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Synopsis 17 
By performing RNA-seq on cells FACS sorted by their proliferation rate, this study identifies a 18 
gene expression signature capable of predicting proliferation rates in diverse eukaryotic cell 19 
types and species. This signature, applied to scRNAseq data from C.elegans, reveals 20 
lineage-specific differences in proliferation during development. In contrast to the 21 
universality of the proliferation signature, mitochondria and metabolism related genes show 22 
a high degree of cell-type specificity; mouse pluripotent stem cells (mESCs) and 23 
differentiated cells (fibroblasts) exhibit opposite relations between mitochondria state and 24 
proliferation. Furthermore, we identified a slow proliferating subpopulation of mESCs with 25 
higher expression of pluripotency genes. Finally, we show that fast and slow proliferating 26 
subpopulations are differentially sensitive to mitochondria inhibitory drugs in different cell 27 
types.  28 
 29 
 30 

Highlights 31 
1. A FACS-based method to determine the transcriptomes of fast and slow proliferating 32 

subpopulations. 33 
 34 
2. A universal proliferation-correlated transcriptional signature indicates high protein 35 

synthesis and degradation in fast proliferating cells across cell types and species. 36 
 37 

3. Applied to scRNA-seq, the expression signature predicts correctly the global slowdown 38 
in proliferation during C. elegans development, with lineage-specific exceptions. 39 

 40 
4. Mitochondria membrane potential predicts proliferation rate in a cell-type specific 41 

manner, with ETC complex III inhibitor having distinct effects on the proliferation of 42 
fibroblasts vs mESCs. 43 
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 44 
 45 

Abstract: 46 
Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine 47 
the differences between fast and slow-proliferating cells, we developed a method to sort 48 
cells by proliferation rate, and performed RNA-seq on slow and fast proliferating 49 
subpopulations of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. 50 
We found that slowly proliferating mESCs have a more naïve pluripotent character. We 51 
identified an evolutionarily conserved proliferation-correlated transcriptomic signature that 52 
is common to all eukaryotes: fast cells have higher expression of genes for protein synthesis 53 
and protein degradation. This signature accurately predicted growth rate in yeast and cancer 54 
cells, and identified lineage-specific proliferation dynamics during development, using C. 55 
elegans scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a 56 
highly cell-type specific mitochondria-state related transcriptome. mESCs with 57 
hyperpolarized mitochondria are fast proliferating, while the opposite is true for fibroblasts. 58 
The mitochondrial electron transport chain inhibitor antimycin affected slow and fast 59 
subpopulations differently. While a major transcriptional-signature associated with 60 
cell-to-cell heterogeneity in proliferation is conserved, the metabolic and energetic 61 
dependency of cell proliferation is cell-type specific. 62 
 63 

Introduction 64 
Rates of cell growth and division vary greatly, even among isogenic cells of a single 65 

cell-type, cultured in the same optimal environment[1]. Cell-to-cell heterogeneity in 66 
proliferation rate has important consequences for population survival in bacterial antibiotic 67 
resistance, stress resistance in budding yeast, and chemo-resistance in cancer[2-10]. 68 
Time-lapse fluorescence microscopy has shown that cell-to-cell variability in the expression 69 
of some genes, such as p53 and p21, is associated with cell-to-cell variability in proliferation 70 
and survival[1, 11]. While microscopy can identify dynamic relationships between gene 71 
expression and cell fate, it is limited to measurements of one or two genes per cell. 72 
Single-cell RNA sequencing measures transcriptome-level heterogeneity but does not 73 
directly link this to cell-biological heterogeneity in organelle state, or dynamic heterogeneity 74 
in proliferation or drug resistance. Transcriptome-level approaches for understanding 75 
within-population cell-to-cell heterogeneity in proliferation and other dynamic processes are 76 
lacking. While the presence of intrapopulation variation in proliferation, transcriptome, and 77 
organelle-state in both steady-state and in differentiation populations is well established, the 78 
relationship among the three remains unclear. 79 
 80 

One possibility is that the proliferation-correlated gene expression program is the same, 81 
regardless of if one looks at interpopulation variation due to genetic or environmental 82 
differences, or intrapopulation heterogeneity due to epigenetic differences and expression 83 
noise. However, in the budding yeast Saccharomyces cerevisiae, the expression program of 84 
intrapopulation heterogeneity in proliferation rate only partially resembles that of cells 85 
growing at different rates due to genetic or environmental perturbations[8]. The relation 86 
between gene expression and proliferation rate is much less well studied in mammalian cells. 87 
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 88 
In yeast, in tumors, and in organs, genetic, environmental and developmental changes 89 

cause changes in proliferation rate, and changes in the expression of hundreds or thousands 90 
of genes[12-16]. Unsurprisingly, many of the genes for which changes in expression are 91 
associated with changes in proliferation rate are associated with adverse clinical outcomes in 92 
cancer and with antibiotic and antifungal resistance[17, 18]. Within a population of microbes, 93 
and within a single multicellular organism, the correct balance of proliferation states and 94 
rates is essential. Yet measuring this heterogeneity is difficult, and without such data, 95 
understanding the consequences of this heterogeneity is impossible. 96 
 97 

Gene expression is associated with phenotype, but mRNAs themselves do not often 98 
directly cause phenotypes. Instead, they serve as markers for cell-biological differences 99 
between cells. Phenotypes are mostly driven by larger cell-biological differences between 100 
cells, such as differences in metabolic state. Cell-to-cell heterogeneity in mitochondria state 101 
has been linked to differences in transcription rates, growth rates, proliferation and 102 
developmental trajectories[19-21]. Both cancer cells and pluripotent stem cells have atypical 103 
metabolisms and use glycolysis to produce much of their ATP, instead of the 104 
mitochondria-based oxidative phosphorylation, which is the predominant form of 105 
ATP-generation in differentiated cells[22]. It is unknown if this inter-population variation in 106 
proliferation, transcriptome, and mitochondria extends to intra-population variation among 107 
single cells within a single isogenic population. 108 
 109 

Pluripotent stem cells exist in various states, such as naïve or primed, based on culture 110 
conditions and embryonic origin[23]. Mouse ESCs reflect the naïve pluripotency state of the 111 
blastocyst epiblast and can be cultured in either serum+LIF or 2i+LIF conditions, the latter 112 
involving inhibitors of FGF/ERK and GSK3 pathways. Culture in 2i+LIF conditions promotes a 113 
ground state more closely mirroring the in vivo situation with reduced heterogeneity in 114 
pluripotency gene expression and different cell cycle profile when compared to cells grown 115 
in serum+LIF[24-26]. Nevertheless, even in 2i+LIF conditions, mESCs display a certain amount 116 
of cell-to-cell heterogeneity[27, 28] and it is unclear, how this relates to heterogeneity in 117 
differentiated cell types when it comes to gene expression and its link to proliferation rate. 118 
 119 

To understand the relation between intra-population transcriptome heterogeneity and 120 
heterogeneity in proliferation, we developed a FACS-based method to sort cells by 121 
proliferation rate. We applied this method to mouse immortalized fibroblasts and mESCs and 122 
performed RNA-seq on fast, medium and slow proliferating cell sub-populations. We 123 
identified a “proliferation signature”, mostly consisting of ribosome-biogenesis (protein 124 
synthesis) and proteasome-related (protein degradation) genes that are highly expressed in 125 
fast proliferating fibroblasts and ESCs. Moreover, the proliferation signature is conserved 126 
across cell-type and species, from yeast to cancer cells, allowing us to predict the relative 127 
proliferation rate from the transcriptome. We used this gene expression signature to predict 128 
proliferation rates in single cells from scRNA-seq data of C. elegans development. Unlike 129 
previous models to predict growth rate from gene expression[29], this model has no free 130 
parameters other than the set of genes, and does not suffer from overfitting – it can predict 131 
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differences in growth rate in yeast, cancer cells and C. elegans, in spite of no data from either 132 
species going into the initial model. When applied to scRNA-seq data from developing C. 133 
elegans, this model identified a global slowdown in proliferation rate during development, 134 
with lineage-specific exceptions where some lineages maintain constant proliferation scores, 135 
and others even increase proliferation rate. In contrast to the universality of this main 136 
transcriptional signature, many mitochondria-related genes were upregulated in fast 137 
proliferating fibroblasts, yet down-regulated in fast-proliferating mESCs. Consistent with this, 138 
we found that a high mitochondria membrane potential is indicative of slow proliferating 139 
fibroblasts, while in mESCs this is a property of fast proliferating cells. And the mitochondrial 140 
electron transport chain complex III inhibitor Antimycin treatment cause opposite effects on 141 
the proliferation of fibroblasts and ESCs. Fast, but not slow proliferating fibroblasts are 142 
particularly sensitive to the ATP synthase inhibitor oligomycin. Taken together, these results 143 
show the existence of a core protein-synthesis and protein-degradation expression program 144 
that is conserved across cell types and species, from yeast to mice, and a metabolic and 145 
energy-production program that is highly cell-type specific, with cell-type and 146 
proliferation-rate specific consequences on the effects of mitochondria inhibitors. 147 
 148 

Results 149 

A method to sort single mammalian cells by semi-heritable cell-to-cell heterogeneity in 150 
proliferation rate 151 

To understand the causes and consequences of intrapopulation cell-to-cell heterogeneity 152 
in proliferation rate in mammalian cells we developed a method for sorting single 153 
mammalian cells by their proliferation rate (Figure 1 and Figure S1). The cell-permeable dye 154 
carboxyfluorescein succinimidyl ester (CFSE) covalently binds free amines within cells, thus 155 
staining most intracellular proteins at lysine residues. In cell types that divide symmetrically, 156 
such as embryonic stem cells and immortalized fibroblasts[30], the equal dilution of CFSE 157 
into the two daughter cells enables counting of the number of divisions that each cell has 158 
undergone. This method is commonly used to differentiate proliferating from 159 
nonproliferating cells, and to count discrete numbers of cell division, such as in the study of 160 
T- and B-cell proliferation following antigen stimulation[31]. To eliminate confounding effects 161 
due to differences in initial staining we used fluorescence-activated cell sorting (FACS) to 162 
obtain an initially homogeneous cell population of cells with identical CFSE signals (Figure 1A 163 
and Figure S1A, B). Thus, the initial CFSE signal is independent of initial cell-to-cell variation 164 
in dye uptake or protein content, as the initial distribution is determined by the FACS gate. 165 
CFSECFR2 conjugates are stable and unable to exit the cell[32]; the dye signal is stable for over 166 
eight weeks in non-dividing lymphocytes[33]. The measured CFSE signal should be relatively 167 
insensitive to cell-to-cell variation in protein degradation. We cultured this sorted starting 168 
cell population for several generations, during which time the CFSE signal decreases with 169 
each cell division (Figure 1B). Consistent with the decrease in CFSE being mostly due to cell 170 
division, the population-level doubling time of each cell type can be calculated based on the 171 
decrease in CFSE signal over time (Figure 1C, D), and these doubling times (19-21 hours for 172 
fibroblasts and 10-12 hours for mESCs) are consistent with those reported by other 173 
methods[34, 35].  174 

 175 
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To test if the intrapopulation heterogeneity in CFSE that develops after a few doublings 176 
corresponds to intrapopulation heterogeneity in proliferation rates, we stained cells with 177 
CFSE, isolated a homogenous population by FACS, grew ESCs or fibroblasts for 24h or 48h 178 
respectively, and used FACS to isolate the 20% of cells with the highest and lowest CFSE 179 
signal, and measured both viability and the fraction of cells in S phase (Figure S1C, D). We 180 
found that fast proliferating (low CFSE) subpopulations maintain higher proliferation rates for 181 
at least three days (Figure 1E, F and Figure S1E, F), and found no differences in viability 182 
between CFSE subpopulations (Table S1). Thus, intrapopulation differences in CFSE 183 
correspond to semi-heritable differences in proliferation rates. 184 

 185 
To identify genes whose expression is positively or negatively correlated with 186 

proliferation rate within a single population we grew fibroblasts MEF (mouse embryonic 187 
fibroblast) medium and mouse ESCs in pluripotent ground-state promoting 2i+LIF 188 
medium[36], stained cells with CFSE, performed the initial sort to isolate cells with the same 189 
CFSE signal, and then grew fibroblasts for five days, and ESCs for three days. We then used 190 
FACS to isolate cells with high, medium, and low CFSE signal, and performed RNA-seq on 191 
each sub-population (Figure 1G). 192 

 193 

Slow-proliferating ESCs are of more naïve pluripotent character than fast-proliferating ESCs 194 
Embryonic stem cells exhibit cell-to-cell heterogeneity in the expression of naïve 195 

pluripotency marker genes such as Nanog, Stella (Dppa3) or Rex1 (Zfp42)[37-39]. Although 196 
this heterogeneity is most apparent in ESCs cultured in serum+LIF, even when cultured in 197 
ground state-pluripotency-promoting 2i+LIF conditions, the sub-population of ESCs with low 198 
NANOG-levels displays a propensity for lineage-priming and differentiation[28, 40]. To 199 
determine if cell-to-cell variation in proliferation rate was caused by a sub-population of 200 
mESCs initiating a differentiation program, we determined the fold-change in expression 201 
between slow and fast proliferating sub-populations for a set of genes that are upregulated 202 
during lineage commitment (see “Differential expression of pluripotency…” in methods). We 203 
found no consistent enrichment of these differentiation genes in fast versus slow 204 
proliferating cells, as they could be found to be expressed in either population (Figure 2A). 205 
However, the slow proliferating subpopulation did have higher expression of genes that are 206 
upregulated in naïve pluripotent cells, and in 2-cell(2C)-like state stem cells (Figure 2B, C), 207 
suggesting that slow proliferating mESCs are in a more naïve pluripotent cell state than their 208 
fast proliferating counterparts.  209 
 210 

Identification of biological processes correlated with proliferation rate that are conserved 211 
across cell-types and species, and within single populations 212 

To identify functional groups of genes that are differentially expressed between fast and 213 
slow proliferating cells within a single population we performed gene set enrichment analysis 214 
(GSEA)[41, 42] (Figure 3A, B and Figure S2A, B) on mRNA-seq data from fast and slow 215 
proliferating subpopulations. We found that in both fibroblasts and ESCs, as well as for 216 
intrapopulation variability in budding yeast FACS-sorted by proliferation rate (data from van 217 
Dijk et al.[8]), genes involved in ribosome-biogenesis and the proteasome are more highly 218 
expressed in fast proliferating cells (Figure 3C, D and Table S2). High expression of ribosomal 219 
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genes is a common signature for fast proliferating cells[12, 43], and cancer cells often exhibit 220 
high proteasome expression[44-46], but it is not clear if this is related to proliferation 221 
in-and-of-itself or due to aneuploidy and other genetic alterations[47]. Our results suggest 222 
that coordinated regulation of the ribosome and proteasome is an intrinsic signature of fast 223 
proliferating cells that is conserved across cell-types and species. 224 

 225 
To test if the coupling between ribosome biogenesis and proteasome expression holds 226 

across species and in diverse cell types, we analyzed the bulk RNA-seq data across 227 
developmental stages, covering multiple organs in seven species[16]. Ribosome biogenesis 228 
and proteasome expression are highly correlated (Figure 3E). The coordinated expression 229 
change with developmental stages between ribosome biogenesis genes and proteasome 230 
genes across organs and species suggests that the coordination between protein synthesis 231 
and degradation is likely to be a conserved feature across a large number of species and 232 
cell-types (Figure S2D). 233 
 234 

In addition to ribosome-biogenesis and the proteasome, several other gene sets are 235 
differentially expressed between fast and slow proliferating cells in both fibroblasts and ESCs 236 
(Figure 3C). mTORC1 (mammalian Target Of Rapamycin Complex 1) functions as a nutrient 237 
sensor and regulator of protein synthesis, and is regulated by nutrient and cytokine 238 
conditions that cause differences in proliferation[48, 49]. We find that, even in the absence 239 
of genetic and environmental differences, mTORC1 is more active in fast proliferating cells. 240 
Activation of mTORC1 can promote ribosome-biogenesis[48, 50], however, there is still 241 
controversy about the regulation of proteasome activity by mTORC1[49, 51-55].  242 

 243 
The transcription factor MYC (Figure S2C), and MYC target genes (Figure 3C and Table S2) 244 

are more highly expressed in fast proliferating cells. MYC is frequently amplified in cancer, 245 
regulates the transcription ~15% of all genes[56] and is a master regulator of cell 246 
proliferation[57]. Overexpression of MYC promotes ribosome-biogenesis and cell growth 247 
rates[58, 59], and active mTORC1 can promote MYC activation[60, 61]. Our data suggest that 248 
increased expression of MYC and increased mTORC1 activity are general properties of 249 
fast-proliferating cells, and those genetic or environmental perturbations are not necessary 250 
to cause differential expression of these pathways. 251 
 252 

Defining a proliferation signature to predict the growth rate across species 253 
Expression of typical proliferation markers, such as PCNA and Ki67, did not correlate 254 

with intra-population heterogeneity in proliferation (Figure 4A). The high degree of 255 
conservation of genes whose expression correlates with intra-proliferation heterogeneity in 256 
proliferation, from yeast to mouse, suggests that there should be a set of genes whose 257 
expression is predictive of growth rate across all eukaryotes. To build such a set we combined 258 
“proliferation correlated genes” – those with a Spearman correlation of rho = 1 in both 259 
fibroblasts and ESCs (243 genes) with genes from six ribosome biogenesis and proteasome 260 
related gene sets that are significantly enriched in both fibroblasts and ESCs, which result in 261 
a final gene set consisting of 370 genes (Table S4), from whose expression we can calculate a 262 
proliferation signature score. 263 
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 264 
To test the ability of this proliferation signature to predict proliferation rates in new data 265 

we used out-of-species cross-validation. While several models have been developed to 266 
predict growth rates from gene expression[29], the performance of these models has been 267 
evaluated using within-experiment cross validation, in which a single sample (e.g., condition 268 
or genotype) was held-out (excluded) and used for testing model performance. Accurate 269 
prediction of growth rates in cells for which actual growth rates cannot be measured, such as 270 
tumors in-vivo, or from single-cell RNA-sequencing data, would be more useful. However, 271 
models tested using in-experiment cross-validation (also known as internal validation) are 272 
often over-fit, resulting in poor performance when the model is applied to new data from 273 
new experiments[62].  274 

 275 
To overcome this problem, we used the proliferation signature from above, which was 276 

developed using data from mouse cells, to predict growth rate from gene expression in 277 
budding yeast. Our model has correlations of R = 0.82, 0.73 and 0.77 across three different 278 
datasets (Figure 4B, S3B and S3C). In contrast, the model of Wyotck et al.[29], which was 279 
trained on these yeast data, has an out-of experiment predictive power of R < 0.15 (Figure S6 280 
in Wyotck et al.[29]). The Wyotck et al. model is over-fit and cannot predict proliferation 281 
rates in new data. Similarly, our model has better performance (R = 0.65) than a 282 
cancer-specific model[63], which was trained on cancer cell-line data and cannot predict 283 
out-of-experiment (Figure 4C) (Figure 4 in Waldman et al.[63]). In contrast to most published 284 
models, our proliferation signature score model performs well on data on which it has not 285 
been trained. 286 

 287 
When run on FACS-sorted 2C-like embryonic stem cells (2C::tdTomato+)[64], our 288 

proliferation signature model predicts that 2C-like mESCs proliferate slower (Figure 4D). 289 
2-cell embryos also have uniquely low proliferation scores (Figure S4H). These results are 290 
experimentally independent of, and biologically consistent with, our observation that 291 
expression of 2C-like cell state marker genes is higher in slow proliferating mESCs (Figure 2C). 292 
This provides further evidence that the proliferation signature we have identified can be 293 
universally applied to predict the proliferative state of many cell types.  294 

 295 

Prediction of lineage-specific changes in proliferation rates during C. elegans development by 296 
the proliferation signature 297 

Expression of the most commonly used markers (PCNA and Ki67) for measuring 298 
proliferation rates in bulk populations are cell-cycle regulated; what is really being measured 299 
is the fraction of the population that is in S-phase (PCNA) or is not in G0 (Ki67). Expression of 300 
these markers does not measure proliferation rates in single cells. Single-cell RNA sequencing 301 
is a powerful method for understanding development and differentiation in vivo, but it 302 
suffers from high levels of noise at the single-gene level[65]. We reasoned that our 303 
proliferation signature model would be ideal for measuring the proliferation rates of single 304 
cells from scRNA-sequencing data, as the model takes into account the expression of >300 305 
genes, most of which are highly expressed and therefore have low levels of technical noise. 306 
To test the ability of the proliferation signature model on scRNAseq data we used a dataset 307 
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of 89,701 cells from C. elegans development[66]. We computed the proliferation signature 308 
score for each cell and divided the cells into terminal cell types vs preterminal cells. 309 
Non-terminally differentiated cells have a higher proliferation signature score (t-test, p = 310 
4.9×10-41) (Figure 5A). A visual comparison of the 89,701 cells in UMAP space, colored by 311 
either embryo age[66] or by proliferation signature score (Figure 5B), suggested that, 312 
globally, proliferation rates in single cells decreases as development proceeds. However, 313 
three clusters of cells did not follow this pattern: germline, intestine and M cells. To quantify 314 
the relationship between proliferation rates of single cells and developmental time we 315 
binned all cells with same embryo time, and calculated the correlation between proliferation 316 
score and developmental time (Figure 5C). The proliferation signature score decreases as the 317 
embryo develops (rho = -0.65, p = 9.3 ×10-19 and rho = -0.73, p = 8.7×10-24 when excluding 318 
the three outlier groups (Figure S4B)). This conclusion from our single-cell gene expression 319 
analysis using the proliferation signature score is therefore quantitatively consistent with 320 
lineage-tracing microscopy data from Sulston et al.[67], showing that the rate of cell division 321 
within the developing nematode decreases during development (Figure S4D, S4E). 322 
 323 

To our surprise, the predicted proliferation rates increased after 650 minutes (Figure 324 
S4C). To understand why, we grouped all cells in 650 minutes or older by lineage (Figure 5D). 325 
The three outlier groups from UMAP space: germline, M cell and intestine, had the highest 326 
proliferation signature among all cell types late in development. Specifically, for these three 327 
cell types, the proliferation score did not decrease with the embryo time, but increased or 328 
maintained a high level (Figure 5E). This can be explained by lineage-specific characteristics: 329 
the germline is the only cell type in C. elegans that is continuously proliferating, M cells are a 330 
highly proliferative single mesodermal blast cell, and the intestinal cells, although they do 331 
not proliferate, continue to increase in both biomass and DNA content through 332 
endoreplication. Other cell types with high proliferation scores, such as Z1/Z4, are also 333 
known to continue proliferation after 650 minutes[68]. The proliferation signature score 334 
decreases with embryo time for most cell types, including body wall cell, hypodermis and 335 
ciliated amphid neuron, which are the most prevalent in the single cell RNA-seq dataset 336 
(Figure 5E). 337 

 338 
Two cell types, hypodermis and seam cells, exhibited very low proliferation signature 339 

scores at late time points, while intestinal cells exhibited very high proliferation scores 340 
(Figure 5D, S4F). Both these cell types contain multinucleated cells, but these multinucleated 341 
cells arise through very different mechanisms: hypodermis and seam cells through cell-fusion, 342 
and intestine through endoreplication[68]. Thus, two cell types with seemingly similar 343 
properties have highly divergent transcriptomes, and highly divergent mechanisms to reach 344 
their similar final state. 345 

 346 
 Upon development to an L1 larva, a nematode has more than half of the final number 347 

of cells present in the adult. In contrast, mammals continue to rapidly increase in cell 348 
number even after embryonic development is complete. This difference can be seen in the 349 
change in proliferation signature over time, which decreases in C. elegans, but increases in 350 
human (data from Petropoulos et al.[69]) and mouse (data from Deng et al.[70]) (Figure 5F, G 351 
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and S4G, H). In conclusion, our proliferation signature genes obtained from mouse fibroblast 352 
and ESC data can predict dynamic changes in proliferation rates during the development of 353 
various cell types and species, thereby confirming its universal applicability. 354 
 355 
 356 

Cell-to-cell heterogeneity in mitochondria state predicts variation in proliferation both in ESCs 357 
and fibroblasts, but in opposite directions.  358 

While the pattern of within-population proliferation-correlated expression in yeast, 359 
mouse fibroblasts and ESCs was broadly similar with regard to genes involved in protein 360 
synthesis and degradation, the behavior of metabolic and mitochondria-related genes in fast 361 
and slow proliferating subpopulations was highly cell-type specific. Mitochondria membrane 362 
and respiratory chain-related gene sets were more highly expressed in fast proliferating 363 
fibroblasts, but not in fast proliferating ESCs (Table 1). These results are consistent with 364 
differential mitochondrial states in ESCs when compared to differentiated cells like 365 
fibroblasts[22], which suggests the existence of different types of metabolism and 366 
proliferation-related heterogeneity between pluripotent and differentiated cell-types. We 367 
also observed cell-type specific differences in glycolysis, fatty acid metabolism, and other 368 
metabolic processes, suggesting fundamental differences in the metabolic pathways required 369 
for fast proliferation between pluripotent ESCs and differentiated cells like fibroblasts (Table 370 
1). 371 

  372 
The mitochondrial membrane potential is a major predictor of cell-to-cell heterogeneity 373 

in proliferation rate in budding yeast[9]. Mitochondria-related genes are more highly 374 
expressed in the fast proliferating subpopulation of fibroblasts (Table 1). In contrast, these 375 
genes are slightly more highly expressed in the slow proliferating subpopulation of ESCs. This 376 
suggests that the relation between cell-to-cell heterogeneity in mitochondria state and 377 
proliferation may be different in these two cell types. To test the ability of mitochondrial 378 
membrane potential to predict proliferation rate in mammalian cells we used the 379 
mitochondria membrane potential-specific dye tetramethylrhodamine ethyl ester (TMRE) to 380 
stain fibroblasts and ESCs, and performed both RNA-seq and proliferation-rate assays on high 381 
and low TMRE sub-populations (Figure 6A). 382 
 383 

Unlike the proliferation-based sort (Figure 1), sorting ESCs and fibroblasts by 384 
mitochondria-state (Figure 6 and Figure S5A, B) resulted in highly divergent expression 385 
profiles. ESCs with high TMRE signal had high expression of ribosome-biogenesis, 386 
proteasome, MYC-targets and mitochondrial-related genes, while in fibroblasts these gene 387 
sets are more highly expressed in the low TMRE sub-population (Figure 6B, C and Table S5). 388 
This is consistent with the opposite behavior of mitochondria-related gene sets in 389 
proliferation-rate sorted cells from the two cell types (Table 1). We note that the differences 390 
between high and low TMRE populations are smaller than the difference between high and 391 
low CFSE population (Figure S5C, D), either due to technical limitation of the dye, or because 392 
there is less heterogeneity in mitochondria state than there is in proliferation rate.  393 

 394 
These expression data make the following prediction: ESCs with high TMRE should have a 395 
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shorter doubling time, while fibroblasts with high TMRE should have a longer doubling time. 396 
To test this, we sorted fibroblasts and ESCs by TMRE, and found that high TMRE fibroblasts 397 
indeed do proliferate more slowly, while high TMRE ESCs proliferate more rapidly (Figure 6D). 398 
In addition, we tested the effect of ascorbic acid (vitamin C, an antioxidant) and O2 levels 399 
(ambient 21% atmospheric vs. low 5% physiological levels) on doubling time, but found no 400 
significant effects (Table S6).  401 

 402 
To investigate additional cell types, we searched for RNA-seq data for cells sorted by 403 

mitochondria state, and analyzed RNA-seq data of mouse CD8+ T-lymphocytes that have 404 
been sorted by mitochondria membrane potential (TMRM)[21]. CD8+ T cells with high 405 
TMRM signal (high ΔΨm) showed higher expression of ribosome-biogenesis and proteasome 406 
related genes (Table S7), and proliferate more rapidly[21], thereby behaving in a similar 407 
fashion to ESCs. 408 

 409 
Thus, across yeast, mouse ESCs, fibroblasts and CD8+ T cells, while mitochondria state 410 

and proliferation rate co-vary within a single population, the direction of this correlation is 411 
different, with yeast and fibroblasts behaving similarly with each other, and opposite to ESCs 412 
and CD8+ T cells.  413 

 414 
 415 
Perturbation of mitochondria function affects fast and slow proliferating fibroblasts and ESCs 416 
in different ways. 417 

In order to investigate the relation between proliferation rate, cell type, and 418 
mitochondrial state, we performed perturbation experiments by directly inhibiting 419 
mitochondria function. We stained both mouse ESCs and fibroblasts with CFSE and sorted 20% 420 
of the viable cells on the peak of CFSE signal to have a homogeneous starting population. 421 
After culturing them for 24h or 48h respectively, two bins were sorted: the lowest 20% (fast 422 
proliferating cells) and the highest 20% CFSE (slow proliferating cells) (Figure 7A). We then 423 
cultured the sorted cells with either medium containing DMSO as mock control, the 424 
mitochondrial electron transport chain complex III inhibitor Antimycin, the ATP synthase 425 
inhibitor Oligomycin for 16h, washed out the drugs, and measured both viability and 426 
proliferation rate. 427 
 428 

Both fast fibroblasts and ESCs sorted by CFSE signal maintained a higher fraction of cells 429 
in S-phase over two days in growth-media with DMSO, indicating that the proliferation status, 430 
fast vs slow, is semi-heritable (Figure 7B, S6A). Interestingly, we found cell-type and 431 
proliferation-state specific effects of mitochondria perturbation. Antimycin strongly 432 
decreased the fraction of slow-proliferating fibroblasts that were in S-phase but had a 433 
weaker effect on fast-proliferating fibroblasts (t-test, p = 0.0089) (Figure 7C). In ESCs, the 434 
effect of antimycin appeared somewhat stronger on fast- than on slow-proliferating cells 435 
(although it did not differ significantly). 436 
 437 
In contrast, fast proliferating fibroblasts were highly sensitive to oligomycin treatment. 438 
Specifically, we observed a change in cell morphology upon treatment (Figure 7D). In 439 
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comparison with DMSO-treated cells, the cells lost their elongated shape and became more 440 
round and smaller. This led us to hypothesize if that morphology change might be explained 441 
by a mesenchymal to epithelial transition (MET) upon oligomycin treatment. In fact, during 442 
induced pluripotent stem cell (iPSC) reprogramming, MET of fibroblasts is an important early 443 
reprogramming step[71, 72]. In that context, oligomycin treatment has been recently shown 444 
not only to promote a metabolic switch from oxidative phosphorylation to glycolysis, but also 445 
to modulate mesenchymal markers during reprogramming[72, 73]. Therefore we measured 446 
the protein levels of the regulators N-cadherin (mesenchymal marker expressed in 447 
fibroblasts) and E-cadherin (epithelial marker expressed in ESCs) with and without treatment, 448 
by both immunostaining and Western Blot (Figures 7E and S6A-C). We could not detect 449 
E-cadherin in fibroblasts, but we observed reduced expression of N-cadherin in comparison 450 
with DMSO treated-cells in particular in oligomycin-treated fast cycling fibroblasts (Figure 7E 451 
and S6A-C). In addition to the change in morphology, oligomycin treatment reduced cell 452 
viability specifically in fast proliferating fibroblasts, but not in slow fibroblasts (Figure 7F). In 453 
conclusion, although we observed both a change in cell viability, morphology and a reduction 454 
in N-cadherin levels, oligomycin treatment did not induce a complete mesenchymal to 455 
epithelial transition in the fast-proliferating fibroblasts as indicated by the lack of E-cadherin 456 
upregulation. Nevertheless, the distinct effects of antimycin treatment on the proliferation of 457 
fibroblasts and ESCs and the subpopulation-specific effect of oligomycin on fast fibroblasts 458 
are in line with a differential dependency on mitochondrial function between the different 459 
subpopulations of fibroblasts and ESCs.  460 
 461 
 462 

Discussion 463 
In summary, we have developed a method to sort cells by their proliferation rate and 464 

used these data to identify a pattern of proliferation-correlated gene expression that is 465 
conserved among eukaryotes. We used these data to develop a model that can predict 466 
proliferation rates from gene expression in multiple eukaryotic species and cell types, and for 467 
types of data, such as single-cell RNA sequencing in a developing organism, for which 468 
proliferation rates cannot be measured experimentally.  469 

 470 
While the CFSE signal is not a measure of the instantaneous proliferation rate, but 471 

instead determined by the average proliferation rate integrated over several days, the fact 472 
that (A) the transcriptomes of the sorted cells are predictive of proliferation rates, and (B) 473 
the cells with low CFSE maintain faster proliferation rates over at least three days, suggests 474 
that there are not likely to be large differences in the instantaneous proliferation rate vs the 475 
average rate, at least for these cell types and experimental timescales.  476 

 477 
We found that genes involved in protein synthesis (ribosome-biogenesis, translation 478 

initiation), and in protein degradation (the proteasome and proteasome-related protein 479 
degradation) are highly expressed in fast proliferating eukaryotic cells, including mammalian, 480 
nematode and yeast cells. Previous studies have reported that high expression of the 481 
proteasome in fast-growing cells may be necessary in order to degrade misfolded protein, 482 
because the fast protein synthesis in fast-growing cells produce more incorrectly folded 483 
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proteins[49, 74, 75]. Even with a constant translation and folding error rate, fast proliferating 484 
cells will produce more protein, and therefore more misfolded protein that needs to be 485 
degraded. 486 
 487 

In all non-cancer mammalian cells we investigated, we also found the mTORC1 signaling 488 
pathway enriched in fast proliferating cells and P53-targets enriched in slow proliferating 489 
cells. Our results show both upregulations of the mTORC1 signaling pathway and 490 
proteasome activity in fast proliferating cells, which is consistent with several previous 491 
studies[9, 12-15]. 492 
 493 

Our analysis of fast versus slow proliferating ESCs cultured in 2i+LIF conditions indicated 494 
at several levels that slow proliferating cells were of a more naïve ground state pluripotent 495 
character than fast proliferating cells. First, this was supported by the fact that they displayed 496 
a higher expression of naïve pluripotency marker genes and markers of 2C-like cells (Figure 497 
2B, C). Second, we observed enrichment of E2F targets and genes involved in G1 S cell cycle 498 
phase transition (Table 1) in our fast cycling ESC population, indicative of a shortened G1 499 
phase and a shorter doubling-time, as described for ESCs cultured in serum+LIF [26]. Finally, 500 
although we could find differentiation genes to be expressed both in fast and slow 501 
proliferating cells (Figure 2A), we saw several differentiation pathways to be enriched 502 
specifically in fast dividing ESCs (Table 1). In summary, even when ESCs are cultured in 503 
ground-state pluripotency promoting 2i+LIF conditions, they display heterogeneity in 504 
proliferation rate, with the slow proliferating being of more naïve pluripotent character when 505 
compared to fast dividing cells. 506 

 507 
While we observed ESCs behave similarly to other cell types like fibroblasts or yeast 508 

when it comes to gene expression signatures characteristic of fast proliferating cells related 509 
to protein synthesis and turnover (Figure 3C), we found a very different behavior when it 510 
comes to regulation of metabolism. Although the growth rate can be predicted by 511 
mitochondrial membrane potential in Saccharomyces cerevisiae[23], where it is negatively 512 
correlated with proliferation rate like in fibroblasts as we show in this study, our results show 513 
mitochondrial membrane potential to be positively correlated with proliferation rate in ESCs 514 
(Figure 6D). This suggests mitochondrial membrane potential has different functions in 515 
pluripotent cells when compared to differentiated cell types or yeast. This is corroborated by 516 
our gene expression analysis of cells with high vs. low mitochondrial membrane potential 517 
(Figure 6B, C), where we found pathways linked with fast proliferating cells to be enriched in 518 
fibroblasts with low mitochondrial membrane potential but on the contrary, enriched in ESCs 519 
with high mitochondrial membrane potential. Surprisingly, primed pluripotent stem cells 520 
have been described to rely more on non-oxidative, glycolysis-based metabolism than naïve 521 
pluripotent stem cells[76-78], which appears in contradiction with our result that our slow 522 
proliferating, mitochondria activity low ESCs being more naïve-like. However, TMRE is not a 523 
direct measure of ATP generation by mitochondria; yeast cells that are respiring and 524 
producing all of their ATP using their mitochondria, and yeast cells unable to respire, both 525 
have high TMRE signals[9]. Differentiated cells in general rely more on oxidative metabolism 526 
than pluripotent cells, therefore our fast proliferating ESCs could potentially reflect a more 527 
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differentiation prone state.  528 
 529 
In vivo, cells exhibit a great degree of variability in proliferation rates, from terminally 530 

differentiated neurons, to slowly proliferating cancer stem cells, to rapidly proliferating 531 
embryonic stem cells. Many cell types, such as hemopoietic stem cells, contain both 532 
proliferating and non-proliferating populations. The proliferation signature model, because 533 
of its applicability across all tested species and cell types, provides a useful tool for 534 
understanding in vivo development for systems, in which precise measurements of 535 
proliferation are impossible. Our model has been validated on scRNA-seq data, using 536 
published time-lapse microscopy of cell lineages in C. elegans as the ground truth[67]. 537 
However, it is technically challenging to do microscopy or to otherwise measure proliferation 538 
of individual cells inside of a developing mouse embryo, or in a tumor in a patient. Models 539 
that can accurately predict difficult to measure properties, such as proliferation rate, from 540 
easy to measure ones, such as gene expression, will therefore aid in our understanding of 541 
complex biological processing during tumor formation, differentiation, and development. 542 
 543 

MATERIALS AND METHODS 544 
 545 
Cell culture growth conditions 546 
Tail tip fibroblasts (TTFs) were isolated from a female newborn mouse from a Mus musculus 547 
x Mus Castaneus cross and immortalized with SV40 large T antigen[79]. The clonal line 548 
68-5-11[80] was established and maintained in DMEM supplemented with 10% serum 549 
(LifeTech), HEPES (30mM, Life Tech), Sodium Pyruvate (1mM, Life Tech), non-essential amino 550 
acids (NEAA) (Life Tech), penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol (0.1mM, 551 
Life Tech).  552 
The mouse embryonic stem cell (ESC) line EL16.7 (40XX, Mus musculus/M.castaneus hybrid 553 
background[81] was maintained on gelatin coated tissue culture dishes and passaged every 2 554 
days by seeding around 2x106 cells in 2i+LIF medium. Accutase (Merck Chemicals and Life 555 
Science) was regularly used for cell detachment when passaging cells. 2i+LIF medium 556 
contains a 1:1 mixture of DMEM/F12 supplemented with N2 (LifeTech) and neurobasal 557 
media (LifeTech) supplemented with glutamine (LifeTech), B27 (LifeTech), insulin (Sigma), 558 
penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol (LifeTech), LIF (Orfgenetics), 559 
PD0325901 (Sigma) and CHIR9021 (Sigma). Both TTFs and EL16.7 were cultured at 37C in 5% 560 
CO2.  561 
 562 
Proliferation and doubling time analysis  563 
ESCs and fibroblasts were plated on 10 cm plates at 5.3x106 and 7.3x105 concentrations, 564 
respectively. Cells were expanded and counted for 7 days. To monitor distinct generations of 565 
proliferating cells, carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher Scientific) was 566 
used to stain the cells and the dilution of the dye was detected by flow cytometry every day. 567 
CFSE was dissolved in dimethyl sulfoxide at a concentration of 5 mM as stock solution and 568 
CFSE was added to a 1 ml cell suspension, to a final concentration of 5uM or 10uM. After the 569 
addition of CFSE, cells were incubated at 37°C for 20 min. Then the cells were washed twice 570 
with complete medium and maintained on ice until use in a buffer containing PBS, 2% serum 571 
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and 1% pen-strep. Cell viability was determined by DAPI (Biogen Cientifica) staining. Dye 572 
signals were measured on an LSRII flow cytometer. 573 
 574 
RNA-seq 575 
To collect cells with different growth rates, cells were isolated by sorting at room 576 
temperature according to the CFSE signal (median and high CFSE signal). ESCs and fibroblasts 577 
were sorted into 1.5 ml Eppendorf tubes containing medium and were cultured for 3 days 578 
and 5 days respectively in specific culture conditions as described earlier. For each cell line 579 
three bins were sorted: the lowest 10%, the median 10% and the highest 10% CFSE. Cells 580 
were sorted into prechilled 1.5-ml Eppendorf tubes containing 200 μl medium each. Cells 581 
were then centrifuged at 1000 rpm for 5 min, the media removed and the resulting cell pellet 582 
was used for RNA extraction. All bins were treated identically throughout the process. 583 
Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for RNA 584 
sequencing. For biological replicates, all experiments were repeated on three or four 585 
different days. Expression was quantified using Kallisto v0.42.3[82] from the raw reads (no 586 
pre-processing) using the gencode.VM18.transcript annotations. We experimented with 587 
multiple methods for batch effect removal using the R package SVA[83] and found that the 588 
results of the GSEA, with regards to which gene sets were differentially expressed between 589 
fast and slow, or high and low TMRE cell populations, did not change. We therefore used the 590 
original data. 591 
PCA on TMRE sorted biological replicates showed that one TMRE sort was an extreme outlier 592 
(Figure S5C); this pair was discarded from all analysis. 593 
 594 
BrdU Staining 595 
Cell Proliferation was measured by the incorporation of bromodeoxyuridine (BrdU). Every 596 
24h BrdU was added at a final concentration of 10 µM to the cells. Incubation under the 597 
appropriate growth conditions occurred for 30 minutes for ESCs and 45 minutes for 598 
fibroblasts to pulse label the cells. Cells were trypsinized, spun down at 1050 rpm for 5 599 
minutes. After washing them in ice-cold PBS, cells were fixed overnight in ice cold Ethanol 600 
(70%) while maintaining a gentle vortex. The following day the Ethanol fixed cells were 601 
centrifuged and the DNA denatured by adding 2N HCl - 0.5%Triton X-100 for 30min at room 602 
temperature. Then cells were centrifuged and resuspended in 0.1 M Na2B4O7, pH 8.5 for 10 603 
minutes at room temperature. After spinning them down the cells were incubated overnight 604 
at 4C with PerCP/Cy5.5 anti-BrdU (1:30 dilution) (BioLegend) in a buffer containing 0.5% 605 
Tween 20 / 1% BSA/PBS and RNase (0.8 mg/ml). The following day cells were washed in PBS 606 
and spun down at 1050rpm for 5min at room temperature. The pellet was resuspended in 607 
PBS with DAPI (1:1000) and analyzed in an BD LSRII flow cytometer.  608 
 609 
Mitochondria inhibitor treatment assay 610 
For the assessment of chemical inhibitors on membrane potential changes, cells were 611 
incubated with medium containing DMSO (0.1%, mock control), Antimycin A (500 nM), 612 
Oligomycin (1uM) for 16h. Cells with or without treatment were washed with PBS and 613 
trypsinized. After spinning the cells for 5 minutes at 1050 rpm at room temperature, the cell 614 
pellet has been stained with 50nM TMRE for 20 min at 37C. After 2 times washes with PBS, 615 
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cells were resuspended in PBS containing DAPI and immediately analyzed by flow cytometer 616 
BD LSRII.   617 
 618 
Western blot 619 
Cells were lysed in a lysis buffer (20 mM Tris-HCL, pH 8.0, 150 mM NaCl, 1% Triton X-100, 620 
supplemented with protease inhibitors cocktail) and centrifuged for 30 minutes at 16000g. 621 
The supernatant was boiled in SDS loading buffer. After SDS-PAGE, the samples were 622 
transferred to a polyvinylidene difluoride membrane using a transfer apparatus according to 623 
the manufacturer’s protocols (Bio-Rad). After incubation with 5% nonfat milk in TBST (10 624 
mM Tris, pH 8.0, 150 mM NaCl, 0.5% Tween 20) for 1h, the membrane was washed once 625 
with TBST and incubated with antibodies against N-Cadherin (BD Biosciences, 1:1000), 626 
E-Cadherin (BD Biosciences, 1:1000), GAPDH (Santa Cruz, 1:5000), at 4 °C for 16 h. 627 
Membranes were washed three times for 10 min and incubated with a 1:5000 dilution of 628 
Rabbit Anti-Mouse Immunoglobulins/HRP for 1.5 h. Blots were washed with TBST three 629 
times and developed with the ECL system (Amersham Biosciences) according to the 630 
manufacturer’s protocols. 631 
 632 
Immunofluorescence staining 633 
Cells were grown in 8-well Lab-Tek chamber slides (Thermo Fisher Scientific) and fixed in 4% 634 
paraformaldehyde for 10min at room temperature. Then, washed three times in PBS. Fixed 635 
cells were permeabilized in 0,5% Triton X-100 (Sigma-Aldrich) in PBS buffer for 10min at 636 
room temperature. And then washed in PBST (PBS with 0.1% Tween (Sigma-Aldrich)) for 637 
2min at RT. Then cells were incubated in a blocking solution containing 10% bovine serum 638 
albumin (BSA, Sigma) and 0.01% Triton X-100 for 1h at room temperature. Cells were then 639 
left at 4°C overnight in a blocking solution containing the primary antibody: mouse 640 
E-Cadherin (BD Biosciences, 1:1000) and mouse N-Cadherin (BD Biosciences, 1:1000). The 641 
next day, the cells were washed three times in PBS and then incubated with the secondary 642 
antibody for 45min at room temperature. Goat anti-mouse IgG, (1:1000, Life Technologies) 643 
conjugated to Alexa Fluor-555, was used as a secondary antibody. Nuclear staining was 644 
performed with DAPI (1:1000, Biogen Cientifica). Images were taken with a Leica TCS SP8 645 
confocal microscopy system and were analyzed with Fiji (ImageJ). 646 
 647 
Differential expression of pluripotency, 2C-like state and lineage commitment-related 648 
genes in mESCs sorted by proliferation rate (CFSE) 649 
Pluripotent state gene markers are chosen from 4 different studies[28, 84-86], only genes 650 
that are used as pluripotent state gene marker in at least 2 of these 4 papers are used in this 651 
paper. Lineage commitment and 2C-like state gene markers are the same as genes in Figure 652 
5A and key differentiation regulators in Figure 6 of Kolodziejczyk et al.[84]. To see the 653 
corresponding pluripotent cell state of fast and slow proliferating mESCs, we calculated the 654 
mean expression of naïve pluripotent markers in four fast-proliferating and four 655 
slow-proliferating replicates and log2(fast/slow) was calculated to compare genes expression 656 
in fast proliferating subpopulation and slow proliferating sub-population. The same method 657 
was applied to lineage commitment gene markers and 2C-like state gene markers. 658 
 659 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2021. ; https://doi.org/10.1101/782037doi: bioRxiv preprint 

https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/


Mitochondrial Membrane Potential Measurements.  660 
The relative mitochondrial transmembrane potential (ΔΨm) was measured using the 661 
membrane-potential-dependent fluorescent dye TMRE (Tetramethylrhodamine, Ethyl Ester, 662 
Perchlorate) (Molecular Probes, Thermo Fisher Scientific)[87]. For TMRE staining fibroblasts 663 
and ESCs were grown, washed in PBS, trypsinized and resuspended in PBS with 0.1% BSA and 664 
TMRE added at a final concentration of 50nM, from a 10uM stock dissolved in DMSO. Cells 665 
were incubated for 20min at 37C, washed with PBS and were analyzed by flow cytometry or 666 
sorted.  667 
 668 
Cell sorting  669 
Cells at 80% confluence in 10cm plates were trypsinized, centrifuged at 1000rpm for 5min 670 
and stained with medium containing 10uM CFSE for 20min. Then cells were washed twice 671 
with PBS and stained with DAPI as viability dye. To have a homogeneous starting population, 672 
20% of the viable cells were sorted according to the proliferation rate on the peak of CFSE 673 
signal and re-plated. ESCs and fibroblasts have been cultured for 24h or 48h respectively and 674 
two bins were sorted: the lowest 20% (fast proliferating cells) and the highest 20% CFSE 675 
(slow proliferating cells). Cells were sorted into prechilled 1.5-ml Eppendorf tubes containing 676 
200 μl medium each. Cells were then centrifuged at 1000 rpm for 5 min, the media removed 677 
and plated in their culture medium. To monitor their proliferation rate the dilution of the 678 
CFSE dye was detected by flow cytometry every day up to 3 days for ESCs and 5 days for 679 
fibroblasts. Dye signals were measured on an LSRII flow cytometer.  680 
 681 
For the CFSE sort (no TMRE), cells were stained with CFSE and DAPI, and we used FACS to 682 
obtain a population of viable cells the same CFSE signal. We then grew cells for 3 or 5 days, 683 
and every 24 hours measured the CFSE signal using flow cytometry. Staining did not have a 684 
strong effect on cell viability or proliferation (Figure S7). 685 

 686 
For the TMRE sort for proliferation rate, cells were stained with CFSE and TO-PRO-3, and we 687 
used FACS to obtain a population of G1 cells with the same CFSE signal. We then grow cells 688 
for 3 or 5 days, and every 24 hours measured the CFSE signal using flow cytometry. 689 
 690 
In order to have a homogeneous starting population, both cell types were stained with 691 
Hoechst (10 ug/ml, Life Technologies) to pick cells in G0/G1 phase. Within this population, 692 
cells were selected according to the proliferation rate on the peak of CFSE signal prior to 693 
staining them with the dye. Then cells were sorted by TMRE into three bins: low, medium 694 
and high with a BD Influx cell sorter into prechilled 1.5 ml Eppendorf tubes containing 200 μl 695 
medium each. Cells were then centrifuged at 1000 rpm for 5 min, the cell pellet was washed 696 
with PBS and used for RNA extraction. All bins were treated identically throughout the 697 
process. Cellular RNA was extracted using the Maxwell RNA Purification Kit and processed for 698 
RNA sequencing. Cell viability was determined by TO-PRO-3 (Thermo Fisher Scientific) 699 
staining. 700 
 701 
To test the effect of O2 levels and ascorbic acid/vitamin C in both cell types, sorted cells from 702 
each bin were plated into each of the four different conditions (low O2 (5%), normal oxygen 703 
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growing conditions, and with or without ascorbic acid/vitamin C (25 ug/ml, Sigma-Aldrich)) 704 
in duplicate. After one day of recovery from the sorting, the cells were washed in PBS, were 705 
trypsinized, and counted. After seeding the same initial number, the rest of the cells was 706 
analyzed on a BD Fortessa analyzer. Every day a sample from each condition and replicate 707 
was taken for counting, and stained with 50 nM TMRE, up to 3 days for ESCs and 5 days for 708 
fibroblasts, and both TMRE and CFSE were measured by flow cytometry.  709 
 710 
Images of CFSE and TMRE stained cells are shown in Figures S8 and S9.  711 
 712 
Gene set enrichment analysis (GSEA) 713 
GSEA was performed using the GSEA software and the MSigDB (Molecular Signature 714 
Database v6.2)[88, 89]. We use signal-to-noise (requires at least three replicates) or log2 715 
ratio of classes (for experiments with less than three replicates) to calculate the rank of each 716 
gene. The maximum number of genes in each gene set size was set to 500, the minimum to 717 
15, and GSEA was run with 1000 permutations. We provided all GSEA results in this study 718 
(Table S8). 719 
 720 
Enrichment map 721 
Enrichment map of this study (Figure 3C, D and Figure 6B, C) are created using 722 
EnrichmentMap in Cytoscape[90, 91], we refer to Reimand et al’s protocol[92] for using 723 
EnrichmentMap. 724 
We imported the output file of GSEA to EnrichmentMap and set FDR threshold as 0.1, other 725 
parameters set as default. 726 
 727 
Coordination of expression of ribosome biogenesis and proteasome related genes 728 
We first calculate the mean expression (average of log2(TPM+1)) of ribosome biogenesis 729 
genes (genes in GO preribosome gene set) and proteasome genes (genes in GO proteasome 730 
complex gene set) across organ developmental time course, then we calculate the Pearson 731 
correlation of ribosome biogenesis and proteasome. 732 
 733 
Calculation of proliferation signature scores 734 
To obtain proliferation correlated genes, we first calculate, for each gene, the Spearman 735 
correlation with proliferation rate, as measured by the decrease in CFSE signal, in both 736 
fibroblasts and ESCs. We define “proliferation correlated genes” as genes that have a 737 
correlation of 1 in both fibroblasts and ESCs (243 genes). To this set we add genes from six 738 
ribosome biogenesis and proteasome related gene sets that are significantly enriched in 739 
both fibroblasts and ESCs, which result in a final gene set consisting of 370 genes (Table S3) 740 
and we called this gene set proliferation signature. 741 
To apply proliferation signature in other species, the R package Biomart[93, 94] was used to 742 
obtain homologous genes of other species in this study and to map across different gene 743 
naming schemes (eg: transfer Ensemble gene id to Entrez gene id). 744 
 745 
Prediction of growth rates using proliferation signature 746 
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Published expression profiling data for yeasts cultured in the chemostat with controlled 747 
growth rate from Airoldi et al. (dataset1)[95], Slavov et al. (dataset2)[96], Regenberg et al. 748 
(dataset3)[13] and cancer cell lines with corresponding growth rate[63] were downloaded. 749 
For each dataset, we used ssGSEA to calculate the enrichment score of a gene set containing 750 
all proliferation signature genes, and calculated the Pearson correlation of proliferation 751 
signature score with growth rate. ssGSEA[97] is a rank-based method that computes an 752 
overexpression measure for a gene set of interest relative to all other genes in the genome. 753 
We use R package GSVA to apply ssGSEA with default settings[98]. 754 
We also used another method to calculate proliferation signature score for 3 yeast datasets. 755 
We use the sum of genes expression for all genes in the proliferation gene set to represent 756 
proliferation signature score (Figure S3D-F), the result is slightly worse than the ssGSEA 757 
method. 758 
 759 
Proliferation score of 2C-like mESCs and non-2C-like mESCs 760 
RNA-seq data (GSE33923) of 2C-like mESCs are from Macfarlan et al.[64], who FACS 761 
separated 2C-like cells (high MuERVpromoter driven expression, 2C::tdTomato+) from 762 
non-2C-like mESCs (2C::tdTomato-). We calculated the proliferation signature score for each 763 
of the six samples, and used a paired t-test to control for differences between replicates. 764 
 765 
Brief description of experiments from other papers 766 
In van Dijk et al.[8] cts1Δ histone-GFP budding yeast undergo cytokinesis to separate mother 767 
and daughter cells, but these cells remain physically attached to each other by their cell wall. 768 
Thus, starting from an initial population of single cells in G1, variation in proliferation rate 769 
can be measured by variability in histone-GFP signal in physically connected clusters of cells. 770 
Each cluster contains cells descended from the same ancestor cell.  771 
In Dhar et al.[9] wild-type yeast were stained with TMRE, and sorted into four bins with 772 
varying TMRE signal. 773 
In Sukumar et al.[21] pmel-1 T cell receptor (TCR) transgenic mice were injected with 774 
recombinant vaccinia virus encoding hgp100 (gp100-VV). Five days after vaccination, they 775 
isolated CD8+ T cells, stained them with the lipophilic cationic dye tetramethylrhodamine 776 
methyl ester (TMRM) (25 nm for 30 min at 37°C) and FACS-sorted the highest and lowest 777 
7-10% of cells for subsequent RNA-seq. 778 
 779 
Proliferation scores of preterminal cell lineages vs terminal cell types  780 
Preterminal cell lineage and terminal cell type pseudo-bulk RNAseq data of C.elegans were 781 
downloaded from Murray et al.[66], specifically, gene expression profile for terminal cell 782 
types and preterminal cell lineage is in Table S7 and Table S8, annotation file for terminal cell 783 
types and preterminal cell lineage is in Table S2 and Table S4. As there are multiple time 784 
points for one terminal cell type, we only use the sample with maximum time point to 785 
represent corresponding terminal cell type, processed data provided in this study (Table S9). 786 
For each cell we calculate proliferation signature score, and a t-test was used to compare the 787 
mean proliferation signature score of all cells in each of the two groups. 788 
 789 
C. elegans scRNA-seq data analysis 790 
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C. elegans scRNA-seq data was provided in R package “VisCello.celegans”. After loading the 791 
package, type cello() to load all data into the current environment. We calculated the 792 
proliferation signature score for all single cells, then color them by proliferation signature 793 
score in UMAP space. The calculation of proliferation signature score for single cell data is 794 
different from the calculation for bulk RNA-seq data. We just sum up the expression value of 795 
genes in proliferation signature gene set to get proliferation signature score, but not use 796 
ssGSEA consider ssGSEA is a rank-based method, however most of the genes have 0 797 
expression in this scRNA-seq data set (Figure S4A), which makes it not appropriate to use 798 
ssGSEA.  799 
We binned all single cells by their embryo time. We first calculate the mean proliferation 800 
score for cells with same embryo time, then calculate Spearman correlation of this mean 801 
proliferation score with embryo time, the result is rho = -0.65 (p = 9.3 ×10-19), the correlation 802 
of unbinned data is -0.41 (p < 2.2×10-16). After excluding three special cell types germline, M 803 
cell and intestine, the result is rho = -0.73 (p = 8.6 ×10-24), the correlation of unbinned data is 804 
-0.45 (p < 2.2×10-16). 805 
 806 
Experimental data for C. elegans development 807 
Developmental data of C. elegans was extracted from figure 4 of Sulston et al.[67]. This 808 
figure is cell number (live nuclei number) change over embryo time and we use 809 
WebPlotDigitizer[99] to extract data. We use the data to plot log2 cell number change over 810 
embryo time. The difference of log2 cell number for two adjacent time points divided by the 811 
difference of time is the proliferation rate of mean of two time points. 812 
 813 
 814 

DATA AND CODE AVAILABILITY 815 
The code for performing analysis is available at 816 
https://github.com/carey-lab/Proliferation_Signature_Public. Raw and processed RNA-seq 817 
data created in this study are available on GEO (Gene Expression Omnibus) with the 818 
accession code GSE139594. Information of all published data used in this study is provided 819 
(Table S10). 820 
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FIGURE LEGENDS AND TABLE 845 

 846 

Figure 1. A CFSE-based method to sort mammalian cells by proliferation rate.  847 
(A) Cells were stained with CFSE and a subpopulation of cells with identical CFSE levels was 848 
collected by FACS. Growth for several generations resulted in a heterogeneous cell 849 
population with a broad CFSE distribution, and cells with high, medium, and low CFSE signal 850 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2021. ; https://doi.org/10.1101/782037doi: bioRxiv preprint 

https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/


(slow, medium and fast proliferation, respectively) were sorted by FACS for RNA-sequencing. 851 
(B) The change in the CFSE distribution over time, for fibroblasts and ESCs. (C, D) The 852 
population-level doubling time can be calculated by fitting a line to the median of the 853 
log2(CFSE) signal. We discard data from time 0, cells immediately after the sort, because 854 
the CFSE signal decreases in the initial hours, even in the absence of cell division, likely due 855 
to efflux pumps. (E, F) BrdU was used to measure the % of cells in S-phase for FACS-sorted 856 
fast and slow proliferating subpopulations. Fibroblasts: 4 replicates, p = 0.0002441. ESCs: 3 857 
replicates for ESCs, p = 0.001953. p-values are for binomial tests across all biological 858 
replicates that the two populations have the same percentage of cells in S-phase. (G) 859 
Examples of genes whose expression positively or negatively correlated with proliferation 860 
rate. Each line is one biological replicate, and the error bars are 95% confidence intervals for 861 
each expression value.  862 
 863 

 864 
Figure 2. Slow-proliferating ESCs display a more naive pluripotent stemness character than 865 
fast-proliferating ESCs.  866 
(A) Comparison of lineage commitment-related gene expression between fast and slow 867 
proliferating subpopulations. (B) Comparison of pluripotency-associated gene expression 868 
between fast and slow proliferating subpopulations. (C) Comparison of 2C-like state markers 869 
expression between fast proliferating subpopulation and slow proliferating sub-population. 870 
Dashed lines separate genes expressed preferentially in slow- (left of dashed line) or in 871 
fast-proliferating (right of dashed line) ESCs. P-values are from binomial tests, testing if genes 872 
are more often highly expressed in slow cells than would be expected by chance (53.5% of all 873 
genes are more highly expressed in slow cells).  874 
 875 
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 876 
Figure 3. Functional pathways for which cell-to-cell heterogeneity in expression correlates 877 
with proliferation rate across cell types and species.  878 
(A) In Gene Set Enrichment Analysis, genes are sorted by their fast/slow expression value 879 
(left panel, bottom), and each gene is represented by a single black line (left panel middle). 880 
The enrichment score is calculated as follows: for each gene not in the GO preribosome gene 881 
set, the value of the green line decreases, and for each gene in the gene set, the value of the 882 
green line increases. The ES score will be near zero if the genes in a gene set are randomly 883 
distributed across the sorted list of genes, positive if most genes are to the left, and negative 884 
if most genes are to the right. (B) The heatmap (right panel) shows the expression (z-scored 885 
read counts) of preribosome genes in fibroblasts across four biological replicates of the CFSE 886 
sorting experiment. (C) Gene sets enriched (FDR<0.1) in both fibroblasts and ESCs were 887 
mapped as a network of gene sets (nodes) related by mutual overlap (edges), where the 888 
color (red or blue) indicates if the gene set is more highly expressed in fast (red) or slow (blue) 889 
proliferating cells. Node size is proportional to the total number of genes in each set and 890 
edge thickness represents the number of overlapping genes between sets. (D) GSEA results 891 
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(FDR<0.1) of S. cerevisiae[8] that sorted by cell-to-cell heterogeneity in proliferation rate. (E) 892 
Pearson correlations of mean expression (average of log2(TPM+1)) of ribosome biogenesis 893 
genes vs proteasome genes across organ developmental time courses in seven species (see 894 
also Figure S1). 895 
 896 

 897 
Figure 4. A proliferation signature model can predict relative growth rates from gene 898 
expression for species and cell-types on which it was not trained. 899 
(A) Genes and proliferation signature spearman correlation with proliferation rate (sorted by 900 
CFSE). Compare with Ki67 or PCNA, proliferation signature has a better correlation with 901 
proliferation rate. (B) Using the proliferation signature to predict growth rate in budding 902 
yeast, we apply ssGSEA to calculate the enrichment score of proliferation signature for each 903 
sample. The Pearson correlation of proliferation signature score with growth rate is 0.82 (p = 904 
8.9×10-7). (C) Using the proliferation signature to predict growth rate in cancer cell lines, the 905 
Pearson correlation is 0.65 (p = 1.9×10-8). (D) Comparison of proliferation signature score 906 
between 2C-like ESC and non-2C-like ESC (paired t-test, p = 0.04669). 907 
 908 
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 909 
Figure 5. Proliferation signature of cell development.  910 
(A) A cartoon showing four terminal cells, and a partial linage showing the final four 911 
generations of preterminal cells. Comparison of single-cell proliferation signatures between 912 
preterminal cell lineage and terminal cell types (t-test, p = 4.9×10-41). (B) UMAP projection of 913 
89,701 cells. Cells in the left panel are colored by estimated embryo times; in the right panel 914 
by proliferation signature score. (C) To calculate the proliferation signature score (y-axis) at 915 
each time point (x-axis) cells are binned by embryo time, and the mean proliferation 916 
signature score for all cells in the same bin is calculated. The spearman correlations are -0.65 917 
(p = 9.3 ×10-19) for binned data and -0.42 (p < 2.2e-16) for unbinned data. (D) Boxplots (line 918 
shows median, boxes interquartile range) of proliferation signature score for all cells with 919 
embryo time > 650min. (E) Temporal dynamics of proliferation scores of select cell lineages, 920 
showing the average proliferation score for all single cells in that lineage, at each time point. 921 
(F-G) Boxplot of C. elegans (F) and human (G) proliferation signatures as a function of 922 
developmental time, from scRNAseq data.  923 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 11, 2021. ; https://doi.org/10.1101/782037doi: bioRxiv preprint 

https://doi.org/10.1101/782037
http://creativecommons.org/licenses/by-nc/4.0/


 924 

 925 
Figure 6. Expression of proliferation-related gene sets in cells sorted by intra-population 926 
heterogeneity in mitochondria membrane potential.  927 
(A) Cells were stained with Hoechst and CFSE and a homogenous population of equally sized 928 
cells in G1 with equal CFSE was obtained by FACS. These cells were stained with TMRE sorted 929 
by TMRE, and then used for RNA-seq, or allowed to proliferate to measure the doubling time 930 
of each TMRE sub-population. (B, C) Enrichment maps of fibroblasts and ESCs sorted by 931 
TMRE. (D) Doublings times, as estimated by the measured by the decrease in CFSE signal 932 
over time, for high, medium and low TMRE sorted cells. P-values are from ANOVA, testing if 933 
TMRE is predictive of doubling time (see methods).  934 
 935 
 936 
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 937 
Figure 7. Growth-rate and cell-type specific effects of mitochondria inhibitors on 938 
proliferation rate, cell viability and cell state. (A) Schematic of the experimental setup for 939 
measuring the effects of mitochondria inhibitors on slow and fast proliferating cells. (B) Fast 940 
proliferating Fibroblast and ESCs sorted by CFSE signal maintained a higher fraction of cells in 941 
S phase over two days of growth in media+DMSO. (C) Effect of antimycin treatment on fast 942 
and slow proliferating fibroblasts and ESCs. (D) Fast fibroblasts changed morphology after 943 
the treatment with oligomycin. Scale bars = 80μm. (E) Immunostaining of fibroblasts for 944 
N-Cadherin and DAPI after drug treatment. Fast fibroblasts lose N-Cadherin staining 945 
specifically after oligomycin treatment. Scale bars = 15μm. (F) Effect of oligomycin and 946 
antimycin treatment on fibroblast viability. Oligomycin has a specific effect on the viability of 947 
fast-proliferating fibroblasts. 948 
 949 
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 950 
Table 1. Gene sets whose expression exhibits opposite correlations with growth between 951 
fibroblasts and ESCs. Shown are representative gene sets whose expression is significantly 952 
correlated with proliferation in either fibroblasts or ESCs, but whose expression changes with 953 
proliferation in opposing directions.  954 
 955 

SUPPLEMENTAL FIGURE LEGENDS 956 
 957 

 958 
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 959 
Figure S1. Fast proliferating subpopulations maintain higher proliferation rates than slow 960 
proliferating subpopulations for at least 3 days. 961 
FACS gating strategy for CFSE staining to get cell subpopulations with different proliferation 962 
rates.  963 
(A, B) The gating strategy for CFSE staining to get cell subpopulations with different 964 
proliferation rates in fibroblasts (A) and in ESCs (B). Slow, medium and fast proliferating cell 965 
subpopulations were sorted by FACS according to their CFSE signal. Then RNA-seq was 966 
performed on each of the three subpopulations. (C, D) FACS gating strategy for measuring 967 
the heritability of proliferation rates. The gating strategy for measuring the heritability of 968 
proliferation rates in fibroblasts (C) and in ESCs (D). In all experiments, the laser voltage was 969 
increased so that, when sorting high and low CFSE cells, the modal CFSE signal was at least 970 
103; the voltage is not the same for the first and second CFSE sorts. (E) 3 Replicates of 971 
fibroblasts that similar to figure 1E. (F) 2 Replicates of ESCs that similar to figure 1F. 972 
 973 
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 975 

Figure S2. Functional pathways for which cell-to-cell heterogeneity in expression correlates 976 
with proliferation rate across cell types and species. 977 
(A) GSEA result plot of Go preribosome genes set for ESC. (B) The heatmap (right panel) 978 
shows the expression (z-scored read counts) of preribosome genes in ESCs across four 979 
biological replicates of the CFSE sorting experiment. (C) Higher expression of Myc in both fast 980 
proliferating ESCs and fibroblasts. log2 fold change of Myc expression between fast and slow 981 
proliferating subpopulation in both ESCs and fibroblasts, each cell type 4 replicates. (D) 982 
Correlated changes in the expression of ribosome biogenesis and proteasome related genes 983 
during organ development. Change of average expression of log2(TPM+1) of genes in 984 
ribosome biogenesis (Go preribosome) gene set and proteasome complex (Go proteasome 985 
complex) gene set with developmental stages across different organs in seven species[16]. 986 
Points (circle and triangle) are the mean expression of replicates, error bars represent the 987 
maximum and minimum value in the replicates. 988 
 989 
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 990 

 991 

Figure S3. Proliferation signature scores predict growth rate, using different methods of 992 
calculation, and different species. 993 
(A-C) Using the Normalized Enrichment Score from ssGSEA to predict growth rate in three 994 
different data sets. The Pearson correlation of proliferation signature score with growth rate 995 
in are R = 0.82 (p = 8.9×10-7), R = 0.73 (p = 1.3×10-8) and R = 0.77 (p = 3.7×10-3). (D-F) Similar 996 
to figure A-C, but using the sum of expression values for all genes in the proliferation 997 
signature gene set to calculate proliferation signature score. The Pearson correlation of 998 
proliferation signature score with growth rate are R = 0.83 (p = 7.0×10-7), R = 0.73 (p = 999 
1.6×10-8) and R = 0.55 (p = 0.65×10-2).  1000 
 1001 
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1002 
  1003 
Figure S4. Lineage-specific proliferation signature scores during C. elegans development. 1004 
(A) A density histogram of counts (UMI) across 1000 randomly sampled cells; 95.6% of genes 1005 
have zero reads. This causes ssGSEA to give unreliable results, so the sum of expression 1006 
values method is used for calculating the proliferation signature score for single cells. (B) 1007 
Cells are binned by embryo time, and the mean proliferation signature score for all cells not 1008 
the three outlier cell types (germline, intestine and M cells). The Spearman correlation is rho 1009 
= -0.73 (p = 8.7×10-24) for binned data, and rho = -0.45 (p < 2.2×10-16) for unbinned data. (C) 1010 
Similar to figure 5C, but only showing cells with an age higher than 650 minutes, rho = 0.5 (p 1011 
= 1.5×10-2). (D, E) The change in cell number, and the rate of change in cell number, during 1012 
development, as measured by microscopy[67]. (F) Change in proliferation signature score for 1013 
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seam cells, which form multinucleated cells through cell-fusion. (G) Single-cell gene 1014 
expression data from Petropoulos et al.[69] projected onto the first two principal 1015 
components and colored by proliferation signature score or developmental stages. And 1016 
boxplot shows the change of proliferation signature score with developmental stages. (H) 1017 
Similar to figure G, but use scRNA-seq data from Deng et al.[70]. 1018 
 1019 
 1020 
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 1021 
Figure S5. FACS gating strategy for TMRE staining and volcano plots for fibroblasts and 1022 

ESCs sorted by CFSE or TMRE. 1023 
(A, B) The gating strategy for TMRE staining to get cell subpopulations with different 1024 
mitochondrial states in fibroblasts (A) and in ESCs (B). We use Hoechst to get cells in G0/G1, 1025 
gate by CFSE to get a more uniform cell population, and separate populations with high and 1026 
low TMRE signal, then do RNA-seq on each of the two subpopulations. (C, D) Deseq2 was 1027 
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used to calculate log2 fold change and adjusted p-values for CFSE sorting (C) and TMRE 1028 
sorting (D), combining biological replicates. To set the axes to be maximally informative, 1029 
genes with p < 10-5 had p set to 10-5, and those abs(log2 fold change) > 5 were truncated at 1030 
-5 or +5. (E) PCA for RNA-seq data of ESCs sorted by TMRE. Low TMRE ESCs of replicate 1 is 1031 
an outlier, so we remove replicate 1 for all analysis. 1032 
 1033 
 1034 

 1035 
Figure S6. N-cadherin and E-cadherin levels in oligomycin and antimycin treated cells.   1036 
(A) E-cadherin staining of ESCs as positive control for E-cadherin detection, Scale bar = 80μm. 1037 
(B) Western blot for N-cadherin and E-cadherin (Gapdh = loading control) in DMSO- and 1038 
drug-treated fibroblasts and ESCs. (C) Immunostaining for E-cadherin does not show 1039 
detectable levels in fibroblasts, Scale bars = 15μm. 1040 

 1041 

 1042 
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 1043 

 1044 
Figure S7. The effects of Hoechst and CFSE staining on cell viability and proliferation rates. 1045 
Shown are the estimated doubling times (based on the increased in cell number after 24hrs 1046 
growth) and measured viability (trypan blue) for fibroblasts (A) and ESCs (B). The microscopy 1047 
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shows that stained cells maintain the correct morphology.    1048 
  1049 
 1050 

 1051 
Figure S8. The images of CFSE staining for both fast and slow proliferating fibroblasts and 1052 
ESCs.  1053 
Fibroblasts (A) and ESCs (B) were stained by CFSE and sorted into two bins: fast proliferating 1054 
cells (low CFSE) and slow proliferating cells (high CFSE). 1055 
 1056 
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 1057 
Figure S9. Images of TMRE staining for fibroblasts and ESCs, showing heterogeneity.  1058 
Bright-field and TMRE staining images for both Fibroblasts and ESCs. Two pairs of ESC 1059 
colonies of similar size but showing staining heterogeneity is circled in blue.  1060 
  1061 
 1062 
 1063 
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