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Glucose-induced insulin secretion, a peculiar property of fully
mature S-cells, is only achieved after birth and is preceded by
a phase of intense proliferation. These events occurring in the
neonatal period are decisive for the establishment of an appro-
priate functional 5-cell mass that provides the required insulin
throughout life. However, key regulators of gene expression in-
volved in cellular reprogramming along pancreatic islet matu-
ration remain to be elucidated. The present study addressed
this issue by mapping open chromatin regions in newborn ver-
sus adult rat islets using the ATAC-seq assay. Accessible regions
were then correlated with the expression profiles of mRNAs to
unveil the regulatory networks governing functional islet matu-
ration. This led to the identification of Scrtl, a novel transcrip-
tional repressor controlling 3-cell proliferation.
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Introduction

Pancreatic S-cells are highly specialized cells displaying the
unique functional feature to release insulin in response to
glucose and other stimuli. Incapacity of -cells to secrete
the appropriate amount of insulin to cover the organism’s
needs leads to diabetes mellitus development. S-cells ac-
quire the ability to secrete insulin through a poorly under-
stood postnatal maturation process implying transcriptional
reprogramming of gene and non-coding RNA expression
that terminates only after weaning (1, 2). Cells that gener-
ate and secrete insulin can be produced in vitro using var-
ious methods (3, 4) and are similar to S-cells in many as-
pects. However, these cells show lower glucose-stimulated
insulin secretion (GSIS) and transcriptome differences com-
pared with normal -cells (5). Consequently, there is a need
to better understand the regulation of the maturation pro-
cess to enable the engineering of fully functional surrogate
insulin-producing cells. Likewise, the transcriptional con-
trol of pancreas development and islet differentiation is still
subject of intensive investigations (6—8). In the past decade,
the emergence of various next-generation sequencing tech-
nologies and experimental procedures allowed querying epi-
genome and gene expression profiles with an unprecedented
precision at a genome-wide or transcriptome-wide scale. In-
deed, a recent study by Ackermann ef al. identified human
« and f-cell specific mRNAs and regulatory elements us-
ing RNA-seq and ATAC-seq, respectively (9).The ATAC-seq
method probes DNA accessibility with a hyperactive Tn5

transposase, which inserts sequencing adapters into accessi-
ble chromatin regions. Sequencing reads can then be used
to infer regions of increased accessibility, as well as to map
regions of transcription factor binding and nucleosome posi-
tion (10). This allows the identification of transcription fac-
tors (TFs) that will bind to specific binding sites (TFBS) lo-
cated in an open chromatin region, which can be close or
distant to the transcription start site (proximal/distal regula-
tion). Moreover, sets of TFs can cooperate on cis-regulatory
modules (CRM), which are DNA stretches of about 100-1000
bp, to produce specific regulatory events (11). Taking advan-
tage of this approach, we aimed at determining how neonatal
islet maturation is controlled at the transcriptional level and
to identify the key transcription factors involved. We thus
used ATAC-seq to search for open chromatin regions in the
islets of 10-day-old (P10) and 3-month-old (adult) rats. Us-
ing this strategy, we found about 100’000 putative regula-
tory regions, 20% of which displayed significant accessi-
bility changes upon maturation. We then used two different
computational approaches to investigate potential TFBS mo-
tifs in the regions with accessibility changes. This allowed us
to identify putative regulatory elements in the promoter or in
distal CRM nearby differentially expressed mRNAs that may
be implicated in islet maturation. As a result, we obtained a
global picture of the transcriptional events taking place dur-
ing pancreatic islet maturation. Moreover, we experimentally
confirmed the involvement of a novel transcriptional regula-
tor, Scrtl, in the neonatal maturation of pancreatic 3-cells.

Results

To study the transcriptional regulation of pancreatic islet
maturation, we performed high throughput sequencing of
Transposase-Accessible Chromatin of 10-day-old and adult
rat islets (Figure 1A). We then applied bioinformatic meth-
ods for quality control, peak detection, differential accessibil-
ity analysis and motif finding (Figure 1B). For example, the
Magnesium Transporter 2 (Mrs2) locus depicts two promi-
nent ATAC-seq signal peaks, and the 3’ end peak shows an
important increase of accessibility after the maturation pro-
cess. Quality control of the samples (table 1) showed an av-
erage of 370 million reads sequenced with 94.3% of reads
with a MAPQ score above 30. The fragment size analysis
showed the expected profile of ATAC-seq (Supplementary
figure S1A) with usual oscillations due to the presence of nu-
cleosomes (~150 bp) or side accessibility (~10 bp) (12). In
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Fig. 1. ATAC-seq successfully identified accessible sites (ACS) associated with pancreatic islet maturation. (A) Summary of the ATAC-seq experimental design and compu-
tational analysis pipeline. We extracted nuclei from the isolated islets of 3 adult (3 m.o.) rats and 3 litters of rat pups at postnatal day 10 (P10) to perform the Tn5 reaction
as described in (12) and prepare the library for sequencing. The computational pipeline involved a quality control of the sequencing data followed by read alignment to the
rat reference genome (Rn5 assembly). ACS were identified using the peak calling tool MACS2 (13) and quantified for each sample separately. The ACS sequences were
scanned using FIMO (14) and analyzed to identify TFBS motifs that are implicated in the islet maturation process and in related pathways (See methods). (B) Example of
identified ACS. The ACS nearby Mrs2 transcription end site is significantly higher in adult rats. This ACS contains several motifs of TFBS. See also Figure S1 and table 1

addition, adult and P10 samples were well clustered, when
evaluated by the correlation between samples (Supplemen-
tary figure S1B) or using the first PCA component (Sup-
plementary figure SI1C). To detect accessible sites (ACS),
we performed a peak calling using MACS2 (13) (Methods),
leading to the detection of ~102000 ACS (Supporting In-
formation (1)). These sites were quantified in each sample
separately and annotated with the closest transcription start
site (TSS). Moreover, a differential accessibility analysis was
performed using EdgeR (15) (Figure 2), and the values of
the analysis reported in the source data (1). ACS were di-
vided in 3 groups: Stable, significantly more accessible in
P10 (Down) and significantly more accessible in adults (Up),
with p-value < 0.05 and FDR < 0.2 (Figure 2A). About 20%
of the ACS showed differential accessibility upon maturation
with 11.8% of down ACS and 7.1% of up ACS (Figure 2B,C).

Promoter and distal ACS depicted distinct accessi-
bility patterns along islet maturation. To assess the im-
pact of the ACS location in respect to the closest gene, we
used ChIPseeker (16) to annotate our ACS and 100’000 ran-
domly selected sites (Supplementary figure S2A). We ob-
served that true ACS were enriched for exonic and intronic
sequences and transcript start sites (Supplementary figure
S2B). Interestingly, a larger fraction of sites more accessi-
ble in adults (Up) belonged to the distal class and were lo-
cated on introns while ACS with decreased accessibility in
adults (Down) were enriched in promoters. The localization
analysis showed that 2/3 of the ACSs were distal sites and
about 10% were located in the TSS or proximal class. We
then looked at all the transcription start sites (TSS) and the
transcription end sites (TES) of genes annotated with one or
more significantly changing ACS (Supplementary figure S3).
We observed that TSS of genes nearby ACS more accessible
in adults showed a precise start signal, while the other group
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Fig. 2. Differential analysis of Trn5 integrations in accessible sites revealed that
~20% of the ACS were significantly changing during islet maturation. (A) Volcano
plot representation of the log> fold-change of Trn5 integration between 10-day-old
pups (P10) and adult rat islets in the x-axis, and the FDR adjusted p-value in the
y-axis. ACS significantly more accessible in adults are represented in green (Up),
those more accessible in P10 in red (Down), and those remaining stable in blue
(p-value <0.05, FDR <0.2, n=3). ACS count in (B) and percentage in (C) for each
group (Up, Stable and Down). See also source data (1) and supplementary figures
S2,S3 and S4

seemed to have larger accessible sites, maybe due to less con-
strained transcription (wide promoters or bi-directional pro-
moters (17)). In addition, we observed that ACS less accessi-
ble in adults showed a drastic decrease of the signal, indicat-
ing that these sites are closing due to chromatin remodelling
events. On the other hand, in ACS that showed a higher ac-
cessibility in adults, the difference between P10 and adult
sites was not as substantial, suggesting that these ACS were
still open in P10 but potentially bound by a different set of
transcription factors.
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ACS significantly affected were located nearby genes
involved in islet maturation. Next, we investigated if ACS
changing in P10 versus adult rat islets control the expression
of genes displaying significant differences upon maturation
(2). Of the 19311 ACS differentially accessible with p-value
below 0.05 and FDR below 0.2, 11372 (~60%) were lo-
cated in the vicinity of differentially expressed genes. These
ACS were annotated as enhancers or repressors, depend-
ing whether their accessibility was respectively correlated
or anti-correlated with the expression changes in the nearby
gene (Supplementary figure S4). We found that ACS less ac-
cessible in adult (Down) were enriched nearby TSS (down-
regulated gene enhancer and up-regulated gene repressor).
In addition, several KEGG pathways were enriched in adult
samples such as insulin secretion, circadian thythm, and cal-
cium signaling, while carbon metabolism, PI3-Akt, and pro-
liferation related annotations (cancer) were enriched in P10
samples. In most cases, both enhancer and repressor ACS
contribute to the output gene expression. Thus, a gene might
be regulated by several ACS, some bound by enhancer pro-
teins, and others targeted by repressors. Consequently, the
ATAC-seq signal of specific ACS may be increased, while
the nearby gene is repressed.

ACS display enhancer activity. Next, we experimentally
tested if the identified ACS nearby genes important for proper
pancreatic 3-cell function (18) display enhancer activity. For
this purpose we cloned 5 ACS sequences (Supplementary Ta-
ble (2), Figure 3) near Sy#4, Pax6 (two ACS), Mafb and Neu-
roD1 in a luciferase reporter construct driven by a minimal
promoter. Interestingly, the inclusion of the ACS close to
Syt4, MafB, and NeuroD1 resulted in an increase in luciferase
activity, compared to the empty pGL3 vector. In addition,
mRNA expression of NeuroDI1 and MafB, tested by gPCR,
confirmed the higher expression of these genes in 10-day-old
pups. Thus, we concluded that the identified ACS are likely
to be involved in transcriptional regulation of nearby genes.

Identification of transcriptional regulators and chro-
matin remodelers of pancreatic islet maturation. Ac-
cessibility analysis enables the detection of transcription fac-
tors (TFs) or DNA binding motifs (TFBS) affecting the chro-
matin state and the transcription of nearby genes. In or-
der to decipher the combinatorial code of transcription fac-
tor binding sites that allow islet maturation, we scanned the
sequence of each ACS using FIMO (14) together with the
position weight matrices of Jaspar 2016 (19). With these se-
quence scans we could perform a motif set enrichment anal-
ysis for the accessibility in P10 or in adult islet cells using
the FGSEA algorithm (20) (Supplementary Table (3), Figure
4A,B). Thus, using the set of significantly changing ACS and
their respective accessibility logs Fold Change, we were able
to identify TFBS motifs that were either enriched in P10 or in
adult rat islets. We found several TFBS that were previously
implicated in islet maturation such as MAF, FOX, FOS/JUN,
NRE, and E2F (6). Moreover, we observed the enrichment of
several motifs recognized by transcriptional repressors and
insulators such as SCRT1 or CTCEF. To confirm these results
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and detect additional motifs playing a role in islet maturation,
we used a more sensitive method. We applied a penalized lin-
ear model GLMnet (21) to all ACS with the matrix of motif
match as predictors and the logo fold-change as output vec-
tor. With this method, we could identify a set of TFBS motifs
susceptible to play an important role in the maturation and we
could compute an activity () for each motif (Supplementary
Table (4),Supplementary Table S5). This permitted to con-
firm most of the hits discovered using the FGSEA and to de-
tect other TFBS motifs such as RFX, SREB, NKX6, REL,
MEIS, and TEAD3.

Scri1 represses [-cell proliferation. We next focused on
Scrtl, a transcriptional repressor involved in neuroendocrine
development (22, 23) but whose function has not yet been
investigated in -cells. Binding sites for this transcriptional
repressor were highly enriched in the chromatin regions that
close upon [-cell maturation. In agreement with the lower
chromatin accessibility for Scrtl binding sites, Scrt! expres-
sion is increased in adult islets (Figure 5A). Transfection of
adult rat islet cells with a set of siRNAs targeting Scrz/ led
to a decrease in the expression of the repressor of about 70%.
(Figure 5B). Down-regulation of Scr¢l did neither affect in-
sulin secretion in response to glucose (Figure 5C) nor insulin
content (Figure 5D). Apoptosis measured by Tunel assay in
both control condition or in response to pro-inflammatory
cytokines was also not affected (Figure 5E). Interestingly,
knockdown of Scrtl in adult 3-cells to levels similar to those
present in newborn rats resulted in a rise in proliferation,
suggesting an involvement of this transcriptional repressor in
postnatal 5-cell mass expansion (Figure S5F).

Identification of Scrt1 targets involved in maturation.
As Scrtl is regulating the proliferative capacity of S-cells, we
next aimed at finding its targets. For this purpose, we FACS-
sorted adult rat islet cells to separate a-cells and S-cells (Sup-
plementary FigureS6). We observed that a-cells and S-cells
express Scrtl at similar levels. Subsequently, we performed
RNA-seq on (-cells exposed to a control siRNA or to siS-
crtl (Figure 6). Differential expression analysis between siS-
crtl and control samples revealed that 168 genes were sig-
nificantly impacted by silencing Scrt/ with a FDR adjusted
p-value below 0.05 (Figure 6A). Of these 168 genes, 111
were down-regulated and 57 were up-regulated. As expected,
among the potential targets of Scrtl we found genes related
to proliferation such as Notchl, Parpl6, Ppp3rl, Ppp2rib
and Ywhag (Supplementary figure S7 A,B). Moreover, some
genes related to glucose signaling and GSIS such as Sy#,
or to sphingolipid metabolism as Ugt8 were down-regulated
when knocking down Scrtl. Then, we compared the set of
genes affected by Scrtl silencing and the ones differentially
expressed upon maturation (in postnatal 10-day-old (P10)
versus adult rat islets (2, 24)). We found a common set of
62 genes changing in both data sets with a FDR adjusted p-
value below 0.05 (Figure 6B, Supplementary table (7)). Inter-
estingly, we observed a significant anti-correlation (correla-
tion test p-value= 0.013) between the fold-changes from the
comparison between siScrt1 versus siCtl in adult rat S-cells
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Fig. 3. Enhancer activity assessment using a luciferase assay. (A) Trn5 integrations on Mafb, Syt4, Neurod1 and two Pax6 accessible sites. (B) Scheme of pGL3 vector used
for the luciferase assay. (C) Luciferase activity was measured in INS 832/13 cells transfected with a pGL3 empty vector (Ctl) or a pGL3 vector containing an enhancer region
for the indicated gene (Mafb, NeuroD1, Pax6 and Syt4). Results are expressed as fold change versus control. (D) Gene expression in P10 and adult rat islets were measured
by gPCR and normalized to the housekeeping gene Hprt1. Syt4 gene expression is available in the figure 6. * p < 0.05, ** p < 0.01 by Student’s t-test or by one-way Anova,

Dunnett’s post-hoc test. See also Source data (2).

and P10 versus adult islets. We confirmed using qPCR that
NFATcl, NFATc2, Notchl, and Syt4 were controlled by Scrtl
and were inversely changing upon maturation (Figure 6C,D).
In addition, a gene ontology enrichment analysis for biolog-
ical processes revealed that autophagy and oxygen sensing
are over represented in these 62 genes (Supplementary table
(8)). Overall, our results suggest that Scrt/ is implicated in
the switch between the proliferative state and the fully func-
tional state of 3-cells along pancreatic islet maturation.

Discussion

Postnatal islet maturation is a critical process to achieve
proper -cell function. Immediately after birth, 5-cells are
not fully functional and have to undergo a major gene repro-
gramming to acquire the ability to secrete adequate amounts
of insulin in response to glucose (1). Our group and others
(2, 5, 24) have shown a large-scale rewiring of transcriptional
programs occurring during the neonatal period. However, lit-
tle is known on cis-regulation of gene expression at the chro-
matin level before and after weaning. Chromatin accessibil-
ity of human islets on a genome-wide scale has been previ-
ously produced using FAIRE-seq (18, 25). More recently,
several studies took advantage of ATAC-seq together with
GWAS to identify causal variants of T2D in cis-regulatory
elements in human (26-29). Another study identified cell-
type specific accessible sites and transcription factor binding
sites in «, B and acinar cells (9). However, the transcrip-
tional regulation of postnatal islet maturation at the chromatin
level has not been reported so far. In this project, we em-
ployed ATAC-seq (12) to produce a global map of accessi-
ble sites (ACS) in the islets of 10-day-old pups and in adult
rats. This permitted to detected more than 100’000 ACS,
among which about 20% were differentially accessible be-
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fore and after the functional maturation of 3-cells. Interest-
ingly, one of the ACS with the most significant p-value and
larger fold-change was located on the 3’UTR of the Mrs2
gene. This gene is encoding a magnesium transporter at the
surface of the mitochondria (30). Genetic variants in this
magnesium-related ion channel were previously associated
with type 2 diabetes and pancreatic cancer (31, 32). Next,
we integrated these accessibility maps with mRNA micro-
array data from (2, 24) in the same model and we found that
~ 60% of the accessible sites were nearby differentially ex-
pressed genes, suggesting that these cis-regulatory elements
are involved in the transcriptional regulation of gene expres-
sion. Several pathways previously related to the maturation
process such as insulin secretion or circadian rhythms are un-
der the control of these accessible cis-regulatory elements.
Interestingly, several components of the core clock are not
rhythmic in 10 days old pups but are consistently oscillat-
ing in [-cells after weaning (33). These cis-regulatory ele-
ments may be controlled by transcriptional enhancers or re-
pressors. Indeed, we confirmed that 3 out of the 5 tested
ACS that are located nearby genes important for proper /-
cell function have a significant enhancer activity. In this
study, we observed that accessible sites that were more open
in adult islets seem to preexist in P10 islets, while sites less
accessible in adults appear to be completely closed. More-
over, we found that preexisting programs were switched off
at TSS while repressed or poised genes were fully activated
by closing a distal repressor site. Intriguingly, Ackermann
and others (3, 9) pointed out that many poised genes in «
cells are a signature of functional S-cells and, consequently,
could be of use for a-to-3 cell reprogramming. This suggests
plasticity and specialization of the different cell types along
maturation and demonstrates rewiring of transcriptional pro-

Sobel etal. | Chromatin accessibility variations across pancreatic islet maturation


https://doi.org/10.1101/782318
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/782318; this version posted September 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

enrichment score
o
x
m
r
1

JUND(var.2) 4

N =

RORA(var.2)
NF

0 5000 10000 15000 20000

Fox;3 -
NR2F1
FOXC2 o

KIf1 -
MZF1(var.2) o
Hnfda

EHF
PLAG1
ERF -

FEV +

ETS1 4

ETV1 o

ERG +

o o
=) o

enrichment score
o
=S
o

0 5000 10000 15000 20000

enrichment score
s
N

0 5000 10000 15000 20000
SCRT1

enrichment score

S o b
w N o

N

w

=

o)

o

w

1

1
o
~

05 mmmm e N
0 5000 10000 15000 20000
rank

o
o

25

1
)]
o

|
N
()]

NE

()

Fig. 4. Motif enrichment analysis in ACS identified putative regulators of postnatal pancreatic islet maturation.(A) We scanned every ACS sequence using FIMO (14) and
the Jaspar core vertebrate (19) position-weight matrices (PWMs) to construct the motif-ACS annotation. We used this annotation and the logs fold change of significantly
modified ACS with the FGSEA algorithm (20) to find putative regulators of the maturation process. The FGSEA algorithm calculates an enrichment score for each binding
site motif by evaluating its distribution within the list of ACS ordered by accessibility logo fold-change. Figure represents four enriched TFBS motifs (B) FGSEA Normalized
Enrichment Score for top enriched motifs (FGSEA adjusted p-value < 0.05). See also supplementary figure S5 and supplementary data set (3) and (4).

grams at the chromatin level. For instance, reprogramming
of acinar cells into insulin-producing cells has been done
using adenoviral gene delivery of PDX1, NGN3 and MafA
(4). A subsequent study characterized these changes using
RNA-seq and ChIP-gPCR and revealed that loss of REST
combined with PDX1 expression leads to activation of en-
docrine genes and correlates with epigenetic modifications
of the local chromatin (34). Thus, islet plasticity is of in-
terest for future treatment of diabetes through the produc-
tion of mature surrogate insulin-producing cells (35). Us-
ing two different computational approaches and the Jaspar
PWM database, we could find known and unforeseen tran-
scriptional regulators potentially involved in the maturation
process. We identified many DNA-binding proteins affect-
ing chromatin accessibility, including MAF, FOX, FOS/JUN,
NRF, E2F, CTCF, RFX, SREB, NKX6, REL, MEIS, and
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TEAD. Several of these transcription factors have been al-
ready implicated in pancreas development and postnatal islet
maturation (36). For instance, E2F1 is an established cell sur-
vival and proliferation activator in S-cells (37) and we have
recently shown that this transcription factor controls the ex-
pression of the long non-coding RNA H19 and is profoundly
down-regulated during the postnatal period. Moreover, we
obtained evidence suggesting that E2F1 and H19 may con-
tribute to the decrease in /3-cell mass in the maternal low pro-
tein diet offspring model (24). One of the identified transcrip-
tional regulators, Scrtl, which is highly enriched in repressed
sites in adults is of particular interest. Scrtl was previously
shown to be implicated in brain development (38, 39). Here,
we confirmed that Scrt/ mRNA levels are higher in rat adult
islets, in both - and S-cells. Interestingly, a significant up-
regulation of Scrtl in adult islet cells was also reported in
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Fig. 5. Downregulation of Scrt1 promotes -cell proliferation. A) Scrt1 expression
is increased in adult versus P10 rat islets. B-F) Dispersed adult rat islet cells were
transfected with a control siRNA (siCtl) or siRNAs directed against Scrt1 (siScrt1).
Experiments were performed 48h post-transfection. B) siScrt1 led to a 70% de-
crease in Scrt1 expression as measured by gPCR and normalized to Hprt1 house-
keeping gene levels. C) Insulin release in response to 2 or 20 mM glucose (G) and
D) insulin content were determined by ELISA. E) Apoptosis of insulin positive cells
was assessed using Tunel assay in basal (NT) condition or in response to a mix (cyt
mix) of pro-inflammatory cytokines (IL-13, TNF-«, IFN-+). F) The fraction of prolif-
erative insulin positive cells was determined by BrdU incorporation in basal (NT) or
stimulated (prolactin, PRL) conditions. * p < 0.05, ** p < 0.01 by Student’s t-test or
by one-way Anova, Tukey’s post-hoc test.

a recent study analyzing age-dependent gene expression and
chromatin changes in human (40). Next, using a set of small
interfering RNAs targeting Scrtl (siScrtl), we demonstrated
that it is involved in S-cell proliferation. Finally, we iden-
tified Scrtl targets using RNA-seq in FACS-sorted adult (-
cells and confirmed that Scrtl has a significant impact on
transcripts related to proliferation. In addition, we observed
that Scrtl controls NFATc1/2 genes and consequently may
control the calcineurin/NFAT pathway, known to be an im-
portant regulator of 5-cell growth and function (41, 42). Our
functional enrichment analysis showed that Scrtl also influ-
ences the expression of genes related to oxygen sensing and
autophagy. Accordingly, previous studies have demonstrated
arole for the hypoxia-inducible factor HIF1a in normal 5-cell
function (43), and altered 3-cell autophagy in human T2DM
(44).

In this study, ATAC-seq and the mRNA microarray analyses
have been performed in whole islets and not in FACS-sorted
cells or in single cells. Several recent studies have demon-
strated a large heterogeneity of gene expression at a single
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cell level using smFISH or single cell RNA-seq (45-48).
Taking advantage of the heterogeneity of gene expression to-
gether with single cell ATAC-seq could shed more light on
the transcriptional control of islet maturation and the differ-
ent cell types involved.

Overall, we produced a high-resolution map of chromatin
accessible sites in islets of 10-day-old pups and adult rats.
These genome wide accessibility maps are an important re-
source to study cis-regulation of gene expression along mat-
uration. Using these maps, we discovered a new important
transcriptional repressor implicated in the maturation pro-
cess, namely Scrtl, which controls 3-cell proliferation and
function. Manipulations of the level or the activity of this
transcriptional regulator may favor the development of new
future approaches aiming at generating surrogate insulin-
producing cells. A global understanding of the molecular
mechanisms and the transcription factors involved in func-
tional maturation will be seminal for the design of S-cell-
based replacement strategies for the treatment of diabetes
(35).

Methods and Materials

Animals. Male (200-250g) and pregnant Sprague-Dawley
rats were obtained from Janvier laboratories (Le Genest St-
Isle, France). After birth, male and female pups were nursed
until sacrifice at P10. All procedures were performed in ac-
cordance with the Guidelines for the care and use of labora-
tory animals from the National Institutes of Health and were
approved by the Swiss Research Councils and Veterinary Of-
fice.

Islet isolation, dispersion and sorting. Islets were iso-
lated by collagenase digestion of the pancreas (49) fol-
lowed by separation from digested exocrine tissue using an
histopaque density gradient. After isolation, the islets were
hand-picked and incubated for 2h in RPMI 1640 GlutaMAX
medium (Invitrogen) containing 11 mM glucose and 2 mM
L-glutamine and supplemented with 10% fetal calf serum
(Gibco), 10 mM Hepes pH 7.4, 1 mM sodium pyruvate,
100 pg/mL streptomycin and 100 IU/mL penicillin. Disso-
ciated islet cells were obtained by incubating the islets in
Ca?t/Mg?t free phosphate buffered saline, 3 mM EGTA
and 0.002% trypsin for 5 min at 37°C. For some experi-
ments, islet cells were separated by Fluorescence-Activated
Cell Sorting (FACS) based on -cell autofluorescence, as pre-
viously described (50, 51). Sorted islet cells were seeded on
plastic dishes coated with extracellular matrix secreted by
804 G rat bladder cancer cells (804 G ECM) (52). Enrich-
ment of a- and S-cells was evaluated by double immunoflu-
orescence staining using polyclonal guinea pig anti-insulin
(dilution 1:40, PA1-26938 Invitrogen) and polyclonal mouse
anti-glucagon (dilution 1:1000, Abcam Ab10988), followed
by goat anti-guinea pig Alexa-Fluor-488 and goat anti-mouse
Alexa-Fluor-555 (diluted 1:400, Thermofisher A11073 and
A21422, respectively) secondary antibodies. On average, 3-
cell fractions contained 99.1 + 0.9% insulin-positive cells and
0.6 = 0.6% glucagon-positive cells and a-cell-enriched frac-
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Fig. 6. Changes induced by silencing Scrt1 were anti-correlated with the maturation signature of Scrt1 targets. FACS-sorted adult rat 3-cells were transfected with a control
siRNA (siCtl) or siRNAs directed against Scrt1 (siScrt1).RNA-extraction and library preparation for RNA-seq were performed 48h post-transfection. A) Volcano plot of gene
expression changes induced by Scrt1 knockdown. B) Scatter plot of log> fold changes of differentially expressed genes from adult/P10 measured by micro-array (n=3) versus
logz fold changes of siScrt1/control measured by RNA-seq (n=5). C) gPCR confirmation of gene expression in FACS-sorted 3-cells transfected with siCtrl or siScrt1, D) P10
versus adult rat islets. Student T test, *p< 0.05, **p< 0.01. see also supplementary Figure S6, S7 and Supplementary Tables (5),(6),(7),(8).

tions contained 10.6 £ 8.2% insulin-positive cells and 88.8 +
8.2% glucagon-positive cells.

ATAC-seq sample preparation. ATAC-seq libraries were
prepared as previously described (10) using dissociated islet
cells from 3 adult male rats and from a mix of few P10 pups
of 3 different litters. Briefly, 100’000 islet cells were re-
suspended in 50 pl of cold lysis buffer (10 mM Tris-HCl
pH7.4, 10 mM NaCl, 3 mM MgCls and 0.1% IGEPAL CA-
630) and centrifuged at 500g for 10 min at 4°C. The pel-
let was resuspended in the transposase reaction mix (Nex-
tera kit, [llumina). The transposition reaction was performed
at 37°C for 30 min and was followed by purification of the
samples using the Qiagen MinElute PCR purification kit (Qi-
agen). Transposed DNA fragments were amplified for 11 cy-
cles using the NEBnext high-fidelity PCR master mix and the
Adl_noMX and Ad2.1-2.6 barcoded primers from (10). Am-
plified libraries were purified with AMPure XP beads (Beck-
man Coulter) to remove contaminating primer dimers. Li-
brary quality was assessed using the Fragment Analyzer and
quantitated using Qubit. All libraries were sequenced on II-
lumina HiSeq 2500 using 100 bp paired-end reads.

Sobel etal. |
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ATAC-seq data quality control and analysis. Fastq files
quality was assessed using FastQC (version 0.11.2) (53).
Raw reads were aligned to the Rattus norvegicus reference
genome assembly 5 (Rn5) using BWA (version 0.7.13) (54)
with default settings. Quality control of the aligned reads was
checked using Samstat (version 1.5) (55) and processed with
Samtools (version 1.3) (56). Reads mapping to mitochon-
drial DNA were discarded from the analysis together with
low quality reads (MAPQ < 30). Peak calling was performed
in order to find accessible sites (ACSs) using Macs2 (version
2.1.1) (13) on adult and P10 samples concatenated separately.
ACSs were then reunited in a single bed file and quantified
using the pyDNase library (version 0.2.5) (57) (Table 1). We
used FIMO (14) from the MEME suite (version 4.11.4) to-
gether with Jaspar 2016 position-weight matrices (19), to pre-
dict transcription factor binding sites.DeepTools (2.4.2) (58)
was used to construct heatmaps around ACSs, TSS and TES.
Finally, we used the R statistical software (version 3.4.2)
and several bioconductor and CRAN packages to perform
gene sets enrichment analysis (RDavidWebService, Cluster-
Profiler) (59), ACSs localization analysis (ChIPseeker) (16),
motif enrichment analysis (FGSEA) (20) and penalized lin-
ear model analysis (GLMnet) (60) for motif selection. All
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sequencing tracks were viewed using the Integrated Genomic
Viewer (IGV 2.4.8) (61). ATAC-seq raw data were deposited
in GEO under the accession number GSE122747.

mRNA Microarray. P10 and adult mRNA expression from
(2, 24) were reanalyzed with EdgeR and RDavidWebservice
(15, 62) (Figure 6-supplementary data table (6)). These mi-
croarray data are available in the GEO database under the
accession number GSE106919.

Cell line. The INS 832/13 rat §-cell line was provided by
Dr. C. Newgard (Duke University) (63) and was cultured
in RPMI 1640 GlutaMAX medium (Invitrogen) containing
11 mM glucose and 2 mM L-glutamine and supplemented
with 10% fetal calf serum (Gibco), 10 mM Hepes pH 7.4,
1 mM sodium pyruvate and 0.05 mM of S-mercaptoethanol.
INS 832/13 cells were cultured at 37°C in a humidified at-
mosphere (5% CO2, 95% air) and tested negative for my-
coplasma contamination.

Cell transfection. Dispersed rat islet cells or FACS-sorted
[-cells were transfected with a pool of 4 siRNAs directed
against rat Scrtl or a negative control (On-Target plus
081299-02 and 001810-10 respectively, Dharmacon) using
Lipofectamine RNAIMAX (Thermofisher). INS 832/13 cells
were co-transfected with pGL3 promoter and psicheck plas-
mids (Promega) using lipofectamine 2000 (Thermofisher).
pGL3 promoter vector was empty (control) or contained an
enhancer region for MafB, NeuroD1, Pax6 or Syt4 (RNA syn-
thesis, subcloning and plasmid sequencing were performed
by GenScript, Netherlands) (Figure 3-Supplementary data
(2)). RNA extraction and functional assays were performed
48h after transfection.

Luciferase assay. Luciferase activities were measured in
INS 832/13 cells using the Dual-Luciferase Reporter Assay
System (Promega). Firefly luciferase activity was normalized
to Renilla luciferase to minimize experimental variabilities.
Experiments were performed in triplicates.

RNA extraction, quantification and sequencing. RNA
was extracted using miRNeasy micro kit (Qiagen) followed
by DNase treatment (Promega). Gene expression levels
were determined by qPCR using miScript II RT and SYBR
Green PCR kits (Qiagen) and results were normalized to the
housekeeping gene Hprtl. Data were analyzed using the
2~ AAC(T) method. Primer sequences are provided in Table
2.

For mRNA-sequencing, the RNA was converted into a se-
quencing library using the Illumina TruSeq RNA-sequencing
kit and standard Illumina protocols. Single-end, 151 nt long
reads were obtained using a HiSeq 4000 instrument. Reads
were aligned to the transcriptome (Rnor6) with Kallisto (64)
and presented as transcripts per million (TPM) and EST
pseudo counts (Additional data table (5)). Subsequently, dif-
ferential expression was calculated using Sleuth (65). Finally,
biological function and pathway analyses were performed us-
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ing Cluster profiler (59). RNA-seq raw data were deposited in
the GEO database under the accession number GSE130651.

Insulin secretion and content. Transfected rat islet cells
were pre-incubated for 30 min at 37°C in Krebs-Ringer bi-
carbonate buffer (KRBH) containing 2 mM glucose, 25 mM
HEPES, pH 7.4 and 0.1 % BSA (Sigma-Aldrich), followed
by 45 min incubation at 2 or 20 mM glucose. At the end of
the incubation period, media were collected for insulin de-
termination and rat islet cells were lysed with acid-ethanol
(0.2 mM HCI in 75% ethanol) to extract total insulin content
or with protein lysis buffer to measure total protein content
(Bradford, BioRad). The amount of insulin released in the
medium and remaining in the cells was measured by insulin
Elisa kit (Mercodia). All experiments were performed in trip-
licates.

Cell death assay. TUNEL staining on rat J-cells was per-
formed 48h after transfection using the TMR red In Situ Cell
Death Detection Kit (Roche) combined to polyclonal guinea
pig anti-insulin (dilution 1:40, PA1-26938 Invitrogen) fol-
lowed by incubation with goat anti-guinea-pig AlexaFluor
488 antibody (dilution 1:400, A11073 Thermofisher). Cell
nuclei were stained with Hoechst 33342 (1 pg/ml, Invitro-
gen). Coverslips were mounted on microscope glass slides
with Fluor-Save mounting medium (VWR International SA)
and were visualized with a Zeiss Axiovision fluorescence mi-
croscope. A minimum of 1% 103 cells were counted per con-
dition. Incubation for 24h with a mix pro-inflammatory cy-
tokines (1 ng/mL IL-13, 10 ng/mL TNF-a and 30 ng/mL
IFN-+v) was used as positive control. Experiments were per-
formed in single replicates.

Proliferation assay. Transfected islet cells cultured on
poly-L-lysine coated glass coverslips were fixed with ice-
cold methanol and permeabilized with 0.5% (wt/vol) saponin
(Sigma-Aldrich). The coverslips were first incubated with
antibodies against Ki67 (dilution 1:500, Ab66155 Abcam)
and polyclonal guinea pig anti-insulin (dilution 1:40, PA1-
26938, Invitrogen) followed by incubation with anti-rabbit
Alexa-Fluor-488 (dilution 1:400, A11008 Thermofisher) and
anti-guinea-pig Alexa-Fluor-555 (dilution 1:400, A21435
Thermofisher) antibodies. At the end of the incubation, nu-
clei were stained with Hoechst 33342 (Invitrogen). Cover-
slips were mounted on microscope glass slides with Fluor-
Save mounting medium (VWR International SA) and were
visualized with a Zeiss Axiovision fluorescence microscope.
Images of at least 1% 103 cells per condition were collected.
Incubation with Prolactin (PRL 500 ng/ml during 48h) was
used as positive control. Experiments were performed in sin-
gle replicates.

Statistical analysis. Data are expressed as mean + SD.
Statistical significance was determined using parametric un-
paired two-tailed Student’s t-test or, for multiple compar-
isons, with one-way analysis of variance (ANOVA) of the
means, followed by post-hoc Dunnett or Tukey test (Graph
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Table 1. ATAC-seq libraries quality control

Sample Total reads in library Percentage of reads with MAPQ score >=30
A2 4 390125344 96,60
A2 5 363039104 94,80
A2 6 319607584 95,70
P2 1 366722400 93,70
P22 320852352 94,10
P2 3 447404512 91,20
Table 2. gPCR Primer Sequences

Forward Reverse
Rat
Cnbl 5’-TGCTTCAGGAGGGACTGACT-3’ 5’-CCACCTCCCTCACACAAACT-3
Glucagon 5’-GAAGTTACCGCCCTGAGATT-3’ 5’-CGCATTTATGACAAAGGGTTC-3’
Hprt 5’-AGTCCCAGCGTCGTGATTAG-3’ 5’-AATCCAGCAGGTCAGCAAAG-3’
Insulin2 5’-TGGGGAGCGTGGATTCTTCT-3’ 5’-CAGAGGGGTGGACAGGGTAG-3’
MafB 5’-TATTCCAAGGAGTCGCCAAG-3’ 5’-CTGAGAGCCAGTGTTCACCA-3’
NeuroD1 5’GGATGATCAAAAGCCCAAGA-3’ 5-GCAGGGTACCACCTTTCTCA-3’
NFATcl 5’-TTGGATTCTGACGAGCTGTG-3’ 5’-GTGCAGCTGGATCAAGAACA-3’
NFATc2 5’-CATTCCCATCTGCAGCATCC-3’ 5’- CCGTCCCGATGAAGATCTGA-3’
Notchl 5’-CTATGTTGTGGACCATGGCG-3’ 5’-CGGCTTGCTGACATGACTTT-3’
Pax6 5’-AGGAACCAGAGAAGACAGGC-3’ 5’-GTACGAGGAGGTCTGACTGG-3’
Scrtl 5’-ACATTCTCTTCGGCAGACCT-3’ 5’-GGATGGCCCTTTGAGCAATG-3’
Syt4 5’-TACCAGCCATGGATGAACAATC-3’ 5’-CAAAACTCAGGACGGTGAAGTG-3’

Pad Prism6). P-values less than 0.05 (p < 0.05) were consid-
ered statistically significant.

Data availability. ATAC-seq raw data were deposited in
GEO under accession number GSE122747. Microarray data
from (2, 24) are available in the GEO database under acces-
sion number GSE106919. RNA-seq raw data were deposited
in the GEO database under accession number GSE130651.
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Sl datasets
(1) ATAC-seq P10 Adult islets: Annotated ACS full table detected in pancreatic islet cells.

(2) Validated ACS luciferase assay: Accessible sites information and sequence used in the luciferase assay to asses enhancer
activity

(3) TFBS ACS fgsea: FGSEA for motif accessibility. Table includes motif name, p-value, fdr , enrichment and normalized
enrichment score, most extreme ACS rank, and number of target ACS significantly changing

(4) Glmnet table: Penalized linear model for motif accessibility inference. Table include motif name, inferred accessibility
coefficient (3, motif consensus sequence, motif information content, and number of ACS targets

(5) siSCRT1 vs Ctrl RNA-seq: SiScrtl versus Ctrl RNA-seq of S-cells. The file contains the read counts per genes, and the
statistical analysis of the differential gene expression performed with Sleuth.

(6) Microarray p10 adult: Microarray of P10 versus adult rat pancreatic islet cells. The file contains the probe intensities and
the statistical analysis of the differential gene expression performed with edgeR.

(7) Sigdiff genes siSCRT1 Ctrl p10 adult: Genes differentially expressed in siScrt1 versus control adult rat 3-cells (RNA-seq)
and in adult versus P10 rat islets (microarray)

(8) GOBPenrichment analysis siSCRT1 Ctrl p10 adult: Gene ontology of biological process enriched in differentially ex-
pressed genes in siScrt1 versus control adult rat S-cells and in adult versus P10 rat islets
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Fig. S1. ATAC-seq quality control. (A) Fragment size distribution for each sample. (B) Correlation heatmap of samples. (C) PCA of each ATAC-seq sample.
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Fig. S2. Genome-wide localisation and classification of ACS. (A) localisation of 100’000 random peaks compared to true accessible sites. True ACS are enriched in intronic
and exonic regions. (B) localisation of stable ACS, more accessible ACS in adults (Up) and more accessible ACS in P10 (down). ACS more accessible in adults are enriched
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slightly higher, while in the down-regulated ACS, we observed a much stronger difference between the two conditions.
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Fig. S5. Penalised linear model GLMnet for transcription factor binding site motif activity inference. ACS sequences were scanned in order to construct the matrix of motifs per
ACS. Every ACS with their respective logs fold change (Adult/P10) were used to infer the motif activity, called 3 (see Methods). If 3 is negative, the motif is more accessible
in P10 sites, while if the 3 is positive the motif explains a higher accessibility of the ACS in adults. Our linear model uses a penalty A of 0.007 and an « of 0.1.
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Fig. S6. Downregulation of Scrt1 expression in FACS-sorted -cells. A-D) Indicated gene level was measured by qPCR in sorted - and/or 3- cells and normalized to Hprt1
level. (A) Scrt1 expression in sorted a- and - cells. (B) Scrt1 expression in FACS-sorted 3 cells 48h after transfection with a control siRNA (siCtl) or with siRNAs directed
against Scrt1 (siScrt1). (C) Insulin and (D) glucagon expression in FACS-sorted - and - cell fractions. * p < 0.05 by Student’s t-test
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Fig. S7. Expression changes in representative genes differentially expressed (FDR-adjusted p-value < 0.05) in (A) siScrt1 versus siRNA control (ctl) adult rat S-cells
(RNA-seq) and in (B) P10 versus adult rat islets (micro-array).
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