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ABSTRACT 11 

Background: Different tissues express genes with particular codon usage and anticodon 12 

tRNA repertoires. However, the codon-anticodon co-adaptation in humans is not completely 13 

understood, as well as its effect on tissue-specific protein levels. 14 

Results: We first validated the accuracy of small RNA-seq for tRNA quantification across 15 

five human cell lines. We then analyzed tRNA expression in more than 8000 tumor samples 16 

from TCGA, together with their paired mRNA-seq and proteomics data, to determine the 17 

Relative Translation Efficiency. We thereby elucidate that the dynamic adaptation of the 18 

tRNA pool is largely related to the proliferative state across tissues, which determines tissue-19 

specific translation efficiency. Furthermore, the aberrant translational efficiency of ProCCA 20 

and GlyGGT in cancer, among other codons, which is partly regulated by the tRNA gene 21 

copy numbers and their promoter DNA methylation, is associated with poor patient survival. 22 

Conclusions: The distribution of tissue-specific tRNA pools over the whole cellular 23 

translatome affects the subsequent translational efficiency, which functionally determines a 24 

condition-specific expression program in tissues both in healthy and tumor states. 25 
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BACKGROUND 28 

In the light of the genetic code, multiple 3-letter combinations of nucleotides in the mRNA 29 

can give rise to the same amino acid, which are known as synonymous codons. However, 30 

despite the homology at the protein level, these different codons are recognized distinctly by 31 

the transcriptional and translational machineries (1,2), and ultimately cause changes at 32 

multiple levels of gene expression. Therefore, the non-uniform abundance of synonymous 33 

codons across different tissues and among distinct functional gene sets has been proposed 34 

as an adaptive mechanism of gene expression regulation (3), particularly linked to the 35 

proliferative state (4). Nevertheless, in human, it is still under debate whether the efficiency 36 

of gene expression is the main selective pressure driving the evolution of genomic codon 37 

usage (5). 38 

The 61 amino-acid-coding codons need to be recognized by 46 different tRNA isoacceptors 39 

distributed across 428 Pol-III-transcribed tRNA genes (6), thus requiring wobble interactions 40 

(non-Watson-Crick base pairing). This complexity of the tRNA repertoire is further enhanced 41 

by an average of 11-13 base modifications per tRNA and all possible combinations thereof 42 

(7). The underlying mechanisms regulating tRNA gene expression and modification are far 43 

from resolved (8,9). However, it has been established that different conditions and tissues 44 

showcase distinct tRNA abundances (4,10) and codon usages (3,11). 45 

In order to understand such changes in codon-anticodon co-adaptation, orthogonal datasets 46 

of gene expression including tRNA quantification are required, which needs to overcome the 47 

challenges of strong secondary structures and abundant chemical modifications. Recent 48 

technological developments have paved the way for sensitive high-throughput tRNA 49 

sequencing across tissues and conditions (12,13). Aside from these methods and despite 50 

the lower coverage, tRNA reads can also be detected from generic small RNA-seq datasets 51 
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(14–18). In this context, The Cancer Genome Atlas (TCGA) has been recently used to 52 

investigate the alteration of tRNA gene expression and translational machinery in cancer, 53 

which may play a role in driving aberrant translation (19,20). 54 

To validate the use of small RNA-seq for tRNA quantification, we first compare tRNA levels 55 

determined in HEK293 by well-established tRNA sequencing methods (Hydro-tRNAseq and 56 

demethylase-tRNA-seq) (12,13,21), with those obtained by small RNA-seq. Then we 57 

quantify the tRNA repertoire of five cell lines using Hydro-tRNAseq and perform small RNA-58 

seq in parallel. Comparison of the tRNA abundance obtained by both approaches shows that 59 

it is possible to accurately estimate relative tRNA abundance of cells and tissues using small 60 

RNA-seq. Furthermore, we show that both types of quantification are informative enough to 61 

distinguish between the five analyzed human cell lines covering multiple tissue types. In 62 

consequence, we apply a tRNA-specific computational pipeline to re-analyze 8,534 small 63 

RNA-seq datasets from TCGA (22). We find that the tissue-specificity of tRNA expression is 64 

largely proliferation-related, even within healthy tissues. The tRNA quantification of TCGA 65 

samples enables their comparison with paired and publicly available mRNA-seq, proteomic, 66 

DNA methylation and copy number data, which underscores the role of tRNAs in globally 67 

controlling a condition-specific translational program. We discover multiple codons, including 68 

ProCCA and GlyGGT, whose translational efficiency is compromised and leads to poor 69 

prognosis in cancer. Finally, promoter DNA methylation and tRNA gene copy number arise 70 

as two regulatory mechanisms controlling tRNA gene expression in cancer. 71 

RESULTS 72 

tRNA quantification and modifications from small RNA-seq data 73 

In order to test how accurately we can extract tRNA abundance information contained in 74 

small RNA sequencing data, we re-analyze four publicly-available datasets of the cell line 75 

HEK293 (18,23,24). In contrast to previous studies analyzing tRNA expression from small 76 

RNA-seq data (19,20), we use a computational pipeline specifically developed for the 77 
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accurate mapping of tRNA reads (16) in order to quantify all different isoacceptor species 78 

(Figure 1A, see Methods). To validate the accuracy of these small RNA-seq quantifications, 79 

we retrieve three datasets of well-established tRNA sequencing methods (Hydro-tRNAseq 80 

and demethylase-tRNA-seq) applied to the same cell type (12,13,21), which autocorrelate in 81 

the range of 0.72-0.79 among themselves (Table S1). In comparison, our four HEK293 small 82 

RNA-seq quantifications show an average Spearman correlation against these three 83 

conventional datasets of 0.68. Compared to the anticodon Spearman correlation of 0.61 as 84 

published by Zhang et al. (19), our tRNA-specific mapping pipeline performs better than the 85 

previously published protocol, since all our correlations lie over that value. 86 

Further than correlating small RNA-seq data with conventional tRNA-seq datasets, we 87 

analyze whether small RNA-seq quantifications are informative enough to distinguish 88 

between different human cell lines covering multiple tissue types. We therefore apply both 89 

small RNA-seq and Hydro-tRNAseq to HEK293 (kidney), HCT116 (colon), HeLa (cervix), 90 

MDA-MB-231 (breast), and BJ fibroblasts. However, given the high variability between 91 

replicates of MDA-MB-231 Hydro-tRNAseq quantifications, this cell line was excluded from 92 

further analyses (Table S2). First, the correlations between the two methods of identical 93 

samples and computational mapping pipeline range between 0.93 and 0.96 for all cell lines. 94 

tRNA quantifications from both protocols are compared and significantly higher Spearman 95 

correlations are obtained within matching samples versus mismatching cell lines (Figure 1B). 96 

In consequence, we demonstrate that small RNA-seq quantifications of sample-specific 97 

tRNA profiles show a good agreement with Hydro-tRNAseq. 98 

We also detect tRNA base modifications in both protocols by nucleotide variant calling, as 99 

described in Hoffmann et al. (16). In all cases, considering the modifications that are 100 

detected in all three replicates, Hydro-tRNAseq datasets identify a larger number of 101 

modifications than small RNA-seq, as expected by the more uniform and deeper coverage of 102 

this method (Table S2). Furthermore, we detect a significant enrichment of the Hydro-103 
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tRNAseq modifications in the small RNA-seq data (p < 1e-16, Fisher test), indicating that the 104 

latter contains also information on tRNA modifications (Figure 1C). 105 

Taken together, these observations demonstrate the applicability of small RNA-seq data for 106 

the quantification tRNAs and their modifications. We therefore apply the same computational 107 

pipeline to all healthy and primary tumor small RNA-seq samples from 23 cancer types of 108 

The Cancer Genome Atlas (TCGA), which consists of 8,605 samples distributed among 17 109 

different human tissues (Figure 1D, number of samples and their abbreviations in Table S3).  110 

Figure 1. tRNA quantification and modifications from small RNA-seq data. (A) 111 

Schematic pipeline for accurate mapping of tRNA reads. (B) Correlations between tRNA 112 

quantifications by small RNA-seq and Hydro-tRNAseq of matching (correlations within the 113 

same cell line) versus non-matching (different cell lines) samples. The p-value corresponds 114 

to a one-tailed Wilcoxon rank-sum test, with nmatching= 9 and nnon-matching= 72. (C) Overlap of 115 

the detected tRNA modifications upon variant calling by both methods. (D) The TCGA 116 

network contains small RNA-seq data alongside mRNA-seq, DNA methylation arrays, non-117 

targeted proteomics, and copy number alteration quantification comprising 17 tissues. 118 

Proliferation is the major driver of tissue-specificity in tRNAs 119 

To determine the tissue-specificity of tRNAs in physiological conditions, the tRNA levels of 120 

all 675 healthy samples in TCGA tissues are analyzed.  The isoacceptor abundances show 121 

a significant tissue-specificity for all 46 annotated anticodons (q<0.05, FDR-corrected 122 

Kruskal-Wallis test grouped by cancer types). Such differences between tissues are also 123 

observed by hierarchical clustering of the median expression between all groups (Figure 124 

2A). Furthermore, healthy samples from cancer types originating from the same tissue tend 125 

to cluster together: READ and COAD from the gut; KIRC, KIRP and KICH from the kidney; 126 

LUAD and LUSC from the lung; UCEC and CESC from the uterus; LIHC and CHOL from the 127 

liver (refer to Table S3 for full cancer names). On the other hand, in terms of anticodon 128 
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abundances, three main subgroups of tRNAs with low, medium and high expression can be 129 

distinguished across all cancer types (Figure 2A). 130 

Regarding codon usage, a measure of tRNA abundance taking into account the relative 131 

contribution of each tRNA anticodon among the set of codons of a certain amino acid is the 132 

Relative Anticodon Abundance. From this perspective, a principal component analysis (PCA) 133 

of the healthy control samples in TCGA also shows clear differences between tissues 134 

(Figure 2B). Moreover, our first component, which explains 18.5% of the variance, correlates 135 

positively with the proliferation marker Ki67 (Rspearman= 0.45) (25). To further interrogate the 136 

biological functions related to the variability of anticodon abundances between samples, we 137 

compute the correlation of the whole mRNA-seq transcriptome against the first PCA 138 

component, and analyze it by Gene Set Enrichment Analysis (GSEA). As a result, the top 139 

correlating genes are enriched in proliferation and immune cell activation, while the lowest 140 

correlations belong to genes related with oxidative metabolism and respiration (Figure 2C, 141 

Table S4). This confirms, as has been previously suggested (4), that there is a proliferative 142 

tRNA expression program. 143 

Overall, we observe patterns of tissue-specific tRNA expression in TCGA healthy samples. 144 

Furthermore, our analysis identifies the proliferative state of tissues as the major biological 145 

function driving the variability on tRNA abundances. 146 

Figure 2. Proliferation is the major driver of tissue-specificity in tRNAs. (A) Medians of 147 

square-root-normalized tRNA abundances across all TCGA tissues. The color of the tissue 148 

labels correspond to the average Ki67 expression. (B) Principal Component Analysis (PCA) 149 

of the Relative Anticodon Abundances (RAA) of TCGA, where the color scale corresponds to 150 

the mean tissue expression of Ki67. The Spearman correlations of Ki67 with the components 151 

are shown, as well as the samples of most extreme tissues. (C) Top positive and negative 152 

GO terms upon Gene Set Enrichment Analysis (GSEA) of the correlations of the first PCA 153 

component against all genes. Refer to Supplementary Table 3 for full cancer type names. 154 
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tRNA repertoires determine tissue-specific translational efficiency 155 

Given that different tissues express distinct tRNA repertoires, we wondered whether they 156 

could have an effect in protein translation. In this context, and based on previous studies 157 

underscoring the global control role of codon usage as a competition for a limited tRNA pool 158 

(26–28), we define the Relative Translation Efficiency (RTE) as the balance between the 159 

supply (i.e. the anticodon tRNA abundances) and demand (i.e. the weighted codon usage 160 

based on the mRNA levels) for each of the 60 codons (excluding methionine and Stop 161 

codons). Furthermore, we normalize both the codon and anticodon abundances within each 162 

amino acid family (i.e. relative to the most abundant synonymous codon/anticodon), in order 163 

to remove the effect of amino acid biases and get a cleaner measure of codon optimality 164 

(29). 165 

To validate the suitability of RTE in determining the translational efficiency, we correlate the 166 

RTE value of all proteins against the available proteomics data of paired TCGA samples 167 

(30,31), which includes breast and colorectal tissues (tumor only, as no healthy samples are 168 

available). Although the correlation is poor (but significant), both the protein abundances and 169 

the protein-to-mRNA ratios correlate significantly better with RTE than with the classical 170 

tRNA Adaptation Index [tAI] (32,33) or with a relative tAI with normalized weights within each 171 

amino acid family, which do not consider the mRNA codon demand (Figure 3A). 172 

Furthermore, the correlation of RTE with protein-to-mRNA ratio is slightly but significantly 173 

higher than with protein levels alone, which indicates that the first is a better proxy for the 174 

process of translation. 175 

Next, we calculate the RTE for the 620 healthy samples for which both tRNA abundances 176 

and mRNA levels are available. When analyzing the tissue medians of RTE weights per 177 

each codon (RTEw), we observe that most codons are optimally balanced (RTEw =1), while 178 

12.4% and 23.6% of codons are favored (RTEw >2) and disfavored (RTEw <0.5) 179 

respectively. The tissue clustering again shows that healthy samples of cancer types from 180 
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the same tissue have similar RTEw profiles, which separates two major clusters of mostly 181 

high-Ki67 and low-Ki67 tissues (Figure S1). 182 

In order to identify the codons contributing most to the differences between tissues, we 183 

compute a bidimensional PCA across all samples and RTEw (Figure 3B). Both the first and 184 

second components significantly correlate with the proliferation marker Ki67 (0.4 and 0.35; 185 

see Figure 2B). In agreement with the proliferation- and differentiation-related codons of 186 

Gingold et al. (4), such proliferative pattern is similarly reproduced by the codons 187 

contributing to the first PCA component, which has the strongest association to proliferation 188 

(Figure 3B). Further, similarly to the tRNA abundances (Figure 2B), a GSEA of correlating 189 

genes with the first component highlights the link with proliferation-related terms (Table S5). 190 

On the other hand, the first component also clearly separates codons based on the GC 191 

content of the third codon base, which has recently been associated with differentiation (high 192 

in nnC/G codons) versus self-renewal functions (high in nnA/T) (34), as well as with 193 

proliferative transcriptomes (35). 194 

The previous analyses support the idea of proliferation-related tRNAs driving changes in 195 

translational efficiencies. In that case, we expect that the two most extreme tissues in terms 196 

of proliferation (brain and gut, excluding thymus for its low number of samples) differ in the 197 

optimization of proliferation-related proteins. As such, we compute the average RTEw for 198 

these two tissues, analyze the subsequent RTE score for each protein, and perform a GSEA 199 

of the differential RTE per protein. Consistent with our hypothesis, the results indicate that 200 

gut-optimized proteins are enriched in translation, DNA replication and protein localization, 201 

whereas brain-optimized proteins are related to phospholipid production and neural function 202 

(Figure 3C, Table S6). Taken together, this result confirms that the tRNA-dependent 203 

translational efficiency is optimized for the translation of tissue-specific genes, particularly in 204 

function of the proliferation state. 205 
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Figure 3. tRNA repertoires determine tissue-specific translational efficiency. (A) Three 206 

metrics of translation efficiency (the classical tAI, a relative tAI with normalized weights 207 

within each amino acid family, and the Relative Translation Efficiency described in this 208 

article) are Spearman correlated against two proxies of translation (protein abundance and 209 

protein-to-mRNA ratio) for all samples for which proteomics data is available (BRCA, COAD 210 

and READ). Statistical differences are determined by sample-paired two-tailed Wilcoxon 211 

rank-sum test. (B) Principal Component Analysis (PCA) of the RTEw of TCGA, where the 212 

color scale corresponds to the mean tissue expression of Ki67. The Spearman correlations 213 

of Ki67 with the components are shown, as well as the samples of most extreme tissues. On 214 

the right, the top and bottom proliferation- and differentiation-related codons, as defined by 215 

Gingold et al. (2014), ordered by their contribution to the first PCA component. (C) GSEA of 216 

the differential RTE between extreme tissues (ΔRTE = RTEColorectal - RTEBrain), showing the 217 

top five GO terms with high (left) and low (right) RTE in colorectal versus glial tissues. Refer 218 

to Supplementary Table 3 for full cancer type names.  219 

Aberrant translational efficiencies drive tumor progression 220 

Given that proliferation is a major determinant of translational efficiency in healthy tissues, its 221 

importance could be extrapolated to pathological conditions such as cancer. In fact, aberrant 222 

expression of tRNAs and codon usage have been broadly related with tumorigenesis and 223 

cancer progression (19,20,36,37). We therefore investigate 22 cancer types from TCGA in 224 

order to determine which codons are translationally compromised in disease. 225 

Similar to the analysis performed on the healthy tissues, we quantify all tRNA abundances of 226 

TCGA primary tumor samples (Figure S2) and determine their corresponding translational 227 

efficiencies using the RTE metric. By analyzing the differential RTEw between normal and 228 

tumor samples, we observe many significant differences in all 60 codons across the 22 229 

cancer types (Figure 4A). Among the most consistent changes, the ProCCA codon is 230 

significantly more favored in tumors for 8 out of 10 cancer types, while the ProCCG is 231 
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disfavored in 14 out of 16 cancers (Figure 4B). In the case of glycine, translation appears 232 

more efficient for GlyGGT in healthy samples (13/13), whereas tumor mostly favors GlyGGC 233 

(9/12) and GlyGGG (7/9). 234 

In terms of patient survival, we divide the TCGA patients in two groups based on their low or 235 

high tumor RTEw and analyze their survival probability (Figure 4C, Table S7). Among 236 

others, and consistent with the previous analysis, high translational efficiency weights of 237 

ProCCA are associated with poor prognosis in kidney renal clear cell carcinoma and kidney 238 

renal papillary cell carcinoma. Proline limitation in clear cell renal cell carcinoma has been 239 

shown to compromise CCA-decoding tRNAPro aminoacylation, leading to reduced tumor 240 

growth (38). In contrast, high RTEw of GlyGGT and ValGTC lead to longer survival in kidney 241 

chromophobe and head and neck squamous cell carcinoma, respectively. 242 

To determine the impact of aberrant translational efficiencies in regulating an oncogenic 243 

translation program, we calculate the differential RTE for the whole genome based on the 244 

average RTEw of healthy and tumor samples in kidney renal clear cell carcinoma, since it is 245 

the cancer type with the most RTEw differences. The GSEA of the resulting ΔRTE score 246 

indicates that cancer RTEw enhance the translation of proteins related to DNA replication 247 

and gene expression, whereas the healthy kidney samples favor development and 248 

differentiation processes (Table S8). As the RTEw of the ProCCA is specifically disturbed in 249 

cancer, we also interrogate how this codon is distributed along the genome. We therefore 250 

perform a GSEA on the relative codon usage of ProCCA, which shows that DNA replication 251 

and cell cycle functions lie among the most CCA-enriched genes, while morphogenesis and 252 

differentiation terms are CCA-depleted (Table S9). Together with the low-proliferative state 253 

of kidney (Figure 2B), the over-efficiency of a proliferation-related codon in this tissue can 254 

thus perturb its cellular RTE. 255 

Overall, we detect differences at the level of RTEw between tumor and healthy tissues, 256 

which show a functional relevance to the disease state. Therefore, while the differential 257 
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expression of tRNAs in TCGA had been already discussed elsewhere (19,20), we could here 258 

elucidate their oncogenic effect in translational efficiency. In particular, ProCCA appears as 259 

an interesting codon candidate in favoring tumor progression, which we had also detected in 260 

healthy tissues to be associated with proliferation (Figure 3B, Table S5). 261 

Figure 4. Aberrant translational efficiencies drive tumor progression. (A) Differential 262 

RTEw between healthy and tumor samples across 22 cancer types, as measured by 263 

log2(RTEwTumor/RTEwHealthy). Only significant differences are colored, which are determined 264 

using a two-tailed Wilcoxon rank-sum test and corrected for multiple testing by FDR. (B) 265 

Boxplot of the RTEw of ProCCA and AlaGCG codons across TCGA cancer types. (C) 266 

Survival curves for the previous codons in KIRC, KIRP and BLCA patients. The survival 267 

analysis was performed for all codons whose translational efficiency was significantly 268 

different in more than 5 cancer types in the one direction with respect to the other [Abs(UP-269 

DOWN)>5], and correspondingly corrected for multiple comparisons using FDR. Refer to 270 

Supplementary Table 3 for full cancer type names.  271 

Promoter methylation and gene copy number regulate tRNA expression 272 

Aberrant translational efficiencies in cancer are partially caused by the differential expression 273 

of tRNA genes (Figure S2). To determine the underlying mechanisms driving changes in 274 

expression, we retrieve the methylation and copy number alteration (CNA) data from TCGA 275 

samples, as a possible means for tRNA gene regulation. While CNA information cover 84% 276 

of tRNA genes, the 450K-BeadChip methylation arrays used in TCGA are mostly centered 277 

on the coding genome (Bibikova et al., 2011) and yield a coverage of only 37%. 278 

In order to make the gene-based data comparable with the measured isoacceptor-based 279 

tRNA expression, we average methylation and CNA levels over all genes within the same 280 

isoacceptor family, at the cost of losing resolution. For each isoacceptor and each cancer 281 

type, we finally fit a Multiple Linear Regression to determine how are promoter methylation 282 

and CNA affecting tRNA expression (Figure 5A, Table S10). Among all models, the 283 
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significant coefficients for methylation and CNA are significantly negative and positive, 284 

respectively. Despite the limited explained variance of the models (average R2=0.023), such 285 

results indicate that promoter methylation contributes to inhibition of tRNA gene expression, 286 

while an increase in the gene copy number enhances tRNA expression. 287 

Given the association of the codon ProCCA with cancer prognosis (Figure 4C), we explore 288 

the expression pattern of tRNAPro in TCGA. In particular, tRNAProAGG, which recognizes the 289 

codon ProCCA, is overexpressed in 8 out of 9 cancer types (Figure S2A). To get a more 290 

accurate picture of the tRNA gene methylation levels, we also analyze recently published 291 

bisulfite sequencing data (39), which, for 47 samples among nine cancer types, improved 292 

the coverage of tRNA genes up to an average of 81%. In total, tRNAProAGG genes stand 293 

among the most duplicated and least methylated proline isoacceptors in cancer (Figure S3A-294 

B), in particular at the chr6.tRNA12 and chr16.tRNA12 genes (Figure 5B). Furthermore, 295 

tRNAProAGG gene duplications occur most frequently in kidney cancers (Figure S3C). On the 296 

other hand, although the other CCA-decoding tRNAProTGG is not differentially expressed in 297 

cancer (Figure S2), its genes are as similarly methylated and duplicated as tRNAProAGG 298 

(Figure 5B, Figure S3). 299 

In short, promoter methylation and CNA appear as two possible regulatory mechanisms of 300 

tRNA expression in cancer, which suggests that similar mechanisms that control the Pol-II-301 

mediated RNAs might also regulate the expression of Pol-III non-coding transcriptome, such 302 

as tRNA genes. However, more accurate and high-throughput data on the methylation and 303 

CNA of the non-coding genome together with gene-based tRNA quantifications are needed 304 

to make stronger associations. 305 

Figure 5. Promoter methylation and gene copy number regulate tRNA expression. (A) 306 

A Multiple Linear Regression (MLR) between square-root-normalized tRNA expression and 307 

the average promoter methylation (450K BeadChip array) and gene copy number at the 308 

isoacceptor level. Among all MLRs for each isoacceptor and each cancer type separately, 309 
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the dots show the FDR-normalized significant coefficients based on their corresponding t-310 

statistic p-value, and red/blue show whether they are negative/positive respectively. The p-311 

value corresponds to a two-tailed binomial test between npos and nneg. (B) Differential 312 

promoter methylation (bisulfite sequencing) between healthy and tumor samples of genes 313 

expressing proline tRNAs, as measured by Δ%Me=(%MeTumor-%MeHealthy). Refer to 314 

Supplementary Table 3 for full cancer type names.  315 

DISCUSSION 316 

In this study, we use a systems biology approach to interrogate the multi-omics TCGA 317 

dataset under the perspective of translational efficiencies. We therefore first validate the 318 

suitability of small RNA-seq data in reproducing conventional tRNA-seq quantifications 319 

based on a gold standard set of five tissue-wide human cell lines. In fact, knowing that small 320 

RNA-seq datasets have a limited tRNA coverage and tend to be biased towards tRNA 321 

fragments and unmodified tRNAs (18,40), we extend and apply a computational pipeline for 322 

accurate mapping of tRNA reads (16). As a result, we obtain reproducible and informative 323 

quantifications of all isoacceptors in our gold standard cell lines as well as in thousands of 324 

samples across 23 cancer types of TCGA, exceeding the quality of similarly published data 325 

(19,20). 326 

From these quantifications, we then elucidate their effect on the translational efficiency by 327 

defining the RTE, for Relative Translation Efficiency, which is a balance between the tRNA 328 

supply and the codon demand. Although a more accurate RTE would have determined the 329 

supply and demand based on the aminoacylated portion of tRNAs (41) and the ribosome-330 

bound mRNAs (42) respectively, we approximate such measures by our tRNA 331 

quantifications and the publicly-available mRNA-seq data of TCGA. In agreement with 332 

current studies showing that a dynamic codon usage need to compete for a limited tRNA 333 

pool (28,29), we demonstrate that RTE is better measure of codon optimality than previously 334 

published metrics such as the tAI (32,33). However, far from explaining the translation 335 
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process, the still low but significant correlations of protein-RTE in human, in contrast to 336 

unicellular organisms, suggest that protein expression is also dependent on other layers of 337 

regulation, such as transcriptional and post-transcriptional machineries, translation initiation, 338 

epigenetic modifications of DNA and RNAs, or protein degradation mechanisms (43). 339 

On the level of translational efficiency, in agreement with previous studies (4,36), we detect 340 

that the proliferative state is the major determinant of RTE differences both across healthy 341 

tissues and in cancer. Moreover, in contrast to recent work challenging the tissue-specificity 342 

of codon-anticodon co-adaptation in human (29,43), our data here support the idea that 343 

tissue-specific RTEw have functional implications on the tissue phenotype (e.g. in 344 

determining neural differentiation in brain, or inducing abnormal proliferation in cancer). 345 

Furthermore, we observe a pattern of proliferative nnA/T versus differentiative nnC/G 346 

codons. Based on ribosome profiling experiments of pluripotency changes in embryonic 347 

stem cells (34), this could be attributed to the slower translation in differentiated cells of 348 

codons decoded by tRNAs that require adenosine-to-inosine modification at the wobble-349 

base pairing position. In particular, we detect the ProCCA codon to be significantly more 350 

favored in proliferative cells and leading to poor cancer prognosis in kidney carcinomas, 351 

specifically driven by an overexpression of tRNAProAGG in cancer. Proline limitation in clear 352 

renal cell carcinoma has indeed been shown to mostly compromise tRNAProAGG 353 

aminoacylation, leading to slower proline translation and reduced tumor growth (38). 354 

Furthermore, in support of our approach for isoacceptor quantification and translational 355 

efficiency, similar studies of tRNA levels in TCGA have controversially claimed an opposite 356 

prognostic value for the ProCCA codon in clear renal cell carcinoma (19,20). 357 

In an effort to elucidate the mechanisms regulating the expression of tRNAs, we observe 358 

that the tRNA gene copy number and their DNA methylation state have a positive and 359 

inhibitory effect on tRNA expression, respectively. In this context, DNA methylation has 360 

previously been linked to the silencing of type II genes (such as tRNAs) of the Pol-III 361 

transcriptome (44). Here we specifically propose a role for DNA methylation in regulating the 362 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/782227doi: bioRxiv preprint 

https://doi.org/10.1101/782227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 

overexpression of tRNAProAGG in cancer. In terms of the copy number alterations, it is not 363 

surprising to detect tRNA gene duplications in tumors, but the functional role in disease of 364 

different isodecoder genes that share the same anticodon is still a matter of debate (45). 365 

With the advent of more accurate and high-throughput multi-omics datasets, our knowledge 366 

on the underlying mechanisms controlling tRNA expression, degradation, and the effect of 367 

their modifications will be further expanded (8,9). Recent studies in TCGA have actually 368 

observed an upregulation of tRNA-modifying enzymes, as well as proposed a link of tRNA-369 

derived fragments (tRF) to proliferation (19,46). 370 

CONCLUSIONS 371 

This is the first high-throughput study of codon-anticodon translational efficiency over 372 

thousands of samples comprising multiple tissues and disease. We therefore demonstrate a 373 

functional role for the proliferation-driven tRNA expression differences in determining a 374 

tissue-specific phenotype, both in physiological and pathological conditions. In the future, we 375 

expect to validate the effect of such differential translational efficiency by integrating 376 

perturbation�based data and including additional gene expression regulatory layers such as 377 

tRNA modifications. 378 

METHODS 379 

Cell lines 380 

The cell lines included in this study are HeLa, HEK293, HCT116, MDA-MB-231 and 381 

fibroblast BJ/hTERT. Cells were maintained at 37 °C in a humidified atmosphere at 5% CO2 382 

in DMEM 4.5g/L Glucose with UltraGlutamine media supplemented with 10% of FBS and 1% 383 

penicillin/streptomycin. 384 

RNA extraction 385 

Cells were grown in 60mm dishes for 48h. Total RNA from HeLa, HEK293, HCT116, MDA-386 

MB-231 and fibroblast BJ/hTERT was extracted using the miRNeasy Mini kit. Independent 387 
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replicates where grown and RNA was extracted on different days. 20 µg of total RNA was 388 

treated following either the protocol of Hydro-tRNAseq (12) or generic small RNA-seq. 389 

Hydro-tRNA sequencing 390 

Total RNA was resolved on 15% Novex TBE urea gels and size-selected for 60-100 nt 391 

fragments. The recovered material was then alkaline hydrolyzed (10mM sodium carbonate 392 

and 10mM sodium bicarbonate) for 10 minutes at 60ºC. The resulting RNA was de-393 

phosphorylated with Antarctic Phosphatase (New England Biolabs) at 37ºC for 1 hour. De-394 

phosphorylated RNA was purified with an RNeasy MinElute spin column and re-395 

phosphorylated with Polynucleotide Kinase (NEB). PNK-treated tRNAs were purified with an 396 

RNeasy MinElute spin column and, similar to small RNA-seq library preparation, adaptor-397 

ligated, reverse-transcribed and PCR-amplified for 14 cycles. The resulting cDNA was 398 

purified using a QIAQuick PCR Purification Kit and sequenced on Illumina HiSeq 2500 399 

platform in 50bp paired-end format. 400 

From all five cell lines, the isoacceptor abundances of MDA-MB-231 yielded a median of 3-5 401 

times higher standard deviation than the other Hydro-tRNAseq quantifications (Table S2), 402 

thus suggesting some technical problem with this cell line. In consequence, this cell line was 403 

excluded from any further analysis. 404 

Small RNA sequencing 405 

Total RNA was directly adaptor-ligated, reverse-transcribed and PCR-amplified for 12 406 

cycles. The resulting cDNA was purified using a QIAQuick PCR Purification Kit and 407 

sequenced on Illumina HiSeq 2500 platform in 50bp single-end format. 408 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/782227doi: bioRxiv preprint 

https://doi.org/10.1101/782227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

Computational Analysis 409 

tRNA quantification and modification calling 410 

In both Hydro-tRNAseq and small RNA-seq FASTQ files, sequencing adapters were 411 

trimmed using BBDuk from the BBMap toolkit [v38.22] 412 

(https://sourceforge.net/projects/bbmap): k-mer=10 (allowing 8 at the end of the read), 413 

Hamming distance=1, length=10-50bp, Phred>25. Using the human reference genome 414 

GRCh38 (Genome Reference Consortium Human Reference 38, GCA_000001405.15), a 415 

total of 856 nuclear tRNAs and 21 mitochondrial tRNAs were annotated with tRNAscan-SE 416 

[v2.0] (47).  417 

Trimmed FASTQ files were then mapped using a specific pipeline for tRNAs (Figure 1A) 418 

(16). Summarizing, an artificial genome is first generated by masking all annotated tRNA 419 

genes and adding pre-tRNAs (i.e. tRNA genes with 3' and 5' genomic flanking regions) as 420 

extra chromosomes. Upon mapping to this artificial genome with Segemehl [v0.3.1] (48), 421 

reads that map to the tRNA-masked chromosomes or to the tRNA flanking regions are 422 

filtered out in order to remove non-tRNA reads and unmature-tRNA reads respectively. 423 

After this first mapping step, a second library is generated by adding 3' CCA tails and 424 

removing introns from tRNA genes. All 100% identical sequences of this so-called mature 425 

tRNAs are clustered to avoid redundancy. Next, the subset of filtered reads from the first 426 

mapping is aligned against the clustered mature tRNAs using Segemehl [v0.3.1] (48). 427 

Mapped reads are then realigned with GATK IndelRealigner [v3.8] (49) to reduce the 428 

number of mismatching bases across all reads. 429 

For quantification, isoacceptors were quantified as reads per million (RPM). In order to 430 

increase the coverage for anticodon-level quantification, we consider all reads that map 431 

unambiguously to a certain isoacceptor, even though they ambiguously map to different 432 

isodecoders (i.e. tRNA genes that differ in their sequence but share the same anticodon). 433 

Ambiguous reads mapping to genes of different isoacceptors were discarded. 434 
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Regarding modification site calling, we only considered gene-level uniquely mapped reads, 435 

as described to be optimal in Hoffmann et al. (16). As in their pipeline, in order to distinguish 436 

mapping or sequencing errors from true misincorporation sites, we use GATK 437 

UnifiedGenotyper [v3.8] (49). 438 

Relative Codon Usage (RCU) and Relative Anticodon Abundance (RAA) 439 

The RCU/RAA is defined as the contribution of a certain codon/anticodon to the amino acid it 440 

belongs to. The RCU of all synonymous codons and the RAA of all anticodons recognizing 441 

synonymous codons therefore sum up to 1.  442 

��� � ��

∑�����
��

               ��� � ��

∑�����
��

 443 

where �� /��refers to the abundance of the codon/anticodon �/�, and ��� is the set of all 444 

synonymous codons, as well as ��� is the set of all anticodons that decode synonymous 445 

codons. 446 

tRNA Adaptation Index (tAI) 447 

As described by dos Reis et al. (2003, 2004), the tAI weights every codon based on the 448 

wobble-base codon-anticodon interaction rules. Let � be a codon, then the decoding weight 449 

is a weighted sum of the square-root-normalized tRNA abundances ��	���  for all tRNA 450 

isoacceptors 
 that bind with affinity �1  ���� given the wobble-base pairing rules ��. 451 

However, while dos Reis et al. (2004) assumes that highly expressed genes are codon-452 

optimized, here we use the non-optimized s-values to avoid a circularity in our reasoning: 453 

� �  �0, 0, 0, 0, 0.5, 0.5, 0.75, 0.5, 0.5� 

�� � �
��

�	


�1  ������	���  
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And therefore the tAI of a certain protein is the product of weights of each codon �� at the 454 

triplet position � throughout the full gene length ��, and normalized by the length. 455 

��� � ��
�

�	


���
�
/� 

Relative tRNA Adaptation Index (RtAI) 456 

For comparison with the RTE (Figure 3A), an amino-acid-normalized tAI measure is defined 457 

by dividing each tAI weight by the maximum weight among all codons within each amino 458 

acid family.  459 

��� � ��

 !���������� 

And therefore the RtAI of a certain protein is the product of weights ��  of each codon �� at 460 

the triplet position � throughout the full gene length ��, and normalized by the length. 461 

���� � ��
�

�	


����
�
/� 

Relative Translation Efficiency (RTE) 462 

The RTE aims to consider not only tRNA abundances, but also the codon usage demand. In 463 

doing so, it constitutes a global measure of translation control, since the efficiency of a 464 

certain codon depends both on its complementary anticodon abundance as well as the 465 

demand for such anticodon by other transcripts. This global control has been indeed 466 

established to play an important role in defining optimal translation programs (28). 467 

The definition of the RTE is based on similar previously published metrics (26,27), which 468 

consists of a ratio between the anticodon supply and demand. On the one hand, the 469 

anticodon supply is defined as the relative tAI weights �� (see previous section). On the 470 

other, the anticodon demand is estimated from the codon usage at the transcriptome level. It 471 
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is computed as the frequency of each codon in a transcript weighted by the corresponding 472 

transcript expression, and finally summing up over all transcripts. Let � be a codon, then the 473 

codon usage is a weighted sum of the counts of codon ��  in gene 
 weighted by the mRNA-474 

seq abundance  �	�� for all genes in the genome ": 475 

��� � �
�

�	


��� �	��  

Similarly to the supply, the anticodon demand is then normalized within each amino acid 476 

family: 477 

#� � ���

 !����������� 

Finally, the RTE weights (RTEw) are defined as the ratio between the codon supply $� and 478 

demand #� : 479 

�%&�� � $�
#�

 

And therefore the RTE of a certain protein is the product of weights �%&� of each codon ��  480 

at the triplet position � throughout the full gene length ��, and normalized by the length. 481 

�%& � ��
�

�	


�%&���
�
/� 

Gene Set Enrichment Analysis (GSEA) 482 

We analyzed the enrichment of gene sets of the GO Biological Process Ontology using the 483 

GSEA algorithm (50). The score used to generate the ranked list input is specified in the text 484 

for each analysis. 485 
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Survival Analysis 486 

To analyze how translational efficiency of a certain codon (RTEw) can affect the survival 487 

probability in cancer, patients of a certain cancer type are divided in two groups of low/high 488 

RTEw, which correspond to the patients having the top and bottom 40% RTEw. The Kaplan-489 

Meier curves are then computed to estimate the survival probability of each group along 490 

time. 491 

tRNA methylation and copy number 492 

For consistency with the current version of publicly available and pre-processed 450k DNA 493 

methylation and SNP6 segmented copy number alteration (CNA) data from firebrowse, we 494 

used the human reference genome GRCh37/hg19 (Genome Reference Consortium Human 495 

Reference 37, GCA_000001405.1) in this analysis. The coordinates of all nuclear tRNA 496 

genes were obtained using tRNAscan-SE [v2.0] (47). 497 

Regarding DNA methylation, we computed the average beta value of each tRNA gene from 498 

1.5kb upstream of the transcription start site (1500TSS) until the end of the gene. For CNA, 499 

we retrieved the segmented data of precomputed �'"���	�    1 from firebrowse and 500 

extracted the corresponding value for the genomic coordinates containing the tRNA genes. 501 

Whenever the tRNA genes was located between two segments, the weighted average in 502 

function of the gene overlap with each segment was computed. 503 

Bisulfite sequencing methylation 504 

As 1500TSS methylation of tRNA genes lead to an average coverage of only 37% genes, 505 

we also analyzed the recently published bisulfite sequencing data of 47 samples across nine 506 

cancer types (Table S3) (39). After retrieving the datasets from the GDC legacy archive, 507 

given the higher resolution of bisulfite sequencing data, we restricted the computation of the 508 

average promoter methylation of tRNA genes to the GRCh37/hg19 genomic coordinates 509 

containing the tRNA genes, since the promoter region of Pol-III-genes is intragenic. 510 
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Multiple Linear Regression (MLR) 511 

We fitted a Multiple Linear Regression (MLR) between the square-root-normalized tRNA 512 

expression (dependent variable) and the promoter methylation and gene copy number 513 

(independent variables). To make all three layers of information comparable, we considered 514 

only samples for which all data was available and performed the regression at the 515 

isoacceptor level, thus averaging the methylation and CNA data over all tRNA genes that 516 

shared the same anticodon.  517 

&() � *� + *��,- + *����	� 

We fitted the model parameters for all 64 isoacceptors and 22 cancer types, leading to 518 

22x64=1408 MLRs, among which only significant coefficients (FDR-corrected t-statistic p-519 

value < 0.05) were considered in downstream analyses. 520 

Statistical Analysis 521 

For hypothesis testing, an unpaired two-tailed Wilcoxon rank-sum test was performed, 522 

unless stated otherwise. All details of the statistical analyses can be found in the Results 523 

section. We used a significance value of 0.05. In differential expression analyses, a False 524 

Discovery Rate correction was used to account for multiple testing. 525 

ABBREVIATIONS 526 

TCGA: The Cancer Genome Atlas 527 

PCA: Principal Component Analysis 528 

GSEA: Gene Set Enrichment Analysis 529 

RAA: Relative Anticodon Abundance 530 

RTE: Relative Translation Efficiency 531 

RTEw: RTE weights 532 

tAI: tRNA Adaptation Index 533 

RtAI: Relative tAI 534 
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CNA: Copy Number Alteration 535 

BLCA: Bladder Urothelial Carcinoma 536 

BRCA: Breast invasive carcinoma 537 

CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma 538 

CHOL: Cholangiocarcinoma 539 

COAD: Colon adenocarcinoma 540 

ESCA: Esophageal carcinoma 541 

GBM: Glioblastoma multiforme 542 

HNSC: Head and Neck squamous cell carcinoma 543 

KICH: Kidney Chromophobe 544 

KIRC: Kidney renal clear cell carcinoma 545 

KIRP: Kidney renal papillary cell carcinoma 546 

LIHC: Liver hepatocellular carcinoma 547 

LUAD: Lung adenocarcinoma 548 

LUSC: Lung squamous cell carcinoma 549 

PAAD: Pancreatic adenocarcinoma 550 

PCPG: Pheochromocytoma and Paraganglioma 551 

PRAD: Prostate adenocarcinoma 552 

READ: Rectum adenocarcinoma 553 

SKCM: Skin Cutaneous Melanoma 554 

STAD: Stomach adenocarcinoma 555 

THCA: Thyroid carcinoma 556 

THYM: Thymoma 557 

UCEC: Uterine Corpus Endometrial Carcinoma 558 
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HEK293 Small RNA-seq datasets 565 

The four HEK293 datasets were downloaded from the NCBI Sequence Read Archive (SRA): 566 

SRR1304304, ERR705692, ERR705691, SRR2060090. 567 

The Cancer Genome Atlas 568 

Raw small RNA-sequencing data in BAM format were retrieved from the GDC legacy archive 569 

after obtaining the necessary permissions from dbGaP, comprising all healthy samples (NT, 570 

solid tissue normal) and their primary tumor (PT) counterparts, which consists of 23 cancer 571 

types (BRCA, PRAD, KICH, KIRP, KIRC, LUAD, LUSC, HNSC, UCEC, CESC, LIHC, CHOL, 572 

THCA, COAD, READ, ESCA, STAD, BLCA, PAAD, THYM, SKCM, PCPG, GBM). For 573 

samples for which more than one BAM was available, all files were downloaded. BAM files 574 

were converted to FASTQ using SAMtools [v1.3.1] (51). We retrieved publicly available and 575 

pre-processed mRNA-seq gene expression, 450k DNA methylation, and SNP6 segmented 576 

copy number alteration (CNA) from firebrowse. As for proteomics, preprocessed protein 577 

assembly data and protein relative abundance were obtained from CPTAC for TCGA 578 

samples including BRCA, COAD and READ. 579 
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Coding sequences 580 

The coding sequences of Homo sapiens from RefSeq were downloaded from the 581 

Codon/Codon Pair Usage Tables (CoCoPUTs) project release as of February 6, 2019 582 

(52,53). 583 

GO gene sets 584 

Gene sets derived from the GO Biological Process Ontology were downloaded from the 585 

Molecular Signatures Database [v6.2] (MSigDB) as a GMT file (50,54). 586 

Generated data and code 587 

The code used in this study is available at GitHub [https://github.com/hexavier/tRNA_TCGA; 588 

https://github.com/hexavier/tRNA_mapping], and the generated datasets are publicly 589 

accessible at Synapse (www.synapse.org/tRNA_TCGA, syn20640275). Hydro-tRNA and 590 

small RNA sequencing data of all five cell lines has been made available at the Gene 591 

Expression Omnibus (GEO): GSE137834. Hydro-tRNAseq data from HEK293 and HeLa has 592 

been previously published (36) and deposited at ArrayExpress under accession number E-593 

MTAB-8144. 594 
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ADDITIONAL FILES 765 

Additional file 1 - Supplemental Methods 766 

Format: PDF (.pdf) 767 

List of reagents and detailed description the computational software used. 768 

Additional file 2 - Supplemental Figures 769 

Format: PDF (.pdf) 770 

Figure S1. Medians of Relative Translation Efficiencies weights (RTEw) across all TCGA 771 

tissues, related to Figure 3. Figure S2. Differential expression of tRNAs between healthy 772 

and tumor samples across 22 cancer types, related to Figure 4. Figure S3. Differential 773 

methylation and copy number between healthy and tumor samples of tRNA genes, related to 774 

Figure 5. 775 

Additional file 3 - Table S1. Correlation Matrix 776 

Format: Comma Separated Values (.csv) 777 

Correlations of tRNA expression of HEK293 from four small RNA-seq datasets against three 778 

conventional tRNA-seq quantifications. 779 

Additional file 4 - Table S2. Sequencing Quality 780 

Format: XLSX (.xlsx) 781 

Comparison of tRNA reads coverage between small RNA-seq and hydro-tRNAseq datasets, 782 

as well as the coefficient of variance and the standard deviation between replicates. 783 

Additional file 5 - Table S3. TCGA samples 784 

Format: Tab Separated Values (.tsv) 785 

Number and abbreviations of TCGA samples covering 23 cancer types. 786 
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Additional file 6 - Table S4. GSEA RAA 787 

Format: XLSX (.xlsx) 788 

Component features of the Principal Component Analysis of the Relative Anticodon 789 

Abundances (RAA, see Figure 2B). GSEA of the correlations of the first PCA component 790 

against all genes. 791 

Additional file 7 - Table S5. GSEA RTE 792 

Format: XLSX (.xlsx) 793 

Component features of the Principal Component Analysis of the Relative Tranlational 794 

Efficiency weights (RTEw, see Figure 3B). GSEA of the correlations of the first two PCA 795 

components against all genes. 796 

Additional file 8 - Table S6. GSEA deltaRTE 797 

Format: XLSX (.xlsx) 798 

GSEA of the differential RTE between extreme tissues (ΔRTE = RTEColorectal - RTEBrain). 799 

Additional file 9 - Table S7. RTE survival analysis 800 

Format: Comma Separated Values (.csv) 801 

Association of RTEw with cancer prognosis across 22 cancer types. The survival analysis 802 

was performed for all codons whose translational efficiency was significantly different in 803 

more than 5 cancer types in the one direction with respect to the other [Abs(UP-DOWN)>5], 804 

and correspondingly corrected for multiple comparisons using FDR. 805 

Additional file 10 - Table S8. GSEA deltaRTE KIRC 806 

Format: XLSX (.xlsx) 807 
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GSEA of the differential RTE between cancer and tumor samples from KIRC (ΔRTE = 808 

RTETumor - RTEHealthy). 809 

Additional file 11 - Table S9. GSEA RCU ProCCA 810 

Format: XLSX (.xlsx) 811 

GSEA of the Relative Codon Usage (RCU) of the codon ProCCA among the whole genome. 812 

Additional file 12 - Table S10. MLR coefficients 813 

Format: XLSX (.xlsx) 814 

Multiple Linear Regression (MLR) between the square-root-normalized tRNA expression and 815 

the promoter methylation and gene copy number. 816 
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