in Supplemental Experimental Details.

The validation assays showed significant decrease in mitochondrial membrane
potential and increased depolarization for HUH7 cells over prolonged exposure to 75µM
adapin (Fig. 7.a). This was also confirmed in a different hepatocyte cell line (HepG2,
Supplemental Experimental Details). Adapin appeared to elicit a similar response in
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Fig 6. Simulations of baseline precision. Comparison of actual precision values
(black dots, top) to baseline estimations from random mechanism draws (violin plots,
bottom), for different segmentations of the data (see Table 3). For each chemical used
in the public datasets with one or more known mechanisms of toxicity, we randomly
drew three mechanisms of the eleven curated (without replacement) to simulate the
top-three enrichments. The accuracy across all chemicals was then calculated, and the
process was repeated 1000 times. The violin plots show the distribution of baseline
accuracy scores from those 1000 runs.

Fig 7. Experimental validation of MechSpy’s mechanistic prediction of
mitochondrial toxicity for chlorpromazine and adapin. Fluorescense intensities
of the three potential-sensitive MITO-ID dyes for HUH7 hepatocytes after 24 hour
exposure to chlorpromazine (a) and adapin (b). The bars corresponding to treated cells
marked with an asterisk (*) present a p-value smaller than 0.05 when compared to the
untreated cells using a t-test.

our control HCT116 cells, suggesting the mitochondrial-mediated toxicity may not be
limited to hepatocytes. MechSpy’s prediction of mitochondrial toxicity was also verified
for chlorpromazine, on HepG2 and particularly HUH7 cells where there was a
significantly increased depolarization (Fig 7.b) when exposed to 8 a µM concentration.
In HCT116 cells there was a significant loss of mitochondrial membrane potential
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compared to vehicle control, yet not an increased membrane depolarization nor
compromised membrane, suggesting chlorpromazine’s effects may be more
tissue-specific.

We hope our mechanistic predictions for chemicals without an established
mechanism of toxicity (summary in Table 4, full list of predictions in Supplemental
Table S3) can help guide further experimental work to seek hypothesis validation. Some
interesting patterns were observed, such as hydroxyzine being enriched for the estrogen
receptor-mediated mechanism (M8) in the two higher concentrations on hepatocytes.
This is particularly interesting for hydroxyzine, as it has been linked to teratogenicity in
rat models [49]. Many of these compounds exhibit common mechanistic predictions at
different concentrations. Labetalol-exposed hepatocytes appear to primarily display
oxidative stress (M4) as the most likely mechanism at toxic concentrations. In lung
epithelial tissue, urea also appears to present a primarily oxidative stress (M4)
mechanism. Nifedipine is a calcium channel antagonist that is actually administered to
counter the toxicity of several other drugs, thus it’s unsurprising that in most cases
MechSpy didn’t detect a significant enough enrichment of toxicity mechanisms. At the
highest concentration exposed to hepatocytes, however, MechSpy predicted
mitochondrial-mediated toxicity (M5) as the most likely mechanism, as well as the
second most likely for treated kidney cells. The rare reported toxicity events associated
to nifedipine are related to cardiotoxicity [50], which is consistent with
mitochondria-mediated toxicity, since cardiomyocytes are highly energy-demanding cells
and this adverse mechanism results in depletion of ATP.

Discussion

We present in this study a framework that holds great potential to aid the hypothesis
generation process of mechanistic toxicology. Combining data from two sources,
experimental results and existing knowledge, presents the best of both worlds: this is
neither a purely data-driven inference without regards of context, nor a purely semantic
knowledge-based exercise of what is plausible. Given the economic, practical and ethical
burden in animal models to elucidate mechanisms of toxicity, MechSpy can also serve as
a potential animal testing reduction or replacement tool. Its richness of knowledge
sources makes it useful for data originating in other assays beyond gene expression, like
proteomics, metabolomics, or chromatin accessibility. MechSpy has a direct application
to both pre-clinical drug development and pharmacovigilance later on, to study rare
side effects on subsets of the population. We demonstrate how using a coarse
transcriptomics time series post-exposure to a known toxicant, our method can identify
the most likely mechanisms among the top-three most strongly enriched.

The predictions generated by MechSpy are in agreement with the literature for many
of the chemicals we tested at different doses (see Results), even when many of the
expected mechanisms came from animal models across a variety of species, sometimes
using different tissue types. We focused on the top-three most highly enriched
mechanisms not only because this is a hypothesis generation aid, but also because in
many cases there is no single mechanism of toxicity for a compound. Such is the case of
acetaminophen (APAP), which has been known to elicit a toxic response via at least
three different mechanisms [51]. Moreover, a compound’s mechanism of toxicity may
depend on the dose of exposure. Some of the predicted mechanisms for those chemicals
without an established mechanism of toxicity were validated experimentally, which
shows a mechanistic inference framework like MechSpy is a robust and practical tool.

Some mechanisms from the curated list may be hard to detect from gene expression
alone. Such is the case of M6, the cell cycle disruption one, which may require very
narrow experimental time point margins to really detect it, or a different kind of assay
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Table 4. MechSpy predictions for chemicals for which there is no strong enough evidence of a particular
mechanism of toxicity.

Chemical Cell Type #1 Predicted
mechanism

#2 Predicted
mechanism

#3 Predicted
mechanism

1-Amino-2,4-dibromoanthra-quinone kidney M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
2-Amino-3-methylimidazo(4,5-
f)quinoline

HepaRG M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)

2-nitrofluorene HepaRG M4 (9.99E-04) M1 (9.99E-04) M5 (8.99E-03)
4-Acetylaminofluorene kidney M4 (9.99E-04) M2 (9.99E-04) M5 (9.99E-04)
4-Acetylaminofluorene HepaRG M5 (7.99E-03) N/A N/A
adapin hepatocytes M4 (9.99E-04) M1 (9.99E-04) M5 (9.99E-04)
beclomethasone dipropionate lung epithelial M5 (9.99E-04) M4 (9.99E-04) M1 (9.99E-04)
benzofuran lung epithelial M4 (9.99E-04) M2 (9.99E-04) M1 (9.99E-04)
benzoin kidney M4 (9.99E-04) M1 (9.99E-04) M5 (9.99E-04)
bromodichloromethane kidney M2 (9.99E-04) M4 (9.99E-04) M9 (9.99E-04)
chlorpromazine hepatocytes M4 (9.99E-04) M1 (9.99E-04) M5 (9.99E-04)
cimetidine hepatocytes M4 (9.99E-04) M2 (9.99E-04) M1 (4.00E-03)
dimethyl sulfoxide lung epithelial M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
ethionine hepatocytes M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
hydrazine dihydrochloride HepaRG M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
hydroxyzine hepatocytes M9 (9.99E-04) M8 (9.99E-04) N/A
interleukin-6,-human hepatocytes M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
ipratropium bromide hydrate lung epithelial M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
labetalol hepatocytes M1 (9.99E-04) M4 (9.99E-04) M2 (1.10E-02)
nifedipine HepG2 M5 (9.99E-04) M4 (9.99E-04) M2 (9.99E-04)
nifedipine kidney M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
nitrilotriacetic-acid kidney M2 (2.60E-02) M9 (9.99E-04) M10 (2.00E-03)
N-Ethyl-N-(2-
hydroxyethyl)nitrosamine

kidney M4 (9.99E-04) M1 (9.99E-04) M5 (2.00E-03)

ochratoxin-A kidney M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
phthalic anhydride lung epithelial M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)
THS 2.2 nasal epithelial M8 (4.00E-03) N/A N/A
THS 2.2 buccal epithelial M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
THS 2.2 bronchial epithelial M4 (9.99E-04) M5 (9.99E-04) M1 (9.99E-04)
TGFβ1 hepatocytes M4 (9.99E-04) M1 (9.99E-04) M5 (9.99E-04)
urea lung epithelial M4 (9.99E-04) M5 (9.99E-04) M2 (9.99E-04)

This summarizes the mechanisms predicted, at the highest dose of exposure for each chemical to the indicated the tissue type.
We experimentally tested some of the MechSpy-generated hypotheses for a couple of these chemicals (adapin and
chlorpromazine). The detailed list of predictions for all time series with their corresponding concentrations can be found in
Supplemental Table S3.

altogether. The fact that this particular mechanism (M6) was missed for all compounds
evaluated, may highlight the fact that either the long inter-sampling times or the assay
types are inappropriate to identify it. As can be observed in Supplemental Table S2,
several of the assays failing to predict any of the expected mechanisms among the
top-three correspond to the lowest doses of exposure for that chemical. For these cases,
the dose may not elicit any toxic response at all, or the changes in expression may be
too subtle for MechSpy to detect them. Other chemicals may pose relatively low risk of
toxicity to humans, like the case of coumarin, which proved hard to predict accurately
and may require a much larger dose to elicit the expected oxidative stress response,
extrapolated from animal models (a complex task, since coumarin presents different
mechanisms of toxicity in mice, rats and humans [19]).
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Not all exposure experiments to toxic compounds resulted in the expected
predictions. Dibenz[a,h]anthracene is a particular case, given it’s generally known to
result in an adverse response after exposure to ultraviolet (UV) light, leading to
phototoxicity. Our evaluation was performed on exposure assays to lung epithelial cells
without UV, which could potentially elucidate a different mechanism of toxicity. For
methyltestosterone-treated cells, the choice of tissue (hepatocytes) could be a reason
these assays were not enriched for estrogen receptor-mediated mechanisms.

A challenge we faced in this study was the availability of public datasets that used
chemicals known to elicit every mechanism of toxicity we described. Despite the lack of
public datasets involving chemicals known to act via mechanisms mediated by the aryl
hydrocarbon receptor (M9) or androgen receptor (M10), we still included them in the
process to show that these were not incorrectly predicted among most of the top-three
results. All datasets consisted of microarray transcriptomics assays, which don’t
necessarily have the best dynamic range of signal readouts, therefore other types of
experiments like RNA-seq would be preferred. Furthermore, there may be certain
mechanisms of toxicity that can only be detected using other assays than gene
expression which, in the end, is a steady-state measurement of mature RNA, rather
than a point-in-time measurement of transcription.

An inherent challenge of any kind of mechanistic study is also the dependence on the
correct choices of time points and dosage. Multiple concentrations of the exposure dose
must be tested, as cells could respond via different mechanisms. Such is the case of
Cyclosporin A, which can elicit a toxic response via caspase-mediated apoptosis but, if
the dose is high enough, then oxidative stress becomes the main reason for tissue
damage [19]. Furthermore, several of the doses used in the datasets displayed in the
results (Supplemental Table ) are likely not high enough to elicit a toxic response.
Unsurprisingly, the concentration of exposure was critical to start detecting strong
enrichment of the expected mechanisms of some chemicals. Some illustrative examples
were allopurinol, aspirin, coumarin, imipramine, or N-methyl-N-nitrosurea, for which
MechSpy started predicting the expected mechanisms only at the highest concentration.

We took a conservative approach building the graph, using only human-curated
relations (i.e. edges), therefore it will be worth exploring the improvements that can be
achieved by incorporating computationally-inferred edges. We also acknowledge that
not all mechanisms of toxicity are necessarily linear pathways, and may feature branches
or cycles in their representation. A modification of the presented algorithms to seek
enrichment in mechanisms of these other configurations is a topic for future
development. A natural next step to this work will be to seek enrichment from other
types of time series than from gene expression data, and to use instead (or in
combination with) nascent transcription, proteomics and metabolomics assays at
matching time points. We could also apply MechSpy to a proper semantic
representation of existing AOPs from AOPwiki [30] or Effectopedia [52], rather than
high-level molecular mechanisms of toxicity. Therefore, an integration between MechSpy
and the AOPOntology [53] would also be desirable to explore.

Conclusion

We envision that this mechanistic inference framework can be applied beyond the scope
of toxicology, into any other discipline with a rich enough background knowledge
represented with ontologies. The framework we present in this study can be extended to
include other mechanisms as well, as long as they can be defined in terms of ontology
concepts. The application of MechSpy goes beyond safety assessment and novel drug
development, and can also be used to identify small molecules to be used as cancer
therapeutics, based on their toxicity mechanism. Moreover, this mechanistic inference
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framework spans not just to other problems in molecular biology, but even to disciplines
outside of the biomedical realm.

Supporting information

Supplemental Table S1. Literature sources used to determine each
mechanism label.

Supplemental Table S2. MechSpy predictions for all time series with two
or more time points with significant gene expression changes.

Supplemental Table S3. MechSpy predictions for chemicals for which
there is no strong enough evidence of a particular mechanism of toxicity.

Supplemental Experimental Details. Additional details of the
experimental validation of MechSpy-generated mechanistic hypotheses for
adapin and chlorpromazine.

Software availability

All the code from MechSpy to process the samples and perform mechanistic inference is
publicly available at https://github.com/ignaciot/MechSpy. The original version of
the knowledge graph [20] used in this study can be found at
https://github.com/callahantiff/PheKnowLator/wiki.
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