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Abstract 
Personal genomics and comparative genomics are becoming more important in clinical practice and genome research. 

Both fields require sequence alignment to discover sequence conservation and variation. Though many methods have 

been developed, some are designed for small genome comparison while some are not efficient for large genome com-

parison. Moreover, most existing genome comparison tools have not been evaluated the correctness of sequence align-

ments systematically. A wrong sequence alignment would produce false sequence variants. In this study, we present 

GSAlign that handles large genome sequence alignment efficiently and identifies sequence variants from the alignment 

result. GSAlign is an efficient sequence alignment tool for intra-species genomes. It identifies sequence variations from 

the sequence alignments. We estimate performance by measuring the correctness of predicted sequence variations. 

The experiment results demonstrated that GSAlign is not only faster than most existing state-of-the-art methods, but 

also identifies sequence variants with high accuracy. 

 

 

Background 

With the development of sequencing technology, the cost of whole ge-

nome sequencing is dropping rapidly. Sequencing the first human genome 

cost $2.7 billion in 2001; however, several commercial parties have 

claimed that the $1000 barrier for sequencing an entire human genome is 

broken [1]. Therefore, it is foreseeable that genome sequencing will be-

come a reality in clinical practices in the near future, which brings the 

study of personal genomics and comparative genomics. Personal ge-

nomics involves the sequencing, analysis and interpretation of the genome 

of an individual. It can offer many clinical applications, particularly in the 

diagnosis of genetic deficiencies and human diseases [2]. Comparative ge-

nomics is another field to study the genomic features of different organ-

isms. It aims to understand the structure and function of genomes by iden-

tifying regions with similar sequences between characterized organisms. 

Both personal genomics and comparative genomics require sequence 

alignment to discover sequence conservation and variation. Sequence con-

servation patterns can be helpful to predict functional categories, whereas 

variation can be helpful to infer relationship between organisms or popu-

lations in different areas. Studies have shown that variation is important 

to human health and common genetic disease [3-5]. The alignment speed 

is an important issue since a genome sequence usually consists of millions 

of nucleotides or more. Methods based on the traditional alignment algo-

rithms, like AVID [6], BLAST [7] and FASTA [8], are not able to handle 

large scale sequence alignment. Many genome comparison algorithms 

have been developed, including ATGC [9, 10], BBBWT [11], BLAT [12], 

BLASTZ [13], Cgaln [14], chainCleaner [15], Harvest [16], LAST [17], 

MAGIC [18], MUMmer [19-22], and minimap2 [23] .  

One of important applications of genome comparison is to identify se-

quence variations between genomes, which can be found by linearly scan-

ning their alignment result. However, none of the above-mentioned meth-

ods have been evaluated the correctness of sequence alignment regarding 

variation detection. A wrong sequence alignment would produce false se-

quence variants. In this study, we estimated the performance of each se-

lected genome sequence comparison tool by measuring the correctness of 

sequence variation. Below we briefly describe the algorithm behind each 

method. 

AVID finds maximal matches between two sequences using a suffix 

tree structure. It then clusters all the matches and split the sequences ac-

cordingly. Each cluster forms a local alignment of the two input se-

quences. BBBWT is the first attempt to adopt Burrows Wheeler Transfor-

mation (BWT) [24] on genomic sequence search. However, BBBWT is 

only designed to find all bi-unique k-mers in common between two ge-

nomes. It does not produce any sequence alignments. BLAT adopts a 

BLAST-like algorithm that rapidly scans for relatively short matches and 

extends those into high-scoring pairs. BLASTZ modifies the algorithm of 

Gapped BLAST to align long genomic sequences. It first finds short near-

exact matches, extends each short match without allowing gaps, and then 

extends these again by a dynamic programming procedure that permits 

gaps. LASTZ is a drop-in replacement for BLASTZ. It adopts similar 

alignment procedure, though it includes more seeding strategies and re-

duces memory requirements.  

Cgaln divides the input sequences into blocks with a fixed length. It 

then performs block-to-block similarity evaluation that is based on the fre-

quency of common seeds in the blocks. The nucleotide-level alignment is 

derived from the block-level alignments with a seed-extension strategy. 

The chainCleaner aims to compare orthologous genes between the human 

and other vertebrate genomes. Harvest also focuses on core-genome align-

ment for microbial genomes. The alignment is based on a suffix tree to 

identify maximal unique matches (MUMs). It then uses MUMs to recruit 

similar genomes and anchor the multiple alignment. LAST follows the 

seed-and-extend approach, but it uses adaptive seeds to increase both 

alignment sensitivity and speed for large sequence comparison. Adaptive 

seeds are matches that are chosen based on their rareness. MUMmer was 

the first aligner to use suffix trees to find potential anchors for genome 
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sequence alignments. One of the two input genome sequences is used as 

the reference sequence to build the suffix tree, and the second one is used 

to query against the tree. MUMmer identifies all maximal matches be-

tween the two sequences and then finds the longest increasing subse-

quence (LIS) from the sorted matches. The pairwise sequence alignment 

is built on the LIS by performing the Smith-Waterman alignment to close 

gaps between the ordered matches. MUMmer was shown to be 4 to 110 

times faster than AVID, BLASTZ, and LAGAN [25]. Therefore, MUM-

mer has become a popular algorithm for comparing genome sequences in 

recent years. Minimap2 is a multi-purpose alignment tool. It follows a 

“seed-chain-align” procedure. It collects minimizers of the reference se-

quences and creates a hash table to index those minimizers. Then 

Mimimap2 finds all query minimizers to find exact matches to the refer-

ence, and identifies co-linear anchors as chain. Finally, Mimimap2 applies 

dynamic programming to extend from the ends of chains and to close gaps 

between adjacent anchors in chains. 

Recently, many NGS read mapping algorithms use BWT or FM-index 

[26] to build an index for the reference sequences and identify maximal 

exact matches by searching against the index array with a query sequence. 

It has been shown that BWT-based read mappers are more memory effi-

cient than hash table based mappers [27]. In this study, we used BWT to 

perform seed exploration for genome sequence alignment. We demon-

strated that GSAlign is efficient in finding both exact matches and differ-

ences between two intra-species genomes. The differences include all sin-

gle nucleotide polymorphisms (SNPs), insertions, and deletions. Moreo-

ver, the alignment is ultra-fast and memory efficient. The source code of 

GSAlign is available at https://github.com/hsinnan75/GSAlign. 

Methods 

The algorithm of GSAlign is derived from our DNA read mapper, Kart 

[28]. Kart adopts a divide-and-conquer strategy to separate a read into re-

gions with and without differences. The same strategy is applicable to ge-

nome sequence alignment. However, in contrast with NGS short read 

alignment, genome sequence alignment often consists of multiple sub-

alignments that are separated by dissimilar regions or variants. In this 

study, we present GSAlign for handling genome sequence alignment.  

Algorithm overview  

Similar to most existing methods, GSAlign also follows the “seed-chain-

align” procedure to perform genome sequence alignment. However, the 

details of each step are quite different. GSAlign consists of three main 

steps: LMEM identification (seed), similar region identification (chain), 

and alignment processing (align). We define a local maximal exact match 

(LMEM) as a common substring between two genomes that begins at a 

specific position of query sequence. In the LMEM identification step, 

GSAlign finds LMEMs with variable lengths and then converts those 

LMEMs into simple pairs. A simple pair represent two identical sequence 

fragments, one from the reference and one from the query sequence. In the 

similar region identification, GSAlign clusters those simple pairs into dis-

joint groups. Each group represents a similar region. GSAlign finds all 

local gaps in each simple region. A local gap (defined as a normal pair) is 

the gap between two adjacent simple pairs. In the alignment-processing 

step, GSAlign closes local gaps to build a complete local alignment for 

each similar region and identifies all sequence variations during the pro-

cess. Finally, GSAlign outputs the alignments of all similar regions, a VCF 

(variant call format) file, and a dot-plot representation (optional). The con-

tribution of this study is that we optimize those steps and integrate them 

into a very efficient algorithm that saves both time and memory and pro-

duces reliable alignments. 

Burrows-Wheeler transform 

We give a brief background of BWT algorithm below. Consider a text T 

of length L over an alphabet set Σ; T is attached with symbol $ at the end, 

and $ is lexicographically smaller than any character in Σ. Let SA[0, L] be 

the suffix array of T, such that SA[i] indicates the starting position of the 

i-th lexicographically smallest suffix. The BWT of T is a permutation of 

T such that BWT[i] = T[SA[i] − 1] (Note that if SA[i] = 0, BWT[i] = $). 

Given a pattern S, suppose SA[i] and SA[j] are the smallest and largest 

suffices of T where P is their common prefix, the range [i, j] indicates the 

occurrences of S. Thus, given an SA range [i, j] of pattern P, we can apply 

the backward search algorithm to find the SA range [p, q] of zP for any 

character z. If we build the BWT with the reverse of T, the backward 

search algorithm can be used to test whether a pattern P is an exact sub-

string of T in O(|P|) time by iteratively matching each character in P. One 

of the BWT index algorithms was implemented in BWT-SW [29] and it 

was then modified to work with BWA [27]. For the details of BWT index 

algorithm and the search algorithm, please refer to the above-mentioned 

methods and Kart. 

LMEM identification 

Given two genome sequences P and Q, GSAlign generates the BWT array 

with P and its reverse complementary sequence P’. Let P[i1] be the i1-th 

nucleobase of P, and P[i1, i2] be the sequence fragment between P[i1] and 

P[i2]. GSAlign finds LMEMs by searching against the BWT array with Q. 

Since each LMEM is a common substring that begins at a specific position 

of Q, it is represented as a simple region pairs (abbreviated as simple pairs) 

in this study and denoted by a 4-tuple (i1, i2, j1, j2), meaning P[i1, i2] = Q[j1, 

j2] and P[i2+1] ≠ Q[j2+1]. If the common substring appear multiple times 

(i.e., frequency > 1), it would be transformed into multiple simple pairs. 

For example, if the substring Q[j1, j2] is identical to P[i1, i2] and P[i3,  i4], 

it would be represented as two simple pairs (i1, i2, j1, j2) and (i3, i4, j1, j2). 

Note that an LMEM is transformed into simple pairs only if its size is not 

smaller than a user-defined threshold k and its occurrences are less than f. 

We investigate the effect of threshold k and f in the Supplementary data 

and we found that GSAlign performs equally well with different thresh-

olds. 

The BWT search iteratively matches every nucleotide of the query ge-

nome Q. It begins with Q[j1] (j1 = 0 at the first iteration) and stops at Q[j2] 

if it  meets a mismatch at Q[j2+1], i.e., the SA range of Q[j1, j2+1] = 0. The 

Fig. 1. The simple pairs between genome P and Q. Each rectangle is a simple pair and 

the width is the size of the simple pair. A similar region is a group of neighboring 

simple pairs. 
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next iteration of BWT search will start from Q[j2+1] until it meets another 

mismatch.  

Fig. 1 illustrates the simple pairs between P and Q. Each rectangle is a 

simple pair and the width is the size of the simple pair. Note that the 

LMEM identification can be processed simultaneously if GSAlign runs 

using multiple threads. For each query sequence in Q, if there are N threads, 

GSAlign divides it into N blocks of equal size and each thread identifies 

LMEMs for a sequence block independently. The simple pairs identified 

by each thread will be merged together afterward. The multithreading can 

be also applied in the following alignment step. We will demonstrate that 

such parallel processing greatly speedup the alignment process.  

Similar region identification  

After collecting all simple pairs in the previous step, GSAlign sorts the 

simple pairs according to their position differences between genomes P 

and Q and clusters those into disjoint groups. The clustering algorithm is 

described below.  

Suppose Sk is a simple pair (ik,1, ik,2, jk,1, jk,2), we define PosDiffk = ik,1− 

jk,1. If two simple pairs have similar PosDiff, they are co-linear. We sort 

all simple pairs by their PosDiff to group all co-linear simple pairs. The 

clustering starts with the first simple pair S1 and we check if the next sim-

ple pair (S2) is within a threshold MaxDiff (the default value is 25). The 

size of MaxDiff determines the maximum indel size allowed between two 

simple pairs. If |PosDiff1 − PosDiff2| ≤ MaxDiff, we then check the PosDiff 

of S2 and S3 until we find two simple pairs Sk and Sk+1 whose |PosDiffk − 

PosDiffk+1| > MaxDiff. In such case, the clustering breaks at Sk+1 and sim-

ple pairs S1, S2, ...,  Sk are clustered in the same group. We then sort S1, S2, 

...,  Sk by their positions at sequence Q (i.e., the third value of 4-tuple). 

Since simple pairs are re-sorted by their positions at sequence Q, some of 

them may be not co-linear with their neighboring simple pairs and they 

are considered as outliers. We remove those outliers from the simple pair 

group. For those simple pairs of same positions at sequence Q, we keep 

the one with the minimal difference of PosDiff compared to the closest 

unique simple pair. Then we check every two adjacent simple pairs sa = 

(ia,1, ia,2, ja,1, ja,2) and sb = (ib,1, ib,2, jb,1, jb,2), we define gap(Sa, Sb) = jb,1 − ja,2. 

If gap(Sa, Sb) is more than 300bp and the sequence fragments in the gap 

are dissimilar, we consider Sb as a break point of a simple region. We in-

vestigate different gap size thresholds in the Supplementary data and 

found that GSAlign was not sensitive to the threshold. To determine 

whether the sequence fragment in a gap are similar, we use k-mers to es-

timate their similarity. If the number of common k-mers is less than 

gap(Sa, Sb) / 3, they are considered dissimilar. In such case, we consider Sb 

as a break point of a simple region. GSAlign then continues the clustering 

with Sk+1 and identifies more similar regions for the remaining simple pairs 

until all simple pairs are visited. 

We use a toy example to illustrate the process of simple pair clustering 

and outlier removing. Suppose GSAlign identifies nine simple pairs as 

shown in Fig 2(A). We sort these simple pairs by their PosDiff and start 

clustering process with S1. Simple pairs S1, S2, ...,  S8 are clustered in the 

same group since any two adjacent simple pairs in the group have similar 

PosDiff. For example, |PosDiff1 − PosDiff2| = 10, and |PosDiff2 − PosDiff3| 

= 0. By contrast,  |PosDiff8 − PosDiff9| = 60, therefore we break the group-

ing at S9. We then re-sort S1, S2, ...,  S8 by their positions at sequence Q as 

shown in Fig 2(B), and mark S6 and S7 are not unique since the two simple 

pairs are from the same position at Q. We remove S1 and S8 since they are 

not co-linear with their neighboring simple pairs. Then we compare S6 and 

S7 and keep S6 because it has the minimal difference of PosDiff with its 

neighboring unique simple pairs. Finally, we confirm there is no any large 

gap between any two adjacent simple pairs in the group. Thus, S3, S1, S6, 

S2, S4, S5, and S8 forms a simple region, and upon which we can generate 

a local alignment. 

Given two adjacent simple pairs in the same cluster, sa = (ia,1, ia,2, ja,1, 

ja,2) and sb = (ib,1, ib,2, jb,1, jb,2), we say sa and sb overlap if ia,1 ≤ ib,1 ≤ ia,2 or 

ja,1 ≤ jb,1 ≤ ja,2. In such cases, the overlapping fragment is chopped off from 

the smaller simple pair. For example, BWT index. Fig 3. shows a tandem 

repeat with different copies in genome P and Q. In this example, “ACGT” 

is a tandem repeat where P has seven copies and Q has nine copies. 

GSAlign identifies two simple pairs in this region: A (301, 330, 321, 350) 

and B (323, 335, 351, 363). A and B overlap between P[323, 330]. In such 

cases, we remove the overlap from the preceding simple pair (i.e., A). Af-

ter removing the overlap, A becomes (301, 322, 321, 342) and we create a 

gap of Q[343, 350]. After removing overlaps, we check if there is a gap 

between any two adjacent simple pairs in each similar region. We fill gaps 

by inserting normal pairs. A normal pair is also denoted as a 4-tuple (i1, i2, 

j1, j2) in which P[i1, i2] ≠ Q[j1, j2] and the size of P[i1, i2] or Q[j1, j2] can be 

0 if one of them is an deletion. Suppose we are given two adjacent simple 

pairs (i2q-1, i2q, j2q-1, j2q) and (i2q+1, i2q+2, j2q+1, j2q+2). If i2q+1 − i2q > 1 

or j2q+1 − j2q > 1, then we insert a normal pair (ir, ir+1, jr, jr+1) to fill the gap, 

where ir – i2q= i2q+1 – ir+1 = 1 if i2q+1 − i2q > 1; otherwise ir = ir+1 = -1 mean-

ing the corresponding fragment size is 0. Likewise, jr – j2q = j2q+1 – jr+1 = 1 

if j2q+1 − j2q > 1, otherwise let jr = jr+1 = -1.  

Alignment processing 

At this point, GSAlign has identified similar regions that consist of simple 

pairs and normal pairs. In this step, GSAlign only focuses on normal pairs. 

If the sequence fragments in a normal pair have equal size, it is very likely 

the sequence fragments only contains substitutions and the un-gapped 

alignment is already the best alignment; if the sequence fragments contain 

indels, gapped alignment is required. Therefore, we classify normal pairs 

into the following types:  

Fig. 3. Simple pairs A and B overlaps due to tandem repeats of “ACGT”. We remove 

the overlapped fragment from simple pair A (the preceding one). 

Fig. 2. A toy example illustrating the process of simple clustering and outlier removing.. 

GSAlign clusters simple pairs and remove outliers according to PosDiff. Simple pairs in 

red are not unique. Simple pairs with gray backgrounds are considered as outliers and they 

are removed from the cluster. 
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1) A normal pair is Type I if the fragment pair has equal size and the num-

ber of mismatches in a linear scan is less than a threshold;  

2) A normal pair is Type II if one of the fragment is a null string and the 

other contains at least one nucleobase; 

3) The remaining normal pairs are Type III;  

Thus, only Type III require gapped alignment. GSAlign applies the KSW2 

algorithm [30] to perform gapped alignment. The alignment of each nor-

mal pair is constrained by the sequence fragment pair. This allows 

GSAlign to generate their alignments simultaneously with multiple 

threads. At the end, the complete alignment of the genome sequences is 

the concatenation of the alignment of each simple and normal pairs.  

Differences among GSAlign, MUMmer4, and Minimap2 

In general, GSAlign, MUMmer4, and Minimap2 follow the conventional 

seed-chain-align procedure to align genome sequences. However, the im-

plementation details are very different from each other. MUMmer4 com-

bines the ideas of suffix arrays, the longest increasing subsequence (LIS) 

and Smith-Waterman alignment. Minimap2 uses minimizers (k-mers) as 

seeds and identifies co-linear seeds as chains. It applies a heuristic algo-

rithm to cluster seeds into chains and it uses dynamic programming to 

closes between adjacent seeds. GSAlign integrates the ideas of BWT ar-

rays, PosDiff-based clustering and dynamic programming algorithm. 

GSAlign divides the query sequence into multiple blocks and identifies 

LMEMs on each block simultaneously using multiple threads. More im-

portantly, GSAlign classifies normal pairs into three types and only Type 

III normal pairs require gapped alignment. This divide-and-conquer strat-

egy not only reduces the number of fragment pairs requiring gapped align-

ment, but also shortens gap alignment sizes. Furthermore, GSAlign can 

produce the alignments of normal pairs simultaneously with multi-threads. 

Though MUMmer4 supports multi-threads to align query sequences in 

parallel, the concurrency is restricted to the number of sequences in the 

query. 

Results 

Experiment design 

GSAlign takes two genome sequences: one is the reference genome for 

building the BWT index, and the other is the query genome for searching 

against the BWT array. If the reference genome has been indexed before-

hand, GSAlign can read the index directly. After comparing the genome 

sequences, GSAlign outputs all local alignments in MAF format or 

BLAST-like format, a VCF file, and a dot-plot representation for each 

query sequence. 

The correctness of sequence alignment is an important issue and variant 

detection is one of the major applications for genome sequence alignment. 

Therefore, we estimate the correctness of sequence alignments by meas-

uring the variant detection accuracy. Though most of genome alignment 

tools do not output variants, we can find variants out by linearly scanning 

the sequence alignments. This novel measurement is sensitive to misalign-

ments, thus we consider it is a fair measurement to estimate the perfor-

mance of sequence alignment.  

We randomly generates sequence variations with the occurrences of 

20,000 substitutions (SNVs), 350 small indels (1~10 bp), 100 large indels 

(11~20 bp) for every 1M base pairs. To increase the genetic distance, we 

generate different frequencies of SNVs. Benchmark datasets labelled with 

1X contain around 20,000 SNVs for every 1M base pairs, whereas datasets 

labelled with 3X (or 5X) contain 60,000 (or 100,000) SNVs per million 

bases. We generate three synthetic datasets with different SNV frequen-

cies using the human genome (GRCh38). The synthetic datasets are re-

ferred to as simHG-1X, simHG-3X, and simHG-5X, respectively. To 

evaluate the performance of genome sequence alignment on real genomes, 

we download the diploid sequence of NA12878 genome and the variant 

calls (the sources are shown in Supplementary data). The diploid sequence 

of NA12878 consists of 3,088,156 single nucleotide variants (SNVs) and 

531,315 indels derived from NGS data analysis. The reference variants are 

generated from NGS data analysis. Please note that GSAlign is a genome 

alignment tool, rather than a variant caller such as Freebayes or GATK 

HaplotypeCaller. GSAlign identifies sequence variants from genome se-

quence alignment, while Freebayes and GATK HaplotypeCaller identify 

variants from NGS short read alignments. We use sequence variants to 

estimate the correctness of sequence alignment in this study. Table 1 

shows the genome size and their variation numbers of each benchmark 

dataset. 

In this study, we compare the performance of GSAlign with several ex-

isting genome sequence aligners, including LAST (version 828), Min-

imap2 (2.17-r943-dirty), and MUMmer4 (version 4.0.0beta2). We exclude 

the others because they are either unavailable or developed for multiple 

sequence alignments, like Cactus [31], Mugsy [32], or MULTIZ [33]. We 

exclude BLAT because it fails to produce alignments for larger sequence 

comparison; we exclude LASTZ because it does not support multi-thread. 

Moreover, LASTZ fails to handle human genome alignment. 

Measurement 

We define a true positive case (TP) as a true sequence variation identified 

from sequence alignment; a false positive case (FP) as a false sequence 

variation; and a false negative case (FN) as a true sequence variation that 

is not identified. A predicted SNV event is considered true if the genomic 

coordinate is exactly identical to the true event; a predicted indel event is 

considered true if the predicted coordinate is within 10 nucleobases of the 

true event.  

To estimate the performance for existing methods, we filter out se-

quence alignments whose sequence identity are lower than a threshold (for 

Mummer4 and LAST) or quality score are 0 (for Minimap2). The argu-

ment setting used for each method are shown in the Supplementary. We 

estimate the precision and recall on the identification of sequence varia-

tions for each dataset. GSAlign, Minimap2, MUMmer4, and LAST can 

load premade reference indexes; therefore, we run these methods by feed-

ing the premade reference indexes and they are running with 8 threads. 

Performance evaluation on synthetic datasets 

Table 2 summarizes the performance result on the three synthetic datasets. 

It is observed that GSAlign and Minimap2 have comparable performance 

on the benchmark dataset. Both produce alignments that indicate sequence 

variations correctly. MUMmer4 and LAST produce less reliable align-

ments than GSAlign and Minimap2. Though we have filtered out some of 

alignments based on sequence identity, their precisions and recalls are not 

as good as those of GSAlign and Minimap2. In particular, the precision of 

indel events of MUMmer4 and LAST are much lower on the dataset of 

simHG-5X. It implies that the two methods are not designed for genome 

sequence alignments with less sequence similarity. We also compare the 

Table 1. The synthetic datasets and the number of simulated sequence variations. 

Dataset Genome size SNV 
small 

indel 

large  

indel 

Total  

variants 

simHG-1X 3,088,279,342 58,421,383 1,001,626 285,757 59,708,766 

simHG-3X 3,088,292,247 175,100,939 962,721 275,584 176,339,244 

simHG-5X 3,088,289,999 291,714,646 919,762 263,271 292,897,679 

NA12878 6,070,700,436 3,088,156 531,315 NA 3,619,471 
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total number of local alignments each method produces for the benchmark 

datasets. It is observed that GSAlign produces the least number of local 

alignments, though it still covers most of the sequence variants. For ex-

ample, GSAlign produces 250 local alignments for simHG-1X, whereas 

the other three methods produce 417, 3111 and 1168 local alignments, re-

spectively.  

 In terms of runtime, it can be observed that GSAlign spends the least 

amount of runtime on the three datasets. Minimap2 is the second fastest 

method. Though MUMmer4 is faster than LAST, it produces worse per-

formance than LAST. We observe that LAST is not very efficient with 

multi-threading. Though it runs with eight threads, it only uses single 

thread  most of the time during the sequence comparison. Interestingly, 

GSAlign spends more time on less similar genome sequences (ex. simHG-

5X) because there are more gapped alignments, whereas MUMmer4 and 

LAST spends more time on more similar genome sequences (ex. simHG-

1X) because they handle more number of seeds. Minimap2 spends similar 

amount of time on the three synthetic datasets because Minimap2 pro-

duces similar number of seeds for those datasets. Note that it is possible 

to speed up the alignment procedure by optimizing the parameter settings 

for each method; however it may complicate the comparison. 

Performance evaluation on NA12878 

The two sets of diploid sequence of NA12878 are aligned separately and 

the resulting VCF files are merged together for performance evaluation. 

Because many indel events of NA12878 locate in tandem repeat regions, 

we consider a predicted indel is a TP if it locates at either end of the repeat 

region. For example, the two following alignments produce identical 

alignment scores: 

It can be observed that the two alignments produce different indel events. 

In such case, both indel events are considered true positives if one of them 

is a true indel. Table 3 summaries the performance evaluation on the real 

dataset. It is observed that GSAlign, Minimap2 and LAST produce com-

parable results on SNV and indel detection. They have similar precisions 

and recalls. MUMmer4 produces worse performance on SNV and indel 

detection. Its precision and recalls are not as good as the other three meth-

ods’. In terms of runtime, it is observed that GSAlign only spends 5 

minutes to align the diploid sequences of NA12878 with HG38. Minimap2 

is the second fastest method. It spends 65 minutes. LAST and MUMmer4 

spend 1305 and 3898 minutes, respectively. In terms of memory consump-

tion, it is observed that GSAlign consumes the least amount of memory 

among the selected methods. It requires 14 GB to perform the genome 

comparison, while MUMmer4 requires 57 GB. 

Sequence comparison between difference species 

Though GSAlign is designed for comparing intra-species genomes, it can 

be used to identify conserved syntenic regions for inter-species genomes. 

Here we compare human genomes with whole chimpanzee genome and 

mouse chromosome 12. We compare human (HG38) and chimpanzee 

(PanTro4) genomes using GSAlign with 8 threads. It spends around nine 

minutes on performing the genome comparison. GSAlign generates 98298 

local alignments whose total length is 2,253M bases (PanTro4 contains 

390M undetermined bases ‘N’). GSAlign identifies 29.2 million SNVs 

and 3.4 million indels between HG38 and panTro4. 

Mouse chromosomes share common ancestry with human chromo-

somes [34].  Here we demonstrate the sequence comparison between hu-

man genome and mouse chromosome 12 by showing the dot-plot matrix 

generated by GSAlign. Though the genome sequences of the two species 

are very dissimilar, they still share conservation of genetic linkage groups. 

In this analysis, GSAlign spends three minutes to compare HG38 and 

mouse chromosome 12 and it generates 2,713 local alignments with a total 

length of 1,738K bases. Among all the 22 human chromosomes, GSAlign 

discovers that human chromosomes 2, 7 and 14 share the largest number 

of conserved syntenic segments with mouse chromosome 12. GSAlign 

visualizes their similarity with a dot-plot presentation. Fig. 4 shows the 

dot-plot of those chromosomes. Comparing the result with existing stud-

ies, we find that the dot-plot is consistent with Fig. 4(f) in the study of 

Mouse Genome Sequencing Consortium [34]. 

Conclusions 

In this study, we propose GSAlign to handle genome sequence compari-

son and evaluate the correctness of sequence alignment by measuring the 

accuracy of variant detection. We adopt the divide-and-conquer strategy 

to divide the genome sequences into gap-free fragment pairs and gapped 

fragment pairs. GSAlign is a BWT-based genome sequence aligner. 

Therefore, it requires less amount of memory than hash table-based or 

tree-based aligners do. GSAlign also supports parallel computing for ge-

nome sequence comparison, thus it is more efficient when comparing 

large genomes. We evaluate the performances of GSAlign with synthetic 

and real datasets. The experiment result shows that GSAlign is the fastest 

Table 3. The performance evaluation on HG38 and the diploid sequence of NA12878.  

Dataset Method 

SNV Indel Run 

Time 

(min) 

Memory 

usage 

(GB) 
Precision Recall Precision Recall 

NA12878 

(Diploid) 

GSAlign 0.832 0.969 0.759 0.767 5 14 

Minimap2 0.830 0.970 0.754 0.768 65 23 

MUMmer4 0.752 0.946 0.711 0.749 3898 57 

LAST 0.832 0.969 0.760 0.764 1305 28 

 

Table 2. The performance evaluation on the three HG38 synthetic data sets.   

Dataset Method 

SNV Indel Local 

align# 

Run 

time  

(min) 
precision recall precision recall 

SimHG-1X 

GSAlign 1.000 1.000 0.999 0.999 250 11 

Minimap2 1.000 0.996 0.999 0.995 417 39 

MUMmer4 0.998 0.932 0.985 0.932 3111 869 

LAST 1.000 0.992 0.992 0.947 1168 2524 

SimHG-3X 

GSAlign 1.000 0.998 0.994 0.997 366 18 

Minimap2 1.000 0.996 0.991 0.995 561 37 

MUMmer4 0.989 0.923 0.796 0.925 4925 289 

LAST 1.000 0.990 0.809 0.950 1234 1185 

SimHG-5X 

GSAlign 1.000 0.993 0.958 0.992 587 24 

Minimap2 1.000 0.995 0.952 0.994 1058 40 

MUMmer4 0.986 0.907 0.486 0.912 5513 157 

LAST 1.000 0.981 0.461 0.947 1636 458 

 

AGCATGCATTG, and AGCATGCATTG 

AGCAT----TG, and AG----CATTG. 
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among the selected methods and it produces perfect or nearly perfect pre-

cisions and recalls on the identification of sequence variations for most of 

the datasets.  

With the emergence of personal genomics and comparative genomics, 

we believe GSAlign can be a useful tool. It shows the abilities of ultra-fast 

alignment as well as high accuracy and sensitivity for detecting sequence 

variations. As more genome sequences become available, the demand for 

genome comparison is increasing. Therefore an efficient and robust algo-

rithm is most desirable. 
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