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Abstract 

The human brain exhibits rhythms that are characteristic for anatomical areas and pre-

sumably involved in perceptual and cognitive processes. Visual deprivation results in 

behavioral adaptation and cortical reorganization. Whether neuroplasticity-related 

mechanisms involve altered spectral properties of neural signals and which brain areas 

are particularly affected, is unknown. We analyzed magnetoencephalography resting 

state data of congenitally blind and matched sighted individuals. First, using clustering 

procedures (k-means and Gaussian Mixture Models) we identified brain region-specific 

spectral clusters. Second, a classifier was employed testing the specificity of the spec-

tral profiles within and the differences between groups. We replicated previously re-

ported findings of area-specific spectral profiles, indicated by high classification perfor-

mance in the sighted. Additionally, we found high classification performance in the 

blind, suggesting that area-specific spectral profiles were consistently identified after 

deprivation-related reorganization. Crucially, in the cross-group classification (sighted 

vs. blind), several sensory (visual and auditory) and right frontal areas were classified 

worse compared to the control (within sighted classification) condition. Overall the 

spectral profiles of these areas showed increased neuronal power in higher frequency 

bands in the blind compared to the sighted, possibly reflecting acceleration of region-

ally prevalent brain rhythms. The spectral profiles in areas where group differences 

were observed correlated with microstructural white matter properties in an extended 

posterior and bilateral cluster. We provide evidence that visual deprivation-related 

plasticity particulary alters the spectral profiles of right frontal, visual and auditory brain 

regions, possibly reflecting increased temporal processing capabilities (auditory, 

frontal cortices) and changes in the visual inhibitory-excitatory circuits in the blind.  
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Introduction  

Congenital blindness is associated with adaptive behavior and neural reorganization. 

Congenitally blind individuals (CB) show behavioral advantages in a range of different 

auditory (e.g. pitch discrimination (1), sound localization (2,3), voice recognition (4,5), 

or temporal order processing (6,7)), tactile (e.g. temporal order processing (6,8)) and 

higher-level cognitive tasks (e.g. auditory (9) and verbal memory (10,11); temporal at-

tention (12), musical meter perception (13,14), temporal order verbal working memory 

(15), or the perception of ultra-fast speech (16–19), when compared to normally-

sighted controls.  

These behavioral changes have been related to observations from neuroimaging stud-

ies, which revealed altered structural and functional cortical properties. In particular, 

the occipital cortex of congenitally blind humans has been found to be characterized 

by decreased surface and volume of primary and visual association areas (20,21) and 

by increased thickness (22,23). Furthermore, visual areas have been found to be acti-

vated during various non-visual tasks in the congenitally blind, which is referred to as 

cross-modal plasticity (15,22–26). Visual deprivation-related cortical plasticity, how-

ever, is not restricted to the visual system as cortical reorganization was observed in 

the intact auditory (27) and somatosensory (28) cortices as well, reflecting intramodal 

plasticity (29). Additionally, functional magnetic resonance imaging (fMRI) in congeni-

tally blind humans has revealed altered functional interactions of visual cortex with 

other cortical areas (24,30–34). 

Whether the observed behavioral and neuronal changes in congenital blindness are 

accompanied by changes in the spectral properties of brain areas is largely unknown. 

Brain rhythms occur ubiquitously across the cortex (35–37), and specific spectral pro-

files seem to be associated with different anatomical areas (38,39). Brain rhythms most 

likely reflect the synchronization (phase-alignment) of oscillatory activity across neu-

ronal populations, subserving the formation of both local assemblies and large-scale 

functional networks (40,41) through dynamical linking of brain areas into coherent func-

tional networks for specific tasks (41–43). Various studies have observed that brain 

rhythms are recruited in a task-specific manner during perceptual, cognitive and motor 
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tasks (40,44–53). For example, theta-gamma brain rhythms was found to support epi-

sodic sequence memory in a visual task (53). Previous research has suggested that 

ongoing activity recorded during resting state to some extend reflects brain rhythms 

recruited during task-specific performances (38,42,54–57). Thus, beyond studying de-

fault mode network activity (57), resting state measurements are useful to study intrin-

sic brain rhythms of brain areas and to relate them to functional roles of these areas 

during task performance as shown using fMRI (58), magnetoencephalography (MEG) 

(38,59), electroencephalography (EEG) (39,43).  

In congenitally blind individuals, the observation of a reduced or absent visual alpha 

rhythm is well-established (60–64). Only a few studies, however, have investigated the 

spectral power of brain areas and functional networks in the CB beyond alpha oscilla-

tions and beyond the visual cortex. One MEG study found increased connectivity in the 

delta and gamma ranges within visual cortex in the CB (63). Interestingly, despite the 

reduction in visual alpha power, the alpha connectivity between visual cortex and other 

cortical areas was preserved (Note, however, that the alpha band in this study was 

defined as a broader frequency band including traditional alpha and beta bands, 8-20 

Hz). A study on sound categorization found that auditory and visual areas were more 

strongly connected in the blind, as measured by correlations of gamma-band power 

localized to these sensory areas (65), providing support for the notion of the visual 

cortex being incorporated into the intact sensory systems carrying out non-visual tasks. 

Furthermore, recent studies reported increases in beta-band connectivity involving vis-

ual cortex in the CB (15,26). Taken together, these results support the hypothesis that 

spectral properties are altered due to sensory deprivation, whereas the systematics 

(i.e., which brain areas and which spectral bands are affected) of these changes are 

unknown. 

Here, we employed and extended a novel analysis pipeline (Fig 1), introduced by Keitel 

and Gross (38), to reveal differences in brain rhythms across spectral frequencies and 

cortical brain areas between CB and S. We hypothesized, first, that spectral profiles 

are region specific  in sighted adults, enabling the classification of brain regions based 

on the spectral profiles. Second, we hypothesized that within a homogenous group of 

CB individuals, similar as in the sighted, spectral profiles follow specific patterns and 

enable the classification of brain regions, irrespective of eventual blindness-related 
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changes. Third, visual deprivation-related plasticity was predicted to result in altered 

spectral profiles in the CB compared to the sighted, particularly for brain regions for 

which visual deprivation-related reorganization has previously been shown, such as 

for sensory cortices. Our analysis pipeline was capable to overcome limitations of 

standard analyses of brain rhythms, such as facing a predominant activity of frequen-

cies in the alpha and super-low frequency ranges (1/f) and performing poorly at cap-

turing the brains’ temporal dynamics over the course of the recording session (41,59). 

The pipeline disentangled spectral properties in the lower frequency ranges using seg-

ment-based clustering (of source-localized Fourier spectra). The temporal dynamics of 

the spectral properties were captured by computing clusters across temporal segments 

of the MEG signal and, thus, taking the time course of activity into account. The pipeline 

further comprised a classifier analysis, which aimed to identify brain regions by their 

own spectral profile, thereby testing the regional specificity of spectral fingerprints.  

Results  

All analyses were carried out for three experimental groups: First, in order to replicate 

that spectral profiles are brain region-specific, a sighted group, instructed to maintain 

eyes open and fixate their gaze during the recording (S-EO; N = 23), was tested. Sec-

ond, to test whether similar regionally specific spectral profiles exist in congenitally 

blind humans, resting MEG data of congenitally blind individuals (CB; N = 26) was 

analyzed. Crucially, whether there were differences in the spectral profiles between 

sighted and blind was assessed by comparing the region-specific spectral profiles of 

the CB to those of the group of sighted individuals when they were blindfolded (S-BF; 

N = 24), CB and sighted individuals were matched in age, gender and education. Fol-

lowing the pipeline proposed by (38), the following analyses were implemented (for an 

overview see Fig 1; details in the methods section): Fourier spectra were calculated 

for the preprocessed and segmented (0.8 s long trials) resting state MEG data, pro-

jected into source space and spectrally normalized. To localize region-specific spectral 

clusters, the brain was parcellated into individual regions of interest (ROI, N = 115) 

according to the Automated Anatomical Labeling (AAL) atlas (66). Single-subject and 

group-level clustering was applied (k-means (67) and Gaussian Mixture Modelling, 

GMM (68)), resulting in homogenous group-level spectral clusters for single ROIs. The 
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specificity of the spectral fingerprint of an ROI was assessed by a classifier approach, 

which identified single-subject anatomical regions (of one half of the group) by their 

spectral clusters based on group-level clusters from the other half of the group. To this 

end, first, an experimental group (e.g., the S-EO) was split into a training and a test 

set. Second, region-specific spectral clusters were calculated for the subjects in the 

training group. Third, the similarity between the calculated group-level clusters (training 

set) and individual 1st-level clusters (test set) was assessed by computing the proba-

bility (negative log-likelihood) of the test-group data given the training model. Thus, we 

obtained a fit between each individual anatomical region and all 115 brain areas (ex-

pressed in probabilities), which were ranked yielding ranks from 1 (best predictor re-

gion) to 115 (worst predictor region). This fitting procedure was repeated 1000 times. 

For the comparison of the S-BF and the CB group (cross-group condition), the S-BF 

individuals were used as the training group and the classification performance for the 

CB individuals were assessed.  

 

Preprocessing

0.8s segments

MRI-MEG co-
registration

Artifact rejection

Single-trial Fourier 
spectra

Sensor Space

Source projection

Spectral 
normalization

Area average 

K-means 
clustering

Gaussian Mixture 
modelling

1st level 
models

1. Data preparation 2. Single subject

1st level cluster

Source Space

Result per 
ROI

Negative log-
likelihood

Ranks

Training Data Test Data

1st level 
cluster

fit

1000 iterations

K-means 
clustering

Gaussian Mixture 
modelling

2nd level 
models

3A. Clustering – per group

Spectral profiles

K-means 
clustering

Gaussian Mixture 
modelling

2nd level 
models

3B. Classification – within & across groups
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Fig 1. Analysis pipeline (adapted from (38)). (1) Continuous resting state MEG data were prepro-
cessed and segmented into trials of 0.8 s length. Complex Fourier spectra were computed for each trial 
separately and projected into source space using previously defined beamforming (LCVM) coefficients. 
The data was spatially normalized, dividing each voxel’s power by the mean power of all trials and 
voxels. Voxels were grouped according to the AAL atlas and power values were averaged across voxels 
of each anatomical area (N = 115). (2) In the 1st level analysis, power matrices were clustered into 9 
distinct spectral clusters per participant and brain region using k-means and Gaussian Mixture model 
algorithms. (3A) In the 2nd-level analysis, 1st-level individual clusters were again subjected to k-means 
clustering and GMMs to establish region-specific spectral clusters consistent at the group level, also 
referred to as spectral fingerprints. The optimal number of group-level clusters per anatomical area were 
defined by the Silhouette Criterion prior to the group-level clustering procedure. (3B) For the classifica-
tion procedure the experimental group was divided into training and test set. For each brain region, the 
fit between 1st-level clusters of the test group and group-level clusters of all regions of the training set 
was calculated. For each anatomical region, this resulted in a negative log-likelihood value for all regions 
(i.e. 115 values per region), indicating its similarity to all brain regions based on the spectral clusters. 
This fitting procedure between training and test set was repeated 1000 times with new group assignment 
(training vs test) on each iteration. The interindividual variance within test and training groups of each 
iteration was controlled for with additional 100 iterations within the respective sets.  

 

Spectral fingerprints replicate  

In our sample of sighted adults with open eyes we successfully replicated the classifi-

cation of individual brain regions by their spectral profiles as first reported by (38). Par-

ticularly, the mean classification performance, indicated by the classification ranks, was 

high (as reported in the Keitel and Gross study) (Fig 2). Classification ranks refer to the 

probability of a region to be identified by the classifier: For example a mean rank of 1 

indicates that a region was correctly assigned (i.e., highest propability among all areas) 

on every iteration, a mean rank of 2 means that the assignment was correct in many 

but not all of the iterations (i.e., had the second highest propability among all areas). 

Here, the mean rank (averaged across all iterations and brain areas) obtained from the 

classifier analysis was 2.70 (range of ranks: 1 – 12.7, Keitel mean rank = 1.8), or 2.32 

when considering identification of the homologue (left/right hemisphere) areas as a hit 

(Keitel homologue mean rank = 1.4). Mean ranks of all ROIs are depicted in the histo-

gram and surface plot in Fig 2. We here statistically quantified the classification perfor-

mance using permutation tests. The mean classification rank of an area (e.g., right 

calcarine) was tested against a distribution of classification ranks of all brain areas 

(except the current one, e.g., right calcarine) accumulated across all iterations (N = 

1000). For an area with a characteristic spectral profile, classification between corre-

sponding areas (e.g., right calcarine in training vs test set) should be best and, thus, 

fall above the 95th percentile of the generated null-distribution. This analysis revealed 
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that for 97% of all areas classification was significantly better when identifying them-

selves compared to all other regions.  

 

Fig 2. Classification results for the sighted with open eyes (replication sample). (A) Histogram of 
mean ranks in classification across all 115 brain areas. 84.5% of the brain regions obtain a mean rank 
between 1 and 4, while 15.5% of regions were assigned ranks up to 13. (in Keitel and Gross (38) all 
mean ranks were between 1 and 4), (B) Topography of mean ranks (colors match ranks from the histo-
gram). Bin width is one for all subplots. 
 

Furthermore – although the average optimal number of clusters (cf. methods) per an-

atomical area was lower in our sample (3.4 +/- 2.3 clusters per area (see Fig 5 and Fig 

S1) vs 4.1 +/- 1.86 (M + STD) in Keitel and Gross (38)) – the clustering approach 

revealed comparable spectral fingerprints between the studies. Interestingly, for 

deeper subcortical brain structures (e.g., thalamic and limbic areas) the clusters were 

less characteristic in the present data (i.e., only few clusters per area with less specific 

shapes and high classification ranks; see S1 Fig) – possibly reflecting limitations of the 

signal-to-noise ratio of the used MEG system. 

Good classification within sighted and congenitally blind  

Our second hypothesis stated that, within a group of congenitally blind individuals an-

atomical areas are characterized by specific (although possibly altered compared to 

the sighted) spectral fingerprints. We performed the classification procedure for the CB 

and observed good classification ranks (similar to the ones observed for the S-EO) 

(mean rank = 2.51, range = 1 - 10.3, homologue mean rank = 2.10, percent significant 
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ROIs = 100%), indicating consistent spectral clusters of brain areas in congenitally 

blind participants. The same procedure was performed on the data of the S-BF and 

revealed similarly good classification ranks (S-BF: mean rank = 2.64, range = 1-11.4, 

homologue mean rank = 2.17, percent significant ROIs = 98%) compared to the S-EO 

and CB.    

Ensuring good within group classification in the CB and the S-BF was an important 

prerequisite for consecutive between-group analyses because it reassured that poten-

tial group differences did not arise from large within-group variance. Furthermore, the 

results showed a similar distribution of mean ranks across the cortical surface for both 

the CB and the S-BF group. 

 

Fig 3. Classification results for the congenitally blind and the blindfolded sighted. (A) Sighted 
eyes closed. (Upper) Histogram of mean ranks in classification across all 115 brain areas. (Lower) To-
pography of mean ranks (colors match ranks from histogram). (B) Congenitally blind. (Upper) Histogram 
of mean ranks in classification across all 115 brain regions. (Lower) Topography of mean ranks (colors 
match ranks from histogram). Bin width is one for all subplots.  

 

Spectral changes in sensory and right frontal regions in the congenitally blind  

Based on the literature on intra- and cross-modal plasticity and behavioral adaptation 

in the CB, we hypothesized that spectral properties may differ between the congenitally 

blind and normally sighted individuals. To test if (and which) brain areas differed in their 
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spectral properties between the two groups, we implemented a cross-group classifica-

tion drawing samples from the S-BF for the training and samples from the CB for the 

test group. Thus, region-specific single-subject spectra in the CB had to be identified 

based on the group-level clusters of the S-BF. This analysis resulted in a mean rank 

of 5.3 (range = 1.09 - 27.17) (Fig 4A).  

 

 

Fig 4. Cross-group comparison. (A) Histogram of classification ranks. Bin width is one. (B) The topo-
graphic distribution of significantly different classification ranks in the cross-group classification is high-
lighted in red, as tested by a permutation procedure.     

 

In the cross-group analysis, 54.8% of 115 areas obtained classification ranks ranging 

from 1 to 4, while the automatic identification of the remaining regions was less precise 

(see Fig 4A). A visual inspection of mean rank values across areas and groups, i.e. S-

EO, S-BF, CB, cross-group (see Table 1), revealed that some brain regions (i.e., pre-

central gyrus) obtained similar rank values for the within-group and across-group clas-

sification analyses, while the rank values increased (that is, classification accuracy de-

creased) for other areas (i.e., Heschl’s gyrus, calcarine).  
 

ROIs Mean ranks 

Anatomical area Side S-EO S-BF CB Cross-group 

Calcarine gyrus  L 1.22 3.91 1,01 15.91 
Calcarine gyrus  R 1.00 1.04 1,00 11.45* 
Heschl‘s gyrus L 3.66 4.20 2,54 10.89 
Heschl‘s gyrus R 1.83 2.50 1,34 12.40* 
Postcentral gyrus L 3.24 1.88 1,00 3.69 

A B
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Postcentral gyrus  R 1.66 1.78 1,18 5.51 
  
  

  S-EO S-BF CB Cross-group 

Sup. occipital gyrus L 1.41 1.32 1,30 5.23 
Sup. occipital gyrus R 1.49 1.12 1,17 5.70* 
Sup. temporal gyrus L 1.30 1.41 1,27 12.40* 
Sup. temporal gyrus  R 1.57 1.84 1,31 4.75 
Precentral gyrus  L 3.33 2.17 1,45 3.36 
Precentral gyrus  R 3.53 2.71 1,13 3.78 

 
Table 1. Mean classification ranks for a selection of brain areas in primary and (extended) sec-
ondary sensory areas. S-EO, sighted eyes open; S-BF, sighted eyes blindfolded, CB, congenitally 
blind eyes blindfolded; sup., superior; *, brain areas showing significant group differences in the cross-
group classification.  

 

Beyond these descriptive procedures, we statistically compared classification results 

in the cross-group condition compared to the within S-BF group classification. In par-

ticular, this analysis assessed whether the mean rank of corresponding brain areas 

(e.g., calcarine-calcarine) between training (S-BF) and test (CB) sets differed from the 

classification ranks of the same region across all iterations (N = 1000) in the S-BF 

group. To this end, a distribution of ranks was generated from all iterations (N = 1000) 

of the fitting procedure for the S-BF group, against which the mean rank of the cross-

group classification was tested; this was done separately for each ROI (see S2 Fig for 

the distributions of all brain areas). As seen in Fig 4B cross-group classification ranks 

were significantly worse for several sensory as well as for right frontal areas. This sug-

gests that spectral profiles in sensory (e.g., right calcarine, right Heschl’s gyrus, left 

superior temporal gyrus) and right frontal (e.g., right superior frontal gyrus) brain re-

gions were different in the CB compared to the sighted, while no differences were found 

for other brain areas (see Table 2 for all ROIs showing significantly worse classification 

compared to the null-distribution). 

 
Coarse region Hemisphere 

  Left Right 
Frontal    Superior frontal gyrus  

Middle frontal gyrus  
Superior medial frontal  
Rolandic Operculum 

Visual  Cuneus 
  

Calcarine gyrus  
Cuneus 
Superior occipital gyrus  
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Lingual gyrus  
Temporal  Superior temporal gyrus 

Middle temporal gyrus 
Middle temporal pole  
Inferior temporal gyrus 

Heschl’s gyrus  
Middle temporal pole  
Superior temporal pole  

Sensorimotor  Supplementary Motor Area  Supplementary Motor Area 
Non-cortical  Olfactory  

Anterior cingulate cortex 
Cerebellum lobule VI 
Cerebellar vermis 3 
Cerebellar vermis 9 

Olfactory 
Middle cingulate cortex 
Cerebellum lobule X 
Cerebellar vermis 3 
Cerebellar vermis 9  

Table 2. Table of all brain areas (out of 115) for which classification ranks were significantly dif-
ferent between the congenitally blind and the sighted (both blindfolded). 

 
Interestingly, the brain areas identified to show group-differences in the spectral pro-

files in the cross-group classification were characterized by clusters comprising peaks 

with increased power at higher frequencies in the CB compared to the S-BF partici-

pants (for a selection of brain areas with significant effects, see Fig 5A; spectra of all 

brain areas are shown in S1 Fig). This result pattern was observed for the auditory 

(with more power in the alpha and beta band in the CB compared to the sighted par-

ticipants), and the right frontal areas (more power in the beta band). In visual brain 

areas, power peaks were reduced in the alpha band for the CB compared to the S-BF 

participants, however, power was increased in the low-gamma band. Post-hoc permu-

tation tests were performed to confirm these observations. To test differences in spec-

tral signatures between the S-BF and CB, the raw Fourier spectra (i.e. without applying 

the spectral clustering) were extracted und subjected to permutation statistics. Partici-

pants’ group assignment (S-BF vs. CB) was permuted randomly (1000 permutations) 

(Q = 0.05; false discovery rate (FDR) corrected p-value = .033; p-values < .033) (Fig 

5B and Fig S3). Note, that the differences in low-gamma power in the calcarine be-

tween the CB and the S-BF were not significant in the post-hoc tests.   
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Fig 5. Comparison of spectral profiles of sighted and blind participants. (A) A selection of the 
spectral profiles of the brain areas (columns) that showed significantly worse cross-group classifi-
cation is displayed, separately for the S-BF and the CB (rows). Clusters are color-coded according 
to the frequency of the cluster amplitude peak (legend on the right). The insets display the normal-
ized mean power spectra (solid lines) and the unnormalized mean power spectra (dashed lines) 
(i.e. both without applying the spectral clustering). (B) Post-hoc analysis of the spectral differences 
are displayed for the selection of brain regions (columns). Spectra represent normalized mean 
power spectra (i.e. without applying the spectral clustering) at each ROI. Frequencies where power 
differences were obtained between the groups are highlighted in grey (permutation test: Q = 0.05; 
FDR corrected p-value = .033; p-values < .033). The groups are color-coded (legend on the right). 
In all panels: shaded lines indicate standard error of the mean.  

 

Spectral changes correlate with structural group differences 

In order to better understand the spectral differences between the groups observed in 

the classifier analyses and their relation to brain structure, we performed an exploratory 

diffusion-tensor imaging (DTI) data analysis for a subsample of participants. In partic-

ular, we used tract-based spatial statistics (TBSS) (69) to quantify white matter differ-

ences between the CB and sighted participants. The TBSS analysis revealed signifi-

cantly higher Radial Diffusivity (RD) values in a bilateral posterior spatial cluster (i.e. a 

cluster of voxels) for the CB compared to the sighted participants (Nsighted = 12, NCB 

= 16; family-wise error (FWE)-corrected at the peak voxel, two-sided p = 0.05; S4 Fig 

B), indicating reduced white matter structural connectivity  in the CB group. Individual 

RD values for this cluster were extracted and correlated with the raw normalized power 

spectrum of cortical brain areas that showed significant differences in the classifier 

analysis (17 areas). RD correlated negatively with the average power in right calcarine 
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gyrus (rho = -0.66, p = .00013), right ligual (rho = -0.58, p = .00136), right superior 

occipital gyrus (rho = -0.56,  p = .00197), left (rho = -0.60, p = .00066) and right (rho = 

-0.60, p = .00071) cuneus, indicating that reduced white matter properties in occipital 

areas were accompanied by reduced neuronal power. RD correlated positively with the 

average power in: Heschl’s gyrus (rho = 0.68, p = .00007), the superior (rho = 0.44, p 

= .01781) and middle (rho = 0.40, p = .03516) temporal pole, and right rolandic oper-

culum (rho = 0.66, p = .00013) (S4 Fig A), indicating that reduced white matter proper-

ties in these areas were accompanied by increased neuronal power. Of these regions, 

the superior and middle temporal pole did not survive Bonferroni correction to control 

for multiple comparisons (a = .00294). The CB contributed strongest to the correlations 

(cf. S4 Fig A). The remaining regions (cf. methods section) showing significant group 

differences regarding their spectral clusters did not correlate with the RD values. 

We finally used a probabilistic atlas of white matter pathways in MNI space (70) to 

evaluate the overlap of the spatial cluster with known white matter tracts. With the 

probabilistic atlas thresholded at 0.95, the TBSS cluster presents a significant overlap 

with the posterior corpus callosum, the posterior inferior longitudinal fasciculus (bilat-

erally), the posterior inferior fronto-occipital fasciculus (bilaterally), and the optic radia-

tions (also bilaterally). This means that there is a 95% chance that the white matter 

abnormalities identified in the CB by the TBSS analysis primarily affect these white 

matter tracts. 

Discussion  

The present study provides new insights into region-specific spectral profiles across 

cortical brain areas and frequency bands in congenitally blind and sighted adults. We 

implemented a novel whole-brain analysis pipeline, adapted from (38), capable of dis-

closing temporally-resolved spectral clusters specific to individual brain regions. K-

means clustering and GMM were employed to establish spectral patterns across trials 

and subjects in the three experimental groups (S-EO, S-BF, CB). A classifier automat-

ically identified anatomical areas based on their spectral profiles separately for each 

group. Finally, a cross-group classification determined brain regions that were spec-

trally different in the blind and the sighted group. Our first main finding is that the clus-

tering and classification procedures performed exceptionally well for all three groups 



 15 

(97-100% of areas were classified correctly in each group). This highlights consistent 

brain area-specific spectral properties across individuals within the sighted and, as 

shown for the first time, within the congenitally blind group. Crucially, second, we 

showed that visual deprivation gave rise to changes in the spectral profiles especially 

of sensory (auditory and visual) and right-frontal cortical areas, as indicated by signifi-

cantly worse classification performance in the cross-group comparison for these brain 

areas, but not for other brain areas. More specifically, the spectral profiles of these 

areas in the CB showed increased power in the alpha and/or beta frequency bands in 

the right primary auditory cortex and right-frontal brain regions compared to the 

sighted. The visual cortex in the CB was characterized by a cluster with decreased 

alpha power and a gamma (~40 Hz) peak, which was absent in the sighted. In addition 

to the observed spectral group differences, the averaged power in some of the spec-

trally-altered brain areas revealed correlations with microstructural white matter prop-

erties. Our findings suggest that visual deprivation alters spectral properties particularly 

of brain areas, which have been previously suggested to show functional and structural 

reorganization. Spectral power in these brain areas was altered in an area-specific 

manner, possibly reflecting anatomical reorganization and changes in the functionally-

specific processes of these areas in the congenitally blind. 

Robust classification of brain areas based on spectral profiles  

Spectral clustering and automatic classification revealed spectral profiles, classification 

ranks and distributions of classification ranks across the cortex in the S-EO group sim-

ilar to the ones first reported by (38). Spectral profiles, for example of occipital regions, 

showed the typically observed peak at ~10 Hz. Spectral peaks in the beta band (~20 

Hz) were prominent across frontal and central brain areas, resembling previously re-

ported natural frequencies of these brain areas (Fig 5; (38,71,72)). While the spectral 

profiles of most brain areas well resembled those reported by Keitel and Gross, for 

some brain areas the spectral profiles differed (see S1 Fig). This suggests that the 

used recording system and/or the tested sample of participants can influence the spe-

cific profiles of some brain areas more than others. A test on a large dataset across 

different recording sites (i.e. several 100 recordings) will be necessary to clarify which 

spectral modes generalize across individuals of a larger population. Importantly, within 
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our sample, the spectral profiles were consistent across individuals (i.e. only group 

clusters were reported where at least ~70% of participants and on average ~97% for 

the S-EO and ~94% for the S-BF group contributed to each of the group-level spectral 

clusters). Thus, the present results show the robustness of brain area-specific spectral 

profiles, suggesting that spectral profiles are characteristic properties of cortical re-

gions. 

Crucially, a novel finding of our study is that spectral clusters were consistent within 

the group of congenitally blind individuals as well (Fig 3B). Analogously to the sighted 

group, brain regions could be identified reliably based on their spectral clusters sug-

gesting spectral consistencies across individuals (i.e., only group clusters were re-

ported where at least ~69% of participants and on average ~95 % contributed to each 

spectral cluster). This result suggests, that adaptation of the cortex to visual deprivation 

leads to homogenously altered spectral fingerprints in congenitally blind individuals. 

The finding is in line with previous research, showing altered neuronal structures and 

activity in the congenitally blind based on group-level analysis (25,73–75). 

In our study, deep sub-cortical brain areas (in contrast to what has been reported by 

Keitel and Gross (38)) were not classified well (S1 Fig). A possible explanation is a 

lower signal-to-noise ratio in deeper brain areas in our data compared to Keitel and 

Gross, due to the usage of different MEG systems. 

Selective spectral plasticity across the brain  

In the cross-group classification brain areas of individual CB participants were classi-

fied based on the group-level spectral clusters of the S-BF. In order to isolate visual 

deprivation-related effects, the participant groups were well matched in our study (cf. 

methods section). While in the cross-group classification, the classification for the ma-

jority of the brain areas was relatively good (i.e., low ranks; Fig 4A), spectra related to 

auditory, visual and right frontal regions, which are typically associated with depriva-

tion-related intramodal and crossmodal changes (15,22–26,29), were classified signif-

icantly worse compared to the within-sighted classification (Fig 4B). Importantly, these 

findings suggest that the spectral properties of brain areas are not homogenously al-

tered by deprivation-related plasticity. Previously, a non-monotonic relationship be-

tween plasticity and stability across cortex, with decreases in plasticity from early visual 
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to mid-level cortex and increases in plasticity higher in the visual cortical hierarchy, has 

been reported using fMRI (76, see also 77). 

Spectral plasticity in sensory areas  

Our findings highlight changes in spectral properties of auditory and visual cortex due 

to visual deprivation-related neuroplasticity. The findings confirm previous reports both 

demonstrating  cross-modal reorganization in visual cortex (15,22–26) and intra-modal 

reorganization in auditory cortex (29) in blind humans. Our findings extend these re-

ports by providing evidence for genuine changes in the processing mode of these re-

gions, as indicated by changes in the spectral characteristics.  

Visual brain areas classified as spectrally different between the sighted and the blind 

involved primary visual cortex (calcarine sulcus) and its adjacent areas (cuneus, lingual 

gyrus), as well as more dorsal (superior occipital gyrus) visual regions and parts of the 

ventral visual stream (left inferior temporal gyrus), involved in visual object recognition 

(78) (Table 2). In these areas, we observed one cluster with a clear visual alpha peak 

at ~10 Hz for the sighted, and a second alpha cluster characterized by a smaller am-

plitude (note that the two clusters are displayed by two separate lines in Fig 5A). Keitel 

and Gross (38) speculated that the second alpha cluster in the middle occipital gyrus 

(which was present ~80 % of the time) indicates continuous alpha suppression during 

visual fixation. Our findings show, however, firstly, that both clusters occur with a sim-

ilar prevalence across time and, secondly, that the second alpha cluster is similarly 

present during eyes open (present ~60% (left) or ~55% (right) of the time) and eyes 

closed (present ~40% (left) or ~50% (right) of the time) conditions (Fig 5A (upper), S1 

Fig). In contrast, in the CB these typically visual areas were characterized by a first 

cluster with a strongly reduced alpha power peak, shifted towards higher (beta, 

gamma) frequencies, as well as a second cluster with close to zero power in the alpha 

band (Fig 5A, B). This observation is in line with previous findings reporting a reduced 

or entirely absent alpha rhythm in the visual system in blind individuals (60–63). Inter-

estingly, the spectral profile of one cluster in visual areas in the blind included a peak 

in the low-gamma (~40 Hz) range which was not present in the spectal profile of the 

sighted. This finding is in line with a recent report, which found enhanced gamma 

power correlations within visual cortex using MEG (63) in congenitally blind individuals. 
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The alpha rhythm in humans likely reflects a local mechanism of rhythmic inhibition 

(79) mediating top-down control by feedback connections (80) and controlling gamma-

amplitude (81, see 82). Synchronized gamma activity - controlled by alpha (de-)syn-

chronization and phase - is suggested to serve a feedforward function, processing sen-

sory information (80,83). In light of this idea, our results suggest that the decreased 

alpha and increased gamma power in the blind reflect an altered excitation-inhibition 

balance in the visual system due to visual deprivation (82,84). While visual cortex is 

functionally inhibited during rest and with closed eyes in the sighted, feedforward visual 

cortex processing seems to be enhanced in the congenitally blind, presumably due to 

disinhibition (reduced/absent alpha rhythm) as consequence of atrophy in the thalamo-

cortical connections. Higher visual cortex metabolism in the CB (85,86), might reflect 

the altered neuronal activity. Possibly, the lack of visual cortex inhibition in the blind 

(here observed during rest) is related to changes in the functional role of visual cortex 

during task-specific processing, i.e., an increased recruitment of visual cortex during 

the processing of non-visual tasks (25,73,75,87), whereas the specific mechanisms 

are unknown.  

Additionally, we found altered spectral profiles in auditory cortex with increases in the 

power in specific frequency bands. Brain areas in temporal cortex that were identified 

by the classifier to be spectrally different between the sighted and blind involved pri-

mary auditory cortex (right Heschl’s gyrus) and areas of the ventral auditory stream 

(bilateral middle temporal pole, right superior temporal pole, left middle temporal, su-

perior temporal and inferior temporal gyri) (Table 2). In these areas, we observed in-

creased power at higher frequencies (alpha to beta range) in the blind compared to the 

sighted (Fig 5A, B). Similarly, bilateral supplementary motor area similarly showed in-

creased power in the beta band (and absence of delta- and theta-band peaks) in the 

CB compared to the sighted (S1 Fig). Interestingly, previous research on ultra-fast 

speech processing in congenitally blind individuals reported that enhanced compre-

hension of ultra-fast speech in the blind is accompanied by increased speech-tracking 

of higher frequencies in the alpha-beta range (16 Hz) in right auditory cortex (i.e., 

phase-alignment to the speech signal), compared to sighted individuals (19). Im-

portantly, in a comparison of primary auditory cortex spectral profiles during rest and 

during speech comprehension, Keitel and Gross provided evidence for the functional 
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relevance of the delta, theta and beta brain rhythms for speech processing (38). A large 

amount of studies related temporal processing to the entrainment of auditory cortex 

oscillations (48,88–90). Thus, more generally, our findings of frequency increases of 

spectral power might be related to increased temporal processing abilities, as often 

reported for congenitally blind individuals (6–8,12,15,18,19,91). In line with these as-

sumptions, on the other side of the plasticity spectrum, age related decline in pro-

cessing fast speech has been related to a slowing of theta oscillations (92), additionally 

supporting the association of spectral dynamics within auditory cortex with temporal 

(speech) processesing.  

Spectral plasticity in right frontal cortex 

Beyond spectral reorganization in sensory cortices, our data suggest that particularly 

right-hemispheric frontal brain regions undergo adaptation as spectral clusters of right 

middle frontal and superior frontal gyri were significantly different between the blind 

and the sighted. Previous research on plasticity, has suggested that frontal cortex is 

particularly prone to reorganization (76,77). Interestingly, changes in lateralization of 

cognitive processes have been previously reported previously in congenitally blind in-

dividuals. The predominance of the widely distributed frontotemporal language network 

in the left hemisphere is a robust finding, shown across different languages (93), de-

velopmental stages (94) and linguistic tasks (93,95,96). In congenital blindness, how-

ever, language processing likely is reflected in a reduced left-hemispheric lateralization 

of the frontotemporal network (97,98). Although the spectral bands affected by the al-

tered lateralization of language processing are unknown, interestingly, beta-band ac-

tivity has been related to language processing (99). Thus, it is possible that the altered 

spectral profiles in the right-hemispheric frontal brain regions observed here reflect 

changes in the hemispheric lateralization of the frontotemporal language network in 

congenital blind adults.  

Besides altered brain spectral profiles compared to the sighted, blind individuals 

showed compromised microstructural white matter integrity in visual association tracts 

comprising the ventral visual stream. These tracts included the bilateral inferior fronto-

occipital fasciculus, connecting occipital and frontal brain areas, which supposedly is 
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related to reading, writing and language semantics (100); the bilateral inferior longitu-

dinal fasciculus, connecting occipital and anterior temporal cortices, which plays a role 

in reading, language and semantic processing (100,101; S4 A Fig); and the bilateral 

optic radiations, linking the visual thalamus to the primary visual cortex. In addition, 

white matter integrity was also compromised in the posterior corpus callosum (by which 

homologous visual cortices are interconnected (102). Detoriation of the visual associ-

ation tracts, which are related to visual, memory and language processing (101), as 

well as the optic radiations and visual callosal areas in congenitally blind individuals 

has been previously shown (102). Here, we observed that these structural changes in 

white matter integrity in the blind, correlated with alterations in the spectral profiles of 

visual cortex, auditory sensory processing areas and parts of frontal cortex (cf. S4 B 

Fig). In contrast, other areas that showed altered spectral profiles, e.g., the right supe-

rior and middle frontal or left middle temporal areas, did not correlate with the anatom-

ical changes.Thus, the observed visual deprivation related changes in brain spectral 

profiles of some – but not all – brain areas were related to structural alterations. 

One limitation of the present study is that the interpretation of group differences in the 

region specific spectral profile is complicated by the multidimensionality of the spectral 

profiles. For that reason, we additionally performed a post-hoc analysis of the non-

clustered data (based on the averaged brain area spectrum) to evaluate the cross-

group differences between the sighted and congenitally blind individuals (i.e., which 

frequencies show significant power differences; Fig 5B; results section). The analysis 

confirmed the findings from the spectral clustering approach. 

Concluding remarks 

The present study supports the findings of robust brain area-specific spectral profiles 

in the human brain. Crucially, we provide novel findings that suggest region specific 

alternations of these profiles in congenitally blind adults. An increase in higher fre-

quency bands in auditory and frontal brain regions might be related to the higher term-

poral processing capacities in the blind while altered spectral profiles in visual brain 

regions might indicate a change in the excitation-inhibition balance.  
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Materials and Methods 

Participants  

The study was approved by the German Psychological Association. All participants 

gave written informed consent prior to the experiments and received monetary com-

pensation. The data were recorded in the context of a larger project (15,26). Three to 

four minutes of resting state MEG data were collected from a group of sighted and 

congenitally blind individuals matched in age, gender and education. During data col-

lection the CB and the sighted (S-BF) were blindfolded, however, for the sighted an 

additional resting state measurement with open eyes was conducted (S-EO). The data 

reported here include (after a few subjects were excluded, see below) 26 subjects for 

the CB (12 females; mean age: 37.8 years; SD: 10.2 years; age range: 22-55 years), 

24 for the S-BF (11 females; mean age: 36.8 years; SD: 10.1 years; age range: 21-55 

years) and 23 for the S-EO (11 females; mean age: 37.3 years; SD: 9.8 years; age 

range: 21-55 years). A few subjects had been excluded after data collection because 

of corrupted resting state files (one subject for the CB, one subject for the S-EO) or no 

individual structural MRI scan (three subjects for the S-BF and S-EO). All participants 

were healthy with normal hearing (self-report) and assured no history of psychiatric or 

neurological disorders. One blind participant reported a history of depressive mood 

disorder, but was free of symptoms and without current treatment. Sighted participants 

had normal or corrected to normal vision (self-report). In the blind, vision loss was total 

and resulted from a variety of peripheral (pre)natal conditions (retinopathy of prema-

turity: n=9; genetic defect, n=5; congenital optic atrophy: n=2; Leber's congenital am-

aurosis: n=2; congenital cataracts, glaucoma: n= 2; congenital retinitis: n= 2; binocular 

anophthalmia: n= 2; retinitis pigmentosa: n= 1; congenital degeneration of the retina, 

n=1). 17 participants reported minimal residual light perception. 

MRI and MEG data acquisition 

For all participants T1-weighted structural MRI scans and DWI-MRI scans were ob-

tained with a 3T scanner (Siemens Magnetom Trio, Siemens, Erlangen, Germany). 

For the T1-weighted images we used the following parameters: TE = 2.98 ms, TR = 

2300 ms, flip angle = 9, and isotropic 1 mm3 voxels, 256 sagittal slices. The MEG data 
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were recorded in a magnetically shielded room using a 275-channel whole-head sys-

tem (Omega, 2000, CTF Systems Inc.), while participants sat in an upright position. 

The data were acquired with a sampling rate of 1200 Hz. Prior to each experiment, the 

head position was measured relative to the MEG sensors and during the recording the 

head position was tracked.  

Data analysis    

The initial analyses in this study are adopted from the analysis pipeline proposed by 

(38).The modifications of the analysis pipeline and the novel analysis will be stated in 

detail. All analyses were carried out using Matlab R2018a version (The Math Works 

Inc), the Fieldtrip Toolbox (version 20181104) and SPM12.  

Data preparation in sensor space: preprocessing, artifact rejection, source lo-

calization  

During preprocessing, the MEG signal was downsampled to 250 Hz, denoised and 

detrended. To better capture the dynamically changing spectral properties of the brain, 

the continuous signal was segmented into trials of 0.8 s. Trials were declared as noisy 

and excluded when their z-score was higher than 2. On average, 7 trials were ex-

cluded, resulting in a mean of 340.3 trials (STD= 34.7) per subject (S-EO: mean = 

346.7, STD = 37.4; S-BF: mean = 336.8, STD = 34.2; CB: mean = 338, STD 33.2). 

Due to shorter recordings in the present study, trial duration was slightly shortened, 

relative to the 1 s duration used in Keitel and Gross (2016), to increase statistical 

power. MEG channels were labeled as noisy and rejected when the ratio between their 

noise level (in STD) and that of the neighboring sensors (in STD) exceeded a value of 

0.5 ((Sensor STD - Neighbor STD) / Neighbor STD; mean number of excluded chan-

nels = 1.22, STD = 1.34). Finally, using independent component analysis (ICA), data 

was cleaned from heartbeat, eye blinks and eye movements related artifacts (compo-

nents were identified based on their time-course, topography and variance across tri-

als). To prepare the source projection of the Fourier spectra, beamformer coefficients 

were obtained. For this purpose, we applied co-registration of individual T1-weighted 

MRI scans and the MEG coordinate system, realignment, segmentation and normali-

zation to Montreal Neurological Institute (MNI) space. A forward model was created 
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using a single-shell model and linearly constrained minimum variance (LCMV) beam-

former coefficients (103) were calculated for the MEG time series for each individual 

voxel on the 10 mm regular grid.  

Spectral analysis in sensor space  

The analyses described in the following were performed for all three groups separately 

(CB, S-EO, S-BF). First, Fourier-spectra were calculated on 0.8 s long trials for each 

subject, using a multitaper approach (3 tapers) and zero-padding (length of 2 s). Sec-

ond, using the previously computed LCMV coefficients, the complex Fourier spectra 

were projected into source space. Fourier spectra of individual voxels and segments 

were ratio normalized, i.e., divided by the mean power across all voxels and trials (see 

S4 Fig for the power spectra used for the normalization in all groups). This ratio nor-

malization resulted in voxel-specific spectral properties with values above/below one 

highlighting the differences of a given voxel to the mean spectral power across all 

voxels separately at each frequency. All values were subtracted by 1 (leading to values 

above/below zero), to facilitate the identification of changes in power (de/increases). 

k-Means clustering and Gaussian mixture modelling of source-localized spectral 

activity   

To identify region-specific spectral clusters in the individual subject, the brain was par-

cellated according to the AAL atlas (66) (116 regions of interest, ROIs). For one ana-

tomical region (cerebellum 3L), however, the interpolation between the AAL atlas and 

the source model was not successful. Thus, this region was excluded and all analyses 

are based on the remaining 115 anatomical areas. For each of the ROIs, voxels were 

grouped and power spectra were averaged across voxels. Clustering algorithms were 

employed to identify spectral clusters. First, trial-by-frequency matrices were subjected 

to a k-means algorithm (67) which established spectral clusters by partitioning the n 

observations (0.8 s temporal segments) into k clusters. For the 1st-level analysis, the k 

was set to 9, based on the Silhouette criterion evaluation (104). Second, for each sub-

ject and ROI, GMMs (68) were fitted to the 9 clusters obtained from the k-means anal-

ysis (1st-level GMM). Next, in order to identify the optimal number of clusters per brain 

region across all subjects for the 2nd-level group analysis, the 1st-level GMMs were 

evaluated using the Silhouette criterion. Silhouette values were computed for cluster 
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solutions in the range from 1 to 15, the fitting was repeated 1000 times. At the group 

level, k-means clustering was applied to the 1st-level clusters in order to disclose con-

sistent patterns across subjects. The optimal number of clusters per brain area, as 

assessed by the Silhouette criterion evaluation (104), was used as k-parameter for the 

algorithm. As before, k-means results were fed into GMM revealing the final clusters 

per brain region (2nd-level GMM).  

Clusters were considered for visualization only if they were reflective of the majority of 

participants. To facilitate reading of the spectral plots, group-level clusters were color-

coded according to the frequency of the maximum amplitude of the cluster (peak fre-

quency) (delta: 1-3.5 Hz, red; theta: 4-8 Hz, green; alpha: 8.5-12.5 Hz, blue; beta: 14-

30.5 Hz, yellow; gamma: 33.5-100 Hz, magenta). Furthermore, we computed the rele-

vance of each cluster per brain region by analyzing the amount of single subject trials 

during which a cluster was present. Group clusters (Fig 1, step 3) were traced back to 

single subject clusters and the amount of trials that contributed to a single subject clus-

ter (Fig 1, step 2) was calculated and expressed as percentage. Percentages were 

averaged across subjects.  

Automatic within group classification  

A classifier was employed to test the specificity of region-specific spectral fingerprints. 

After splitting each group into half (training and test group), group-level clusters were 

calculated for the training group for all anatomical regions using k-means and GMM 

clustering. For each brain region and participant of the test group, the similarity of spec-

tral profiles was assessed compared to all brain regions of the 2nd-level group clusters 

of the training group by computing the negative log-likelihood for all pairs of regions. 

This procedure, that is group assignment and classification, was repeated 1000 times 

(note that for the S-EO one subject was left out in every iteration to yield an even 

number of participants in training and test groups). On each iteration, an additional loop 

(N = 100) controlled for interindividual noise within a group by randomly drawing the 

adequate number of subjects (i.e., NS-EO = 11, NS-BF = 12, NCB = 13) from the group with 

replacement, allowing a subject to enter multiple times or not at all. Put differently, 

within one iteration (N = 1000) each participant belonged to either the training or the 

test group. To account for individual differences, the group clusters were calculated 
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100 times choosing a different subset from the respective group each time and finally 

averaged to obtain a robust group estimate. Based on the mode of clusters identified 

per brain region in the 2nd-level cluster analysis, the optimal number of clusters for the 

classification analysis was k = 2. Likelihood values were ranked and averaged across 

iterations (20% trimmed mean). For further comparisons, only corresponding ROIs 

(e.g., how is the Heschl ROI in the test set ranked based on the training set Heschl 

ROI) were considered.  

Additionally, to the descriptive report of the classification performance, here we tested 

whether a specific ROI (of the test set) was classified significantly better by the corre-

sponding area of the training set, compared to all other 115 ROIs. This allowed us to 

exclude the possibility that classification performance was caused by unspecific effects 

– that is, generic fingerprints. To this end, each region’s mean rank (averaged across 

iterations) was tested against a distribution of classification ranks generated from all 

other ROIs (null-distribution). 

Automatic cross-group classification 

Crucially, in order to identify differences in region-specific spectral properties between 

the CB and S-BF, we performed a cross-group classification. The same classification 

procedure was employed, however, the classifier was trained on one group (S-BF), 

while the other (CB) was utilized as the test set. As before, the classification procedure 

was repeated 1000 times, drawing a subset of N = 12 per group on every iteration. 

Importantly, the randomization of subjects chosen on each iteration was identical to 

the one used for the within group classification in the S-BF (this is the reason why N = 

12, instead of using all subjects of both groups). Thus, differences in the classification, 

as reflected by the ranks, could not be caused by the training set per se. In order to 

understand whether some brain areas in the CB were not classified well based on the 

S-BF spectral profiles (i.e. whether the classification of brain regions was different in 

the cross-group condition compared to the within S-BF classification), we tested the 

cross-group classification mean ranks against the distribution of ranks from the same 

ROI from the S-BF group (here the null-distribution). The distributions were generated 

by taking the classification rank of a corresponding area from training and test set (i.e. 

Calcarine) across all iterations (see S2 Fig for the distributions of all brain areas). We 
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calculated the 95th percentile of the distribution and tested whether the cross-group 

mean rank of the current region fell above (significant) or below (not significant) this 

threshold.        

To further assess the spectral profiles of brain areas that were significantly different in 

the cross-group classification, post-hoc permutation statistics were applied to the raw, 

normalized region-specific spectra (i.e., Fourier spectra without clustering procedure). 

The spectral analysis was calculated as in the main analysis (see above). For all sig-

nificant brain regions seperately, power was averaged across voxels and segments, 

resulting in a single power value per frequency and per subject. Based on frequency 

by subject matrices for the CB and the S-BF, group differences in spectral power were 

tested against a distribution where the group assignment (CB vs. S-BF) was randomly 

permuted (N = 1000). To control for multiple comparisons, we used FDR (Q = 0.05).    

Microstructural white matter properties 

DW-MRI data were acquired together with T1-weighted structural scans described 

above. We used an echo planar imaging (EPI) sequence optimized for DWI-MRI of 

white matter covering the whole brain (64 axial slices; bandwidth = 1502 Hz/Px, 

104 × 128 matrix, TR, 8,200 ms; TE, 93 ms; flip angle, 90°; slice thickness, 2 mm; voxel 

size, 2 × 2 × 2 mm3). The protocol comprised three acquisitions yielding a total acqui-

sition time of 9 minutes 51 seconds. This resulted in a total of 120 diffusion-weighted 

volumes with six interleaved non-diffusion-weighted volumes (b values of 1,500 

s/mm2). DWI-MRI scans were aquired from a subset of the original sample including 

16 blind and 12 sighted participants.  

DTI-MRI preprocessing and analysis. Diffusion data processing initially corrected for 

eddy current distortions and head motion by using FMRIB’s Diffusion Toolbox (FDT; 

FMRIB Software Library; FSL 5.0.1; http://www.fmrib.ox.ac.uk/ fsl/; (105)). For a more 

accurate estimate of diffusion tensor orientations, the gradient matrix was rotated to 

correct for head movement, using the fdt_rotate_bvecs program in FSL. We then used 

the Brain Extraction Tool (106) for brain extraction, also part of the FSL distribution. 

Analysis continued with the reconstruction of the diffusion tensors using FSL’s DTIFIT 

program. FA and RD maps for each participant were calculated using the eigenvalues 

extracted from the diffusion tensors. Note that FA maps are required in the early stages 
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of TBSS, that is, to compute the registrations to MNI standard space and subsequently 

create the diffusion skeletons. However, we focused our analysis on RD, as this is a 

more specific measure of diffusivity in white matter than FA or mean diffusivity. Indeed, 

although several factors can contribute to produce particular RD values, including the 

number of axons and axon packing and diameter, RD has been most consistently re-

lated to myelin content along axons, with increased RD values reflecting higher demy-

elination (107–110). In animal studies, directional measures such as RD, unlike sum-

mary parameters such as mean diffusivity or FA, provide better structural details of the 

state of the axons and myelin (111).   

Voxel-based analyses of RD maps were performed with TBSS (69). Participants’ FA 

maps (necessary to calculate the registrations to MNI standard space and create the 

RD skeletons) were registered to the FMRIB58_FA template (MNI152 space and 1 × 

1 × 1 mm3) using the nonlinear registration tool (112). These registered FA maps were 

first averaged to create a mean FA volume. A mean FA skeleton was then produced, 

representing the centers of all white matter tracts common to all participants in the 

study. Each participant’s aligned FA data were then projected onto this skeleton by 

searching for the highest FA value within a search space perpendicular to each voxel 

of the mean skeleton. This process was repeated for the RD maps by applying the 

transformations previously calculated with the FA maps. This resulted in individual RD 

skeletons for each participant. Finally, to assess white matter differences between CB 

and sighted participants, independent-samples t-tests were performed on the RD skel-

eton. Significant results are reported at FWE-corrected p < 0.05 using threshold-free 

cluster enhancement 12/7/19 12:09:00 AM(113) and a nonparametric permutation test 

with 5,000 permutations (114). Significant cluster results were averaged and a mean 

value per participant, reflecting individual microstructural differences, was obtained.  

Spearman correlations were used to analyse the correlation between RD values 

(across groups) and the spectral profiles of brain areas that showed significant group 

differences in the cross-classification. More specifically, all cortical areas that showed 

significant differences between the CB and sighted in both, the cross-classifiaction and 

the post-hoc analysis, were included. For these areas, the raw normalized power spec-
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tra, averaged over the frequency bands where significant group differences were ob-

served (Fig 5), was retrieved and correlated with the RD values. Bonferroni correction 

for multiple comparisons across brain areas was applied (a = .00294). 

For the mapping between RD values and the standard probabilistic atlases of white 

matter pathways, all voxels that differed significantly in RD values between the CB and 

sighted were included. We report only tracts that showed an overlap with these voxels, 

with the tracts from the probabilistic atlas thresholded at 0.95 probability.  
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