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Abstract 

The human brain exhibits rhythms that are characteristic for anatomical areas and pre-

sumably involved in diverse perceptual and cognitive processes. Visual deprivation 

results in behavioral adaptation and cortical reorganization, particularly affecting sen-

sory cortices. Whether these plasticity-related changes are accompanied by altered 

spectral properties of neural signals and whether certain brain areas are particularly 

targeted by these changes is unknown. With a recently introduced approach, we ana-

lyzed MEG resting state data of a group of congenitally blind and matched sighted 

individuals. First, using clustering procedures (k-means and Gaussian Mixture Models) 

we identified brain region-specific spectral clusters. Second, a classifier was employed 

to test the specificity of the spectral profiles within and the differences between groups. 

We replicated the previously reported finding of area-specific spectral profiles, indi-

cated by high classification performance in the sighted. Additionally, we found high 

classification performance in the blind, suggesting that after deprivation-related re-

structuring, area-specific spectral profiles can be consistently identified. Crucially, in 

the cross-group classification (sighted vs. blind), several sensory (visual and auditory) 

and right frontal brain areas were classified significantly worse compared to the control 

condition. Overall the spectral profiles of those brain areas showed increased neuronal 

power in higher frequency-bands, possibly reflecting acceleration of the regionally 

prevalent brain rhythms in the blind compared to the sighted. We provide evidence that 

visual deprivation-related plasticity selectively alters the spectral profiles of right frontal 

and sensory brain areas, possibly reflecting increased temporal processing capabilities 

(auditory, frontal cortices) and changes in the visual inhibitory-excitatory circuits in the 

blind.  
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Introduction  

The behavioral and neuronal changes associated with visual deprivation-related plas-

ticity offer a unique opportunity to get new insights into the plasticity of intrinsic brain 

rhythms. In congenital blindness, sensory deprivation is associated with adaptive be-

havior and neural reorganization. Congenitally blind individuals (CB) were repeatedly 

reported to show behavioral advantages in a range of different auditory (e.g. pitch dis-

crimination (1), sound localization (2,3), voice recognition (4,5), or temporal order pro-

cessing (6,7)), tactile (e.g. temporal order processing (6,8)) and higher-level cognitive 

tasks (e.g. auditory (9) and verbal memory (10,11); temporal attention (12), musical 

meter perception (13,14), temporal order verbal working memory (15), the perception 

of ultra-fast speech (16–19)), when compared to normally sighted controls.  

These behavioral changes have been related to observations from neuroimaging stud-

ies, which revealed altered structural and functional cortical properties. In particular, 

the occipital cortex is characterized by decreased surface and volume of primary and 

association areas related to volumetric atrophies (20,21) but also by increased thick-

ness, possibly related to complex developmental and compensatory plasticity (22,23) 

in congenital blindness. As has been shown repeatedly, visual areas are recruited dur-

ing various non-visual tasks which has been referred to as cross-modal plasticity 

(15,24–28). Visual deprivation-related cortical plasticity, however, is not restricted to 

the visual system as cortical reorganization has also been observed in the intact, that 

is auditory (29) and somatosensory (30), cortices, so called intramodal plasticity (31). 

Additionally, fMRI research revealed altered functional interactions of visual cortex with 

other cortical areas (26,32–36). 

Whether the observed behavioral and neuronal changes in congenital blindness are 

accompanied by changes in the spectral properties of brain areas, is largely unknown. 

Brain rhythms have been ubiquitously observed across the cortex (37–39), and specific 

spectral profiles were associated with anatomical areas (40,41). Brain rhythms most 

likely reflect the synchronization (phase-alignment) of oscillatory activity across neu-

ronal populations, subserving the formation of both local assemblies and large-scale 

functional networks (42,43) through dynamical linking of brain areas into coherent func-

tional networks for complex tasks (43–45). Various perceptual, cognitive and motor 
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tasks have been shown to recruit brain rhythms in a task-specific manner (42,46–53). 

Previous research suggests that ongoing activity recorded during resting state meas-

urements to some extend reflects brain rhythms recruited during tasks-specific perfor-

mances (40,44,54–56). Thus, resting state measurements have been used to study 

the intrinsic brain rhythms of brain areas and relate them to functional roles of these 

areas (in fMRI (57), MEG, EEG  (40,41,45,58)).  

In congenitally blind individuals, the observation of a reduced or absent visual alpha 

rhythm is well-established (59–63). Only a few studies, however, have investigated the 

spectral power of brain areas and functional networks in the CB beyond alpha oscilla-

tions and beyond the visual cortex. One such study, investigating resting state MEG, 

found increased connectivity in the delta and gamma ranges within visual cortex in the 

CB (62). Interestingly, despite the reduction in visual alpha power, the alpha connec-

tivity between visual cortex and other cortical areas was preserved (Note, however, 

that the alpha band in this study was defined as a broader frequency band including 

traditional alpha- and beta-bands, 8-20 Hz). In a sound categorization task, the auditory 

and visual areas were more strongly connected in the blind, as measured by correla-

tions of gamma band power (64), providing support for the notion of the visual cortex 

being incorporated into the intact sensory systems carrying out non-visual tasks. Fur-

thermore, recent studies observed increases in beta-band connectivity involving visual 

cortex in the CB (15,28). Taken together, these results support the hypothesis that 

spectral properties are subject to plastic changes due to sensory deprivation, whereas 

the systematics of these changes is unknown (i.e., which brain areas and which spec-

tral bands are affected). 

Here, we employed and extended a novel analysis pipeline (Fig 1), introduced by (40), 

to disclose differences in brain rhythms across spectral frequencies and cortical brain 

areas between CB and S. We hypothesized that (1) spectral profiles ought to be region-

specific and homogenous within the sighted group, enabling the classification of brain 

regions based on the spectral profiles. (2) Whether the spectral profiles in the congen-

itally blind are consistently altered by plasticity, and thus would enable the identification 

of brain regions based on their spectral profiles, was unknown. (3) Visual deprivation-

related plasticity was predicted to result in altered spectral profiles, particularly of those 

brain regions where visual deprivation-related reorganization has been previously 
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shown, such as the sensory cortices. Due to altered spectral properties, classification 

performance for these regions was expected to drop in a cross-group classification. 

Our analysis pipeline was capable to overcome limitations of standard analyses of 

brain rhythms, such as facing a predominant activity of frequencies in the alpha and 

super-low frequency ranges (1/f) and performing poorly at capturing the brains’ tem-

poral dynamics over the course of the recording session (43,58). The pipeline disen-

tangled spectral properties in the lower frequency ranges using segment-based clus-

tering (of source-localized Fourier spectra) on a log-logarithmic frequency scale. The 

temporal dynamics of the spectral properties were captured by computing clusters 

across temporal segments of the signal and thus taking the time course of activity into 

account. The pipeline further comprised a classifier analysis, which aimed to identify 

brain regions by their own spectral profile, thereby testing the specificity of region-spe-

cific spectral fingerprints.  

Results  

All analyses were carried out for three experimental groups: First, in order to replicate 

that spectral profiles are brain region-specific, a sighted group, instructed to maintain 

eyes open and fixate their gaze during the recording (S-EO; N=23), was tested. Sec-

ond, to test whether spectral profiles were also homogenous within the congenitally 

blind and, crucially, whether there were differences in the spectral profiles between 

sighted and blind, the data of blindfolded sighted (S-EC; N=24) and congenitally blind 

individuals (CB; N=26) were analyzed. Following the pipeline proposed by (40), the 

following analysis was implemented (for an overview see Fig 1; details in the methods 

section): Fourier spectra were calculated for the preprocessed and segmented (0.8 s 

long trials) resting state MEG data, projected into source space and spectrally normal-

ized. To localize region-specific spectral clusters, the brain was parcellated into indi-

vidual regions (N=115) according to the AAL atlas (65). Single-subject and group-level 

clustering was applied (k-means (66) and Gaussian Mixture Modelling, GMM (67)), 

resulting in spectral clusters coherent across subjects per ROI that reflect group-level 

neural activity in a given brain area. Specificity of the spectral fingerprints of a brain 

area was assessed by a classifier approach, identifying single-subject anatomical re-

gions (of one half of the group) by their spectral clusters based on group-level clusters 
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from the other half of the group. To this end, first, an experimental group (e.g., the S-

EO) was split into a training and a test set. Second, region-specific spectral clusters 

were calculated for the subjects in the training group. Third, the similarity between the 

calculated group-level clusters and individual 1st level clusters (test set) was assessed 

by computing the probability (negative log-likelihood) of the test data given the training 

model. Thus, we obtained a fit between each individual anatomical region and all 115 

brain areas (expressed in probabilities), which were ranked yielding ranks from 1 (best 

predictor region) to 115 (worst predictor region). This fitting procedure was repeated 

1000 times. For the comparison of the sighted and congenitally blind individuals (cross-

group condition), the sighted were assigned to the training group, while the test set 

was formed by the group of congenitally blind participants.                  

 

Fig 1. Analysis pipeline (adapted from (40)). (1) Continuous resting state MEG data were prepro-
cessed following general procedures and segmented into trials of 0.8 s length. Complex Fourier spectra 
were computed for each trial separately and projected into source space using previously defined beam-
forming (LCVM) coefficients. The data was spatially normalized, dividing each voxel’s power by the 
mean power of all trials and voxels. Voxels were grouped according to the AAL atlas and power values 
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were averaged across voxels of each anatomical area (N=115). (2) In the 1st level analysis, power ma-
trices were clustered into 9 distinct spectral clusters per participant and brain region using k-means and 
Gaussian Mixture model algorithms. (3A) In the 2nd level analysis, 1st level clusters were again subjected 
to k-means clustering and GGMs to establish region-specific group-level spectral clusters, also referred 
to as spectral fingerprints in the following. The optimal number of clusters per anatomical area were 
defined by the Silhouette Criterion prior to the clustering procedure. (3B) For the classification procedure 
the experimental group was divided into training and test set. For each brain region, the fit between 1st 
level clusters of the test group and group-level clusters of all regions of the training set was calculated. 
This resulted in 115 negative log-likelihood values per anatomical region (its similarity to all brain regions 
(including itself) based on the spectral clusters). This fitting procedure between training and test set was 
repeated 1000 times with new group assignment (training vs test) on each iteration. To control for inter-
individual variance within test and training group, on each iteration, the fitting was repeated 100 times 
newly drawing a subset from the training and test group (without changing group-assignment).  

 

Spectral fingerprints replicate  

In the present study, in our sample of the sighted with open eyes we successfully rep-

licated the classification of individual brain regions by their spectral profiles as first re-

ported by (40). Particularly, the mean classification performance, indicated by the clas-

sification ranks, was high (as reported in the Keitel and Gross, 2016 study) (Fig 2). 

Classification ranks refer to the probability of a region to be identified by the classifier: 

a rank of 1 implies a region was correctly assigned on every iteration, a rank of 2 im-

plies correct assignment occurred on a majority of the iterations and so forth. Here, the 

mean rank (averaged across all iterations and brain areas) obtained from the classifier 

analysis was 2.70 (range of ranks: 1 – 12.7, Keitel mean rank = 1.8), or 2.32 when 

considering identification of the homologue (left/right hemisphere) areas as a hit (Keitel 

homologue mean rank=1.4). Mean ranks of all anatomical regions are depicted in the 

histogram and surface plot in Fig 2. Importantly, we here statistically quantified the 

classification performance using permutation tests. The mean classification rank of an 

area (e.g., right calcarine) was tested against a distribution of classification of all brain 

areas (except the current one, e.g., right calcarine) accumulated across all iterations 

(N=1000). For an area with a characteristic spectral profile, classification between cor-

responding areas (e.g., right calcarine in training vs test set) should be best and, thus, 

fall above the 95th percentile of the generated null-distribution. This analysis revealed 

that for 97% of all areas classification was significantly better when identifying them-

selves compared to all other regions.  
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Fig 2. Classification results for the sighted with open eyes (replication sample). (A) Histogram of 
mean ranks in classification across all 115 brain regions. 84.5% of the brain regions fall within rank 1 to 
4, which was the highest rank obtained by Keitel and Gross (2016), while 15.5% of regions were as-
signed ranks up to 13. (B) Topography of mean ranks (colors match ranks from the histogram).  

 

Furthermore – although the average optimal number of clusters per anatomical area 

was lower in our sample (3.4 +- 2.3 clusters per area vs 4.1 +- 1.86 (M + STD) in Keitel 

& Gross 2016) – the clustering approach revealed comparable spectral fingerprints 

(see Fig 5). Interestingly, for deeper brain structures the clusters were less character-

istic (i.e. only few clusters per area with less specific shapes and high classification 

ranks) – possibly reflecting limitations of the signal-to-noise-ratio of the used MEG sys-

tem (see S1 Fig).  

Good classification within sighted and congenitally blind  

In order to investigate the spectral differences between the CB and the S (both blind-

folded), first, we performed the classification procedure for each group individually to 

ensure good within group classification (see Fig 3). In both groups, we observed good 

classification ranks (similar to the ones observed for the S with open eyes) (S-EC: 

mean rank = 2.64, range = 1-11.4, homologue mean rank = 2.17, percent significant 

ROIs = 98%; CB: mean rank = 2.51, range = 1 - 10.3, homologue mean rank = 2.10, 

percent significant ROIs = 100%), indicating consistent spectral clusters of brain areas 

within groups. This was an important prerequisite for further between-group analyses 

B 
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because it reassured that potential group differences did not arise from large within 

group variance. Furthermore, the results showed a similar distribution of mean ranks 

across the cortical surface for both CB and S-EC. 

 

Fig 3. Classification results for the congenitally blind and the sighted with closed eyes. (A) 
Sighted eyes closed. (Upper) Histogram of mean ranks in classification across all 115 brain regions. 
(Lower) Topography of mean ranks (colors match ranks from histogram). (B) Congenitally blind. (Upper) 
Histogram of mean ranks in classification across all 115 brain regions. (Lower) Topography of mean 
ranks (colors match ranks from histogram). Bin width in is one for all subplots.  

 

Spectral changes in sensory and right frontal regions in the con-

genitally blind  

Based on the literature on intra- and cross-modal plasticity and behavioral adaptation 

in the CB, we hypothesized that spectral properties would change in congenital blind-

ness. To test if (and which) brain areas differed in their spectral properties between the 

two groups, we implemented a cross-group classification drawing samples from the S-

EC for the training and samples from the CB for the test group. Thus, region-specific 

single-subject spectra in the CB had to be identified based on the group-level clusters 

of the S-EC. This analysis resulted in a mean rank of 5.3 (range = 1.09 - 27.17).  
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Fig 4. Cross-group comparison. (A) Histogram of classification ranks. Bin width is one. (B) 
Table of mean classification ranks in primary and (extended) secondary sensory areas for the 
sighted (eyes open), sighted (eyes closed), congenitally blind participants and the cross-group 
classification. Asterisks indicate significantly different brain areas in the cross-group condition. 
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(C) Illustration of the topographic distribution of significantly different classification ranks in the 
cross-group condition (highlighted in red), as tested by a permutation procedure. (D) Table of 
all brain areas (out of 115) for which classification ranks were significantly different between 
congenitally blind and the sighted (eyes closed) (see C for significant areas highlighted in red). 

 
For this condition, the distribution of mean ranks was broader compared to the within 

group conditions. 47.8% of 115 areas obtained classification ranks ranging from 1 to 

4, while the automatic identification of the remaining regions was less precise (see Fig 

4A). A visual inspection of mean ranks across areas and conditions (see Fig 4B) re-

vealed that some brain regions (i.e., fusiform gyrus, left precentral gyrus) obtained sim-

ilar rank values across conditions, while the rank value increased for other areas (i.e., 

Heschl’s gyrus, calcarine).  

Beyond these descriptive procedures, we inferentially tested for significantly different 

classification results in the cross-group condition compared to the control, i.e. classifi-

cation within S-EC. In particular, this analysis assessed whether the mean rank of cor-

responding brain areas (e.g., calcarine-calcarine) between training (S-EC) and test 

(CB) sets differed from the classification ranks of the same region across all iterations 

(N=1000) in the control condition, thus accounting for the variability in the classification 

procedure. To this end, a distribution of ranks was generated from all iterations 

(N=1000) of the fitting procedure for the S-EC, against which the mean rank of the 

cross-group classification was tested; this was done separately for each ROI (see S2 

Fig for the distributions of all brain areas). Fig 4C illustrates that cross-group classifi-

cation ranks were significantly worse for several sensory as well as right frontal areas. 

This suggests that spectral profiles in sensory (e.g., right calcarine, right Heschl’s gy-

rus, left superior temporal gyrus) and right frontal (e.g., right superior frontal gyrus) 

brain regions are different in the CB compared to the sighted (see Fig 4D for all ROIs 

showing significantly worse classification compared to the null-distribution). 

Interestingly, the brain areas identified to have altered spectral profiles in the CB in the 

cross-group classification showed increased peak frequencies of the neuronal power 

in the group-level clusters (for a selection of brain areas with significant effects, see 

Fig 5A; spectra of all brain areas are shown in S1 Fig), in the auditory (more power in 

the alpha and beta band), and the right frontal areas (more power in the beta band). In 
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visual brain areas, power peaks were reduced in the alpha band, however, power in-

creased in the low-gamma band. Post-hoc tests were performed to confirm these de-

scriptive observations (Q = 0.05; FDR corrected p-value = .033; p-values < .033) (Fig 

5B, frequencies where significant differences were observed are shaded in grey; see 

S3 Fig for all brain regions showing significantly worse cross-group classification). 

Note, however, that the differences in low-gamma power in calcarine between the CB 

and the S-EC were not significant in the post-hoc tests.   

 

Fig 5. Comparison of sighted and blind spectral profiles. (A) A selection of the brain areas 
(columns) that showed significantly worse cross-group classification is displayed, separately for the 
S-EC and the CB (rows). Clusters are color-coded according to their peak frequency (legend on 
the right). (B) Post-hoc analysis of the spectral differences in a selection of significant brain regions 
(columns). Spectra represent normalized power spectra, averaged across trials and ROI voxels. 
Frequencies showing power differences between the groups (permutation test: Q=0.05; FDR cor-
rected p-value= .033; p-values < .033) are illustrated as areas shaded in grey. The groups are 
color-coded (legend on the right).  

 

Discussion  

In this study we shed new light on visual deprivation-related changes in spectral prop-

erties across cortical brain areas and frequency bands. We implemented a novel 

whole-brain analysis pipeline, adapted from (40), capable of disclosing temporally-re-

solved spectral clusters specific to individual brain regions. K-means clustering and 

GMM were employed to establish spectral patterns across trials and subjects in the 
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three experimental groups (S-EO, S-EC, CB). A classifier automatically identified ana-

tomical areas based on their spectral profiles for each group separately. Finally, a 

cross-group classification served to determine brain regions that were spectrally al-

tered between the blind and the sighted. Our first main finding is that the clustering and 

classification procedures performed exceptionally well for all three groups (97-100% of 

areas were classified correctly in each group). This highlights consistent brain area-

specific spectral properties across individuals within the sighted as well as the congen-

itally blind groups. Crucially, second, we showed that visual deprivation gave rise to 

changes in the spectral profiles of especially sensory (auditory and visual) and right-

frontal cortical areas, as indicated by significantly worse classification performance in 

the cross-group comparison for these brain areas, but not for other brain areas. More 

specifically, the spectral profiles of these areas in the CB, showed increased power in 

the alpha and/or beta frequency-bands in the right primary auditory cortex and right-

frontal brain regions compared to the sighted. The visual cortex in the CB was charac-

terized by a cluster with decreased alpha power compared to the sighted and a gamma 

(~40 Hz) peak, which was absent in the sighted. Our findings suggest that visual dep-

rivation alters spectral properties particularly of certain brain areas, which have been 

previously suggested to show functional and structural reorganization. Neuronal power 

in these brain areas was altered in an area-specific manner, possibly reflecting 

changes in the functionally-specific processes in these areas (e.g., improved perfor-

mance) in the congenitally blind. 

Robust classification of brain areas based on spectral profiles  

Spectral clustering and automatic classification revealed spectral profiles, classification 

ranks and distributions of classification ranks across cortex in the sighted (with eyes 

open) similar to the ones first reported by (40). The observed high classification ranks 

(Fig 2) suggest the correct brain areas were reliably asigned in the test data based on 

the spectral profiles of the corresponding area in the training data. Spectral profiles, for 

example of occipital regions, showed the typically observed peak at ~10 Hz. Spectral 

peaks in the beta-band (~20 Hz) were prominent across frontal and central brain areas, 

resembling previously reported natural frequencies of these brain areas (Fig 5; 
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(40,68,69)). While the spectral profiles of most brain areas well resembled those re-

ported by Keitel and Gross, for some brain areas the spectral profiles differed (see S1 

Fig). This suggests that the used recording system and/or the tested sample of partic-

ipants can influence the specific profiles of some brain areas more than others. A test 

on a large dataset across different recording sites (i.e. several 100 recordings) will be 

necessary to clarify which spectral modes generalize across individuals in in the pop-

ulation. Importantly, within our sample, the spectral profiles were consistent across in-

dividuals (i.e. only group clusters were reported were at least ~70 % and on average 

~97 % or ~94 % of participants contributed for the S-EO and S-EC, respectively). Thus, 

the present results show the robustness of brain area-specific spectral profiles, sug-

gesting that (1) spectral profiles are characteristic properties of cortical regions and (2) 

show coherent patterns across subjects, which enables classification.  

Crucially, a new finding of our study is that spectral clusters were also consistent within 

the group of congenitally blind individuals, as indicated by high classification perfor-

mance (Fig 3B). Similar, as for the sighted group, brain regions could be identified 

reliably based on their spectral clusters suggesting spectral consistencies across indi-

viduals (i.e. only group clusters were reported were at least ~69 % and on average ~95 

% of participants contributed). This result suggests, that adaptation of the cortex to 

visual deprivation leads to homogenously altered spectral fingerprints in congenitally 

blind individuals. The finding is in line with previous research, showing altered neuronal 

structures and activity in congenitally blind based on group-level analysis (27,70–72). 

In our study deeper, sub-cortical, brain areas (in contrast to what has been reported 

by Keitel and Gross (40)) were not classified well (S1 Fig). A possible explanation is a 

lower SNR in deeper brain areas in our data compared to Keitel and Gross, due to the 

usage of different MEG systems. 

Selective spectral plasticity across the brain  

In the cross-group classification brain aeas of individual congenitally blind participants 

were classified based on the group-level spectral clusters of the sighted. In order to 

isolate visual deprivation-related effects, the sighted and congenitally blind participants 

were well matched in our study (cf. participants section). While in the cross-group clas-

sification, the classification for the majority of the brain areas was relatively good (i.e., 
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low ranks; Fig 4A), spectra related to auditory, visual and right frontal regions were 

classified significantly worse compared to the within-sighted classification (Fig 4C; 

Note that overall ranks were higher, e.g. worse, in the cross-group classification com-

pared to the within-group classifications). Importantly, these findings suggest that the 

spectral properties of brain areas are not homogenously altered by deprivation-related 

plasticity. Previously, a non-monotonic relationship between plasticity and stability 

across cortex, with decreases in plasticity from early visual to mid-level cortex and 

increases in plasticity higher in the visual cortical hierarchy, has been reported using 

fMRI (73, see also 74). 

Spectral plasticity in sensory areas  

Our findings highlight changes in spectral properties of auditory and visual cortex due 

to visual deprivation-related neuroplasticity. The findings are in line with previous re-

ports, suggesting that cross-modal reorganization in visual cortex (15,24–28) and intra-

modal reorganization in auditory cortex (31) affect neuronal activity in those sensory 

areas in blind individuals. Crucially, we show that these areas also show altered spec-

tral characteristics. 

Visual brain areas that were identified by the classifier to be spectrally different be-

tween the sighted and the blind involved primary visual cortex (calcarine sulcus) and 

its directly adjacent areas (cuneus, lingual gyrus), as well as more dorsal (SOG) visual 

regions and parts of the ventral visual stream (left ITG), involved in visual object recog-

nition (75) (Fig 4D). In these areas, we observed a cluster with a clear visual alpha 

peak at 10 Hz for the sighted, and a second alpha cluster characterized by a smaller 

amplitude (Fig 5A). Keitel and Gross speculated that the second alpha cluster indicates 

continuous (present in ~80 % of the time) alpha suppression during visual fixation. 

However, our findings show that the second alpha cluster is similarly present during 

eyes open and eyes closed conditions (Fig 5A (upper), S1 Fig). In contrast, in the CB 

a first cluster with a strongly reduced alpha power peak, shifted towards higher (beta) 

frequencies, as well as a second cluster with an entirely absent alpha peak, was ap-

parent in these visual areas (Fig 5A, B). This observation is in line with previous find-

ings reporting a reduced or entirely absent alpha rhythm in the visual system in blind 

individuals (59–62). Interestingly, the spectral profile of one cluster in visual areas in 
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the blind included a peak in the low-gamma (~40 Hz) range which was entirely absent 

in the sighted (Note that this finding was not significant in the post-hoc tests, which 

tested effects independent from the clustering procedure; Fig 5B). This finding supports 

a recent report, which found enhanced gamma power correlations within visual cortex 

using MEG (62) in congenitally blind individuals. The alpha rhythm in humans likely 

reflects a local mechanism of rhythmic inhibition (76) mediating top-down control by 

feedback connections (77) and controlling gamma-amplitude (78, see 79). Synchro-

nized gamma activity - controlled by alpha (de-)synchronization and phase - is sug-

gested to serve a feedforward function, processing sensory information (77,80). In light 

of this, our results suggest that the decreased alpha and increased gamma power re-

flect an altered inhibitory/excitatory circuit in the visual system in congenital blindness 

(79,81). The reversed power patterns suggest that while visual cortex is functionally 

inhibited during rest and with closed eyes in the sighted, feedforward visual cortex pro-

cessing seems to be enhanced in the congenitally blind, presumably due to disinhibi-

tion as consequence of atrophy in the thalamo-cortical connections, resulting in the 

reduced/absent alpha rhythm. This observation might also be related to studies report-

ing higher metabolism in the CB (82,83). A relevant question is, whether the altered 

spectral profile of visual cortex in congenitally blind individuals reflects changes in the 

functional role of visual cortex as reported during task-specific processing, i.e., an in-

creased visual cortex recruitment during the processing of non-visual tasks 

(27,70,72,84).  

Additionally, we found altered spectral profiles in auditory cortex with increases in the 

power in specific frequency bands. Brain areas in temporal cortex that were identified 

by the classifier to be spectrally different between the sighted and blind involved pri-

mary auditory cortex (right Heschl’s gyrus), and areas of the ventral auditory stream 

(bilateral middle temporal pole, right superior temporal pole, left MTG, STG and ITG) 

(Fig 4D). In these areas, we observed increased power in higher frequencies (alpha to 

beta range) in the blind compared to the sighted (Fig 5A, B). Noticable, SMA similarly 

showed increased power in the beta-band (and absence of delta- and theta-band 

peaks) in the CB compared to the sighted (S1 Fig). Interestingly, previous research on 

ultra-fast speech processing in congenitally blind individuals reported that enhanced 

comprehension of ultra-fast speech in the blind is accompanied by increased speech-
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tracking of higher frequencies in the alpha-beta range (16 Hz) in right auditory cortex 

(i.e., phase-alignment to the speech signal), compared to sighted individuals (19). An 

fMRI study suggested that pSTG, SMG, IFG, FG, V1 and the pulvinar might be involved 

in the tracking of ultra-fast speech in the blind (17). A large amount of studies con-

nected temporal processing to the entrainment of auditory cortex oscillations (50,85–

87). Thus, more generally, our findings of frequency increases of spectral power peaks 

might be related to increased temporal processing abilities, as often reported for con-

genitally blind individuals (6–8,12,15,18,19,88). In line with these assumptions, on the 

other side of the plasticity spectrum, age related decline in processing fast speech has 

been related to a slowing of theta-oscillations (89), additionally supporting the associ-

ation of spectral dynamics within auditory cortex with temporal (speech) processesing. 

Further research is required to investigate the specifics of this effect. 

Spectral plasticity in right frontal cortex 

Beyond spectral reorganization in sensory cortices, our data suggest that particularly 

right-hemispheric frontal brain regions undergo neuroplastic adaptations as spectral 

clusters of right MFG and SFG were significantly different between the blind and the 

sighted. Previous research on plasticity, suggests that frontal cortex is particularly 

prone to plasticity related reorganization (73,74). Interestingly, changes in lateralization 

of cognitive processes have been reported previously in congenitally blind individuals. 

The predominance of the widely distributed frontotemporal language network in the left 

hemisphere is a robust finding, shown across different languages (90), developmental 

stages (91) and linguistic tasks (90,92,93). In congenital blindness, however, language 

processing likely is reflected in a reduced left-hemispheric lateralization of the fronto-

temporal network (94,95). Thus, it is possible that the altered spectral profiles in the 

right-hemispheric frontal brain regions observed here reflect changes in the hemi-

spheric lateralization of the frontotemporal language network.  

One limitation of this study is, that the interpretation of the changes of spectral clusters 

that were significantly different in the congenitally blind compared to the sighted is 

complicated by the multidimensionality of the spectral profiles. For that reason, we ad-

ditionally performed a post-hoc analysis of the non-clustered data (based on the aver-

aged brain area spectrum) to evaluate the cross-group differences between the sighted 
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and congenitally blind individuals (i.e., which frequencies show significant neuronal 

power differences; Fig 5B; results section). The analysis confirmed the findings from 

the spectral clustering approach, and highlighted the advantage of the clustering ap-

proach that was able to reveal the more fine grained pattern of brain area spectral 

peaks. 

Concluding remarks 

Our study supports the findings of robust brain area specific spectral profiles. Crucially, 

we provide novel findings that suggest consistently altered spectral profiles in congen-

itally blind compared to sighted individuals, particularly in visual and auditory brain ar-

eas, as well as right frontal cortex. Interestingly, overall spectral profiles in these brain 

areas showed increased power peaks in the blind. Depending on the brain area these 

altered spectral profiles are hypothesized to reflect changes in the excitatory-inhibitory 

cycle of visual cortex, or might be related (auditory and frontal brain areas) to the often 

enhanced auditory skills - such as enhanced speech processing - of congenitally blind 

indivdiuals.  

 

Materials and Methods 

Participants  

The study was approved by the German Psychological Association (DGPs). All partic-

ipants gave written informed consent prior to the experiments and received monetary 

compensation. The data were recorded in the context of a larger project (15,28). Three 

to four minutes of resting state MEG data were collected from a group of sighted and 

congenitally blind individuals matched in age and gender. During data collection the 

CB and the sighted (S-EC) were blindfolded, however, for the sighted an additional 

resting state measurement with open eyes was conducted (S-EO). The data reported 

here include 26 subjects for the CB (12 females; mean age: 37,8 years; SD: 10,2 years; 

age range: 22-55 years), 24 for the S-EC (11 females; mean age: 36,8 years; SD: 10,1 

years; age range: 21-55 years) and 23 for the S-EO (11 females; mean age: 37,3 years; 

SD: 9,8 years; age range: 21-55 years). A few subjects needed to be excluded after 
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data collection because of corrupted resting state files (one subject for the CB, one 

subject for the S-EO) or no individual structural MRI scan (three subjects for the S-EC 

and S-EO). All participants were healthy with normal hearing (self-report) and assured 

no history of psychiatric or neurological disorders. One blind participant reported a his-

tory of depressive mood disorder, but was free of symptoms and without current treat-

ment. Sighted participants had normal or corrected to normal vision (self-report). In the 

blind, vision loss was total and resulted from a variety of peripheral (pre)natal condi-

tions (retinopathy of prematurity: n=9; genetic defect, n=5; congenital optic atrophy: 

n=2; Leber's congenital amaurosis: n=2; congenital cataracts, glaucoma: n= 2; con-

genital retinitis: n= 2; binocular anophthalmia: n= 2; retinitis pigmentosa: n= 1; congen-

ital degeneration of the retina, n= 1). However, 17 participants reported minimal resid-

ual light perception. 

MRI and MEG data acquisition 

For all participants T1-weighted structural MRI scans were obtained with a 3T scanner 

(Siemens Magnetom Trio, Siemens, Erlangen, Germany). The MEG data were rec-

orded in a magnetically shielded room using a 275-channel whole-head system 

(Omega, 2000, CTF Systems Inc.), while participants sat in an upright position. The 

data were acquired with a sampling rate of 1200 Hz. Prior to each experiment, the head 

position was measured relative to the MEG sensors and during the recording the head 

position was tracked.  

Data analysis    

The initial analyses in this study are adopted from of the analysis pipeline proposed by 

(40).The modifications of the analysis pipeline and the novel analysis will be stated in 

detail. All analyses were carried out using Matlab R2018a version (The Math Works 

Inc), the Fieldtrip Toolbox (version 20181104) and SPM12.  
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Data preparation in sensor space: preprocessing, artifact rejec-

tion, source localization  

During preprocessing, the MEG signal was downsampled to 250Hz, denoised and 

detrended. To better capture the dynamically changing spectral properties of the brain, 

the continuous signal was segmented into trials of 0.8 s. Trials were declared as noisy 

and excluded when their z-score was higher than 2. On average, 7 trials were ex-

cluded, resulting in a mean of 340,3 trials (STD= 34,7) per subject (S-EO: mean = 

346,7, STD = 37,4; S-EC: mean = 336,8, STD = 34,2; CB: mean = 338, STD 33,2). 

Due to shorter recordings in the present study, trial duration was slightly shortened 

relative to the Keitel & Gross (2016) (1 s) to increase statistical power. MEG channels 

were labeled as noisy and rejected when the ratio between their noise level (in STD) 

and that of the neighboring sensors (in STD) exceeded a value of 0.5 ((Sensor STD - 

Neighbor STD) / Neighbor STD; mean number of excluded channels = 1.22, STD = 

1.34). Finally, using independent component analysis (ICA), data was cleaned from 

heartbeat, eye blinks and eye movements related artifacts (components were identified 

based on their time-course, topography and variance across trials). To prepare the 

source projection of the Fourier spectra, beamformer coefficients were obtained. For 

this purpose, we applied co-registration of individual T1-weighted MRI scans and the 

MEG coordinate system, realignment, segmentation and normalization to MNI space. 

A forward model was created using a single-shell model and LCMV beamformer coef-

ficients (96) were calculated for the MEG time series for each individual voxel on the 

10-mm regular grid.  

Spectral analysis in sensor space  

The analyses described in the following were performed for all three groups separately 

(CB, S-EO, S-EC). First, Fourier-spectra were calculated on 0.8 s long trials for each 

subject, using a multitaper approach (3 tapers) and zero-padding (length of 2 s). Sec-

ond, using the previously computed LCMV coefficients, the complex Fourier spectra 

were projected into source space. Fourier spectra of individual voxels and segments 

were ratio normalized, i.e., divided by the mean power across all voxels and trials (see 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2019. ; https://doi.org/10.1101/782979doi: bioRxiv preprint 

https://doi.org/10.1101/782979


 21 

S4 Fig for the power spectra used for the normalization in all groups). This ratio nor-

malization resulted in voxel-specific spectral properties with values above/below one 

highlighting the differences of a given voxel to the mean spectral power across all 

voxels separately at each frequency. All values were subtracted by 1 (leading to values 

above/below zero), to facilitate the identification of changes in power (de/increases). 

k-Means clustering and Gaussian mixture modelling of source-

localized spectral activity   

To identify region-specific spectral clusters in the individual subject, the brain was par-

cellated according to the AAL atlas (65) (116 anatomical areas). For one anatomical 

region (cerebellum 3L), however, interpolation between AAL atlas and source model 

was not successful. Thus, this region was excluded and all analyses are based on the 

remaining 115 anatomical areas. For each of the ROIs, voxels were grouped and 

power spectra were averaged across voxels. Clustering algorithms were employed to 

identify spectral clusters. First, trial-by-frequency matrices were subjected to a k-

means algorithm (66). The algorithm established spectral clusters by finding coherent 

patterns across trials. Based on the silhouette criterion (97) across ROIs and subjects 

(we chose the highest value for optimal number of clusters) a predefined number of 

clusters was set (k = 9). Second, for each subject and ROI, GMMs (67) were fitted to 

the 9 clusters obtained from the k-means analysis (1st level GMM). The optimal number 

of clusters per brain region across all subjects were identified, evaluating first-level 

GMMs using the Silhouette criterion, and used for the group analysis. At the group 

level, k-means clustering was applied to the 1st level clusters in order to disclose con-

sistent patterns across subjects. The optimal number of clusters per brain area, as 

assessed by the Silhouette criterion evaluation, was used as parameter for the algo-

rithm. As before, k-means results were fed into GMM revealing the final clusters per 

brain region (2nd level GMM).  

Automatic within group classification  

A classifier was employed to test the specificity of region-specific spectral fingerprints. 

After splitting each group into half (training and test group), group-level clusters were 

calculated for the training group for all anatomical regions using k-means and GMM 
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clustering. For each brain region of the test group, the similarity of spectral profiles was 

assessed compared to all brain regions of the training group by computing the negative 

log-likelihood for all pairs of regions. This procedure, that is group assignment and 

classification, was repeated 1000 times (note that for the S-EO one subject was left 

out in every iteration to yield an even number of participants in training and test groups). 

On each iteration, an additional loop (N=100) controlled for interindividual noise by 

randomly drawing the adequate number of subjects (i.e., NS-EO=11, NS-EC=12, NCB=13) 

from the test group with replacement, allowing a subject to enter multiple times or not 

at all. Put differently, while group assignment and number of subjects per group was 

kept constant for an iteration of the outer loop, the exact subjects from the group con-

tributing to each inner iteration varied. Based on the mode of clusters identified per 

brain region in the 2nd level cluster analysis, the optimal number of clusters for the 

classification analysis was k=2. Likelihood values were ranked and averaged across 

iterations (20% trimmed mean). For further comparisons, only corresponding ROIs 

(e.g., how is the Heschl ROI in the test set ranked based on the training set Heschl 

ROI) were considered.  

Additionally, to the descriptive report of the classification performance, here we tested 

whether a specific ROI (of the test set) was classified significantly better by the corre-

sponding area of the training set, compared to all other 115 ROIs. This allowed us to 

exclude the possibility that classification performance was caused by unspecific effects 

– that is, generic fingerprints. To this end, each region’s mean rank (averaged across 

iterations) was tested against a distribution of classification ranks generated from all 

other ROIs. 

Automatic cross-group classification 

Crucially, in order to identify differences in region-specific spectral properties between 

the CB and S-EC, we performed a cross-group classification. The same classification 

procedure was employed, however, the classifier was trained on one group (S-EC), 

while the other (CB) was utilized as the test set. As before, the classification procedure 

was repeated 1000 times, drawing a subset of N=12 per group on every iteration. Im-

portantly, the randomization of subjects chosen on each iteration was identical to the 

one used for the within group classification in the S-EC (this is the reason why N=12, 
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instead of using all subjects of both groups). Thus, differences in the classification, as 

reflected by the ranks, could not be caused by the training set per se. In order to un-

derstand whether classification of brain regions was different in the cross-group condi-

tion, we tested the cross-group classification mean ranks against the distribution of 

ranks from the same ROI from the S-EC group. The distributions were generated by 

taking the classification rank of a corresponding area from training and test set (i.e. 

Calcarine) across all iterations (see S2 Fig for the distributions of all brain areas). We 

calculated the 95th percentile of the distribution and tested whether the cross-group 

mean rank of the current region fell above (significant) or below (not significant) this 

threshold.        

To further assess the spectral profiles of brain areas that were significantly different in 

the cross-group classification, post-hoc permutation statistics were applied to the raw, 

normalized region-specific spectra (i.e., Fourier spectra without clustering procedure). 

The spectral analysis was calculated as in the main analysis (see above). For all sig-

nificant brain regions seperately, power was averaged across voxels and segments, 

resulting in a single power value per frequency and per subject. Based on frequency 

by subject matrices for the CB and the S-EC, group differences in spectral power were 

assessed by randomly permuting (N=1000) the group assignment (CB vs. S-EC). To 

control for multiple comparisons, we used FDR (Q = 0.05).    
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