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Abstract 
Alzheimer’s disease (AD) is the leading cause of dementia, with metabolic dysfunction 
seen years before the emergence of clinical symptoms.  Increasing evidence suggests a 
role for primary and secondary bile acids, the end-product of cholesterol metabolism, 
influencing pathophysiology in AD. In this study, we analyzed transcriptomes from 2114 
post-mortem brain samples from three independent cohorts and identified that the genes 
involved in alternative bile acid synthesis pathway was expressed in brain compared to 
the classical pathway. These results were supported by targeted metabolomic analysis 
of primary and secondary bile acids measured from post-mortem brain samples of 111 
individuals. We reconstructed brain region-specific metabolic networks using data from 
three independent cohorts to assess the role of bile acid metabolism in AD 
pathophysiology. Our metabolic network analysis suggested that taurine transport, bile 
acid synthesis and cholesterol metabolism differed in AD and cognitively normal 
individuals. Using the brain transcriptional regulatory network, we identified putative 
transcription factors regulating these metabolic genes and influencing altered metabolism 
in AD. Intriguingly, we find bile acids from the brain metabolomics whose synthesis cannot 
be explained by enzymes we find in the brain, suggesting they may originate from an 
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external source such as the gut microbiome. These findings motivate further research 
into bile acid metabolism and transport in AD to elucidate their possible connection to 
cognitive decline. 
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Introduction 
 
Alzheimer’s disease (AD), the leading cause of dementia, is a progressive, multifactorial 
disease1,2 where the onset and progression of symptoms varies significantly among 
individuals. Recent studies have shown that metabolic dysfunction is one of the factors 
associated with neurodegenerative disorders3,4. Various physiological processes such as 
lipid metabolism, immune function, amyloid precursor protein metabolism, oxidative 
stress, neurotransmitter function as well as mitochondrial functions are altered in AD that 
can affect metabolism5,6,7. Interest in the transport of biochemical compounds between 
the brain and the gut and their possible role in regulating metabolic changes centrally and 
peripherally has increased recently across several neurodegenerative diseases8,9. There 
is increasing evidence to suggest a role in AD for primary and secondary bile acids7,10,11. 
Bile acids are amphipathic molecules and primary bile acids are derived from cholesterol 
mostly in the liver, whereas secondary bile acids are typically produced by bacteria in the 
gut12. Increased levels of secondary bile acids and ratios to their primary bile acid educts 
have been linked to AD and cognitive decline7. 
 
Cholesterol metabolism and transport have been studied extensively and are clearly 
linked with AD13,1,14. Cholesterol clearance leads to production of bile acids that carry out 
lipid absorption, cholesterol homeostasis and also function as signaling molecules15. 
Primary bile acids such as cholic acid and chenodeoxycholic acid are synthesized as a 
result of cholesterol efflux and then conjugated with glycine or taurine for secretion into 
bile and later metabolized by gut bacteria12. There are two major bile acid biosynthetic 
pathways: the classical pathway (neutral pathway) and the alternative pathway (acidic 
pathway). The classical pathway in mammalian liver is initiated by cholesterol 7α-
hydroxylase (CYP7A1) and subsequently requires 12α-hydroxylase (CYP8B1) amongst 
numerous other enzymes for synthesis of cholic acid, whereas chenodeoxycholic acid is 
produced in the absence of CYP8B116. Sterol 27-hydroxylase (CYP27A1) is required for 
the initiation of alternative bile acid pathway17. In the brain, sterol 24-hydroxylase 
(CYP46A1) converts cholesterol to 24S-hydroxycholesterol (systematic name cholest-5-
en-3β,24S-diol), and subsequent 7α-hydroxylation is carried out by 24-
hydroxycholesterol 7α-hydroxylase (CYP39A1)18 (Figure 1). Studies in human and mouse 
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brain samples, as well as cell lines have shown that  bile acids can cross the blood-brain 
barrier and bind to nuclear receptors, causing physiological changes19,20. There is limited 
information on the role of bile acids in human brain and their association with cognitive 
decline in AD pathophysiology. Systematic analysis of omics data derived from blood and 
post-mortem brain samples of AD and cognitively normal (CN) or control individuals has 
the potential to identify differences in cholesterol and bile acid metabolism and how they 
contribute to AD pathogenesis.  
 
In this study, we analyzed large number of transcriptome data from the Religious Orders 
Study and Memory and Aging Project (ROSMAP), Mayo Clinic and the Mount Sinai Brain 
Bank that had a total of 2114 post-mortem brain samples from seven different brain 
regions. We reconstructed metabolic networks using the data from these three cohorts 
and studied the role of circulating bile acids that may contribute to AD and altered 
cholesterol metabolism in these individuals. We also generated targeted metabolomics 
data of primary and secondary bile acids from post-mortem brain samples of 111 AD 
patients and controls. 
 
Various genomic studies have reported transcriptional regulatory changes in 
neurodegenerative diseases21,22. The biological significance of these transcription factors 
(TFs) regulating metabolic changes is not completely understood. The brain-specific 
metabolic and transcriptional regulatory networks proved useful in identifying candidate 
metabolites and genes involved in the disease manifestation. A schematic representation 
of the study is represented in Figure 1. Our study used the following approaches to 
investigate the role of bile acids in AD: 
 

(i) Transcriptional profiling of genes from post-mortem brain samples that are 
involved in cholesterol and bile acid metabolism.  

(ii) Reconstruction and analysis of genome-scale metabolic networks of various 
brain regions to identify genes and reactions that are significant in AD vs CN. 

(iii) Transcriptional regulatory network analysis of brain samples to predict 
candidate TFs regulating metabolically important genes. 

 
In summary, our study addresses an important need to better understand potential roles 
for bile acids in AD pathophysiology. 
 
Results 
 
In recent studies, cytotoxic and neuroprotective bile acids were identified in AD and their 
probable link to cognitive decline in the individuals was reported7,23. To further investigate 
the role of primary and secondary bile acids in AD and CN individuals, we analyzed 2114 
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post-mortem brain samples from three independent cohorts for seven brain regions 
(Table 1) and selected genes involved in cholesterol and bile acid metabolism.  
 
Table 1: Details of brain region-specific samples from three different cohorts. The total 
number of post-mortem brain samples for different regions, method of preparation of 
RNA-sequencing library preparation, number of samples for different pathologies, gender 
and APOE status of the individuals is described in the table. 
 

 
 
In this study, we studied the role of bile acids in AD pathology in the context of genome-
scale metabolic and transcriptional regulatory networks (Figure 1). 
 
 

Brain regions Source
Number of 

brain 
samples

RNA-Seq 
Library prep 

method
Pathologies Gender APOE allele

Cerebellum (CER)
Mayo Clinic, University of 
Florida, Institute for 
Systems Biology

263 poly-A enriched
AD (79), control (72), 
NA (2), Pathologic 
aging (28), PSP (82)

Male (130), 
Female (131), 
NA (2)

�2/�2 (1), �2/�3 (29), 
�2/�4 (2), �3/�3 (159), 
�3/�4 (64), �4/�4 (6), 
NA (2)

Temporal cortex 
(TCX)

Mayo Clinic, University of 
Florida, Institute for 
Systems Biology

264 poly-A enriched
AD (80) , control (73), 
Pathologic aging (30), 
PSP (81)

Male (128), 
Female (136)

�2/�2 (1), �2/�3 (33), 
�2/�4 (2), �3/�3 (157), 
�3/�4 (62), �4/�4 (9)

Prefrontal cortex 
(FC)

Religions Orders Study 
and Memory and Aging 
Project (ROSMAP)

632 strand-specific
AD (251), MCI (169), 
NCI (200), Other 
dementia (12)

Male (228), 
Female (404)

�2/�2 (5), �2/�3 (83), 
�2/�4 (17), �3/�3 (382), 
�3/�4 (139), �4/�4 (6), 
NA (1)

Frontal Pole (FP) Mount Sinai Brain Bank 
(MSBB) 260 Ribo-zero

AD (112), Normal (75), 
Possible D (38), 
Probable AD (35)

Male (93), 
Female (167)

�2/�2 (2), �2/�3 (18), 
�2/�4 (1), �3/�3 (88), 
�3/�4 (49), �4/�4 (3), 
NA (99)

Superior temporal 
gyrus (STG)

Mount Sinai Brain Bank 
(MSBB) 240 Ribo-zero

AD (104), Normal (64), 
Possible AD (36), 
Probable AD (36)

Male (89), 
Female (151)

�2/�2 (1), �2/�3 (17), 
�2/�4 (1), �3/�3 (81), 
�3/�4 (45), �4/�4 (3), 
NA (92)

Inferior frontal 
gyrus (IFG)

Mount Sinai Brain Bank 
(MSBB) 230 Ribo-zero

AD (95), Normal (65), 
Possible AD (36), 
Probable AD (34)

Male (79), 
Female (151)

�2/�2 (2), �2/�3 (15), 
�2/�4 (1), �3/�3 (77), 
�3/�4 (41), �4/�4 (3), 
NA (91)

Parahippocamal 
gyrus (PHG)

Mount Sinai Brain Bank 
(MSBB) 225 Ribo-zero

AD (97), Normal (68), 
Possible AD (28), 
Probable AD (32)

Male (82), 
Female (143)

�2/�2 (2), �2/�3 (16), 
�2/�4 (1), �3/�3 (71), 
�3/�4 (36), �4/�4 (3), 
NA (96)
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Figure 1: Graphical overview of analyses described herein to study altered cholesterol 
and bile acid metabolism in AD. Numbers of samples from each brain region are 
indicated along with AD and control samples and Male/Female breakdown in 
parentheses. We analyzed the metabolic networks for each sample and also used 
regulatory models to identify important transcription factors regulating cholesterol and 
bile acid metabolism. 
 
 
 
Transcriptomic analysis of enzyme-encoding genes associated with bile acid 
metabolism 
 
Bile acids are products of cholesterol metabolism. To identify cholesterol and bile acid 
genes that are expressed in brain, we curated a list of regulators, transporters and 
biosynthesis genes in these three independent cohorts. Cholesterol biosynthesis 
regulators SREBF1 and SREBF2 were expressed in post-mortem brain samples and 
recent studies have identified variants of SREBP2, the protein encoded by SREBF2, and 
their probable link with AD14,24,25. Expression of genes involved in cholesterol transport 
ABCA1, ABCA5, ABCA7, APOE, LPL and LCAT and members of the LDLR gene family 
(LDLR, VLDLR, LRP1, LRP2, LRP4, LRP5, LRP6, LRP8, LRAD3) in the brain samples 
suggests active transport of cholesterol and cholesterol homeostasis in brain (Figure 2). 
ABCA7, a cholesterol transporter, belonging to the class of ATP-binding cassette 
transporters that has been identified as a risk factor for late-onset of AD17, is not found in 
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the existing KEGG pathways and was manually curated into our models. ABCA7 was 
found to be expressed in the post-mortem brain samples. We also probed into genes 
encoding for receptors linked with the classical and alternative bile acid pathway and 
found expression of PPARA, PPARG, LXRα/b, RAR and RXRs (RXRA, RXRB, RXRG) 
in the samples but no evidence of expression of FXR. 
 

 
Figure 2: Heatmap for genes involved in (a) cholesterol and (b) bile acid metabolism. The 
color gradient is based on ubiquity score calculated for the genes and gray color 
represents genes having no expression data on the brain regions from three cohorts. 
Brain regions represented in the plot are cerebellum (CER), prefrontal cortex (FC), 
temporal cortex (TC), frontal pole (FP), inferior frontal gyrus (IFG), parahippocampal 
gyrus (PHG) and superior temporal gyrus (STG). The function of genes is indicated on 
the left side of each heatmap. 
 
 
We observed consistent expression of CYP27A1 and CYP7B1, which are involved in the 
initial steps of the alternative bile acid pathway depicted in Figure 3, from the analysis of 
transcriptomic data of post-mortem brain samples from three independent cohorts 
(Supplementary file 1). In the figure, the bile acids have been marked as cytotoxic and 
neuroprotective7,23, but all bile acids become toxic at elevated concentrations because of 
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their ability to solubilize membranes23. We did not observe expression of CYP7A1 and 
CYP8B1, suggesting that the classical bile acid biosynthesis pathway is not prevalent in 
the brain samples. The classical pathway is known to be most active in the liver26. It has 
been reported that neural cholesterol clearance through bile acid synthesis is mediated 
by CYP46A1 and subsequently by CYP39A1 in the liver, leading to synthesis of 
chenodeoxycholic acid27. In addition to genes involved in the alternative bile acid 
pathway, we also observed expression of brain-specific CYP46A1 and CYP39A1 genes 
in all the cohorts. This analysis suggested that the brain utilizes an alternative and neural 
cholesterol clearance pathway of bile acid synthesis27,11 and not the classical pathway23. 
 

 
 
Figure 3: Schematic representation of bile acid synthesis pathway in humans. The order 
of enzymatic reactions can vary. Genes expressed in brain samples from our analysis are 
highlighted in pink. Based on the results from7, bile acids have been marked as 
neuroprotective or cytotoxic. 
 
 
Metabolomics analysis of post-mortem brain samples to identify levels of primary and 
secondary bile acids 
 
Bile acids were quantified from 111 post-mortem brain samples from the dorsolateral 
prefrontal cortex of AD, MCI and CN individuals in the ROSMAP study 
(https://www.synapse.org/#!Synapse:syn10235594) (Supplementary file 2). Although the 

Classical pathway Alternative pathway
Neural cholesterol 
clearance pathway
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7⍺-hydroxycholesterol
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7α-hydroxycholest-4-en-
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7α,12α-dihydroxycholest-4-en-3-one 
CYP8B1

3β,7α-dihydroxycholest-
5-enoic acid 
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HSD3B7
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7α,24S-dihydroxycholest-
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CA CDCA

TCA GCA GCDCA TCDCA
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genes involved in production of cholic acid were not expressed in the brain samples, 
detection of cholic acid from the metabolomics analysis suggested that cholic acid might 
enter the brain from the periphery as previously shown in other studies20,28,29. We 
compared the levels of primary and secondary bile acids in individuals with CERAD score 
of 1-4, where 1, 2, 3 and 4 indicate definitive AD, probable AD, possible AD and no 
evidence of AD, respectively. The ratio of primary conjugated and secondary bile acids 
with respect to cholic acid (CA) showed that deoxycholic acid (DCA), lithocholic acid 
(LCA), glycochenodeoxycholate (GCDCA), chenodeoxycholic acid (CDCA), 
taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), ursodeoxycholic acid 
(UDCA), allolithocholate (alloLCA) and taurocholic acid (TCA) were higher in individuals 
with AD (CERAD score 1-3) compared to controls (Figure 4). Similar results were reported 
in the serum metabolomics samples of AD and CN individuals7,10. Allo-cholic acid (ACA) 
is a steroid bile acid has been studied in the context of signaling mechanisms related to 
differentiation, proliferation or apoptosis of hepatocytes30. The CDCA:CA ratio was 
calculated and it showed the higher value for AD compared to CN individuals in the study 
(Supplementary file 3). This finding suggests that the alternative bile acid pathway is more 
active in AD versus CN individuals. Also, the higher ratio of primary bile acid like TCA and 
secondary bile acids such as DCA, LCA, TDCA and GDCA in AD individuals indicated 
that these bile acids may be associated with cognitive function.   
 

 
 
Figure 4: Bar plots representing ratio of bile acids with respect to cholic acid (primary 
bile acid) measured from 111 brain samples from ROSMAP study. Blue bars represent 
AD samples and light orange bars represent control samples. 
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The primary BAs are conjugated with glycine or taurine for secretion into bile17.  In addition 
to the primary and secondary BAs, we also measured levels of taurine in serum samples 
in AD and CN individuals. In the serum, we observed that AD patients had higher levels 
of serum taurine compared to controls. Taurine is required for conjugation of primary and 
secondary bile acids. This is an interesting observation and we need to explore the 
transport and physiological levels of taurine in the brains of individuals with AD. 
 

 
 
Metabolic reconstruction of brain regions and pathway-level analysis 
  
We reconstructed metabolic networks for brain region-specific samples in the three 
independent cohorts. The seven brain regions in this study included cerebellum (CER), 
prefrontal cortex (FC), temporal cortex (TC), frontal pore (FP), inferior frontal gyrus (IFG), 
parahippocampal gyrus (PHG) and superior temporal gyrus (STG). We used 
transcriptome data from post-mortem brain samples for reconstructing metabolic 
networks (see Methods for more details). The brain region-specific metabolic networks 
consisted of ~5600-6300 reactions, 2800-4000 metabolites and each model had genes 
varying from 1500-1757 in these networks. Supplementary Figure 1a provides information 
of the numbers of reactions, metabolites and genes present in each of the brain region-
specific networks and Supplementary Figure 1b compares the gene content overlaps 
across each of these networks. We have made the detailed content of all of these models 
available to the scientific community (Supplementary file 4-10). 
 
 
We tested each model using 17 brain-specific in silico tests meant to mimic experimental 
evidence of metabolic functions in the brain (‘metabolic tasks’) (Supplementary file 11), 
that were obtained from a recently published work on human reconstruction31. These 
metabolic tasks represent a set of reactions that are brain-specific, and the metabolic 
networks generated passed 50-70% of the tasks (see Methods section). The metabolic 
tasks are listed in Supplementary file 11 and the models have been provided in SBML in 
Supplementary file 12-18. In addition to generating brain region-specific metabolic 
networks, we also used the transcriptome data of 2114 post-mortem brain samples and 
obtained personalized networks for each sample in the study. Out of 2114 brain samples, 
818 samples corresponded to individuals with AD, 138 possible AD, 137 probable AD 
and 617 controls. The dataset also consisted of 12 samples from other dementias, 163 
samples with progressive supranuclear palsy, 58 samples with pathologic aging and 2 
samples that were uncharacterized. From our metabolic networks, we identified 518 
reactions that were involved in cholesterol metabolism, bile acid synthesis and transport 
of bile acids between different compartments in the metabolic networks. The personalized 
metabolic networks had distinct set of bile acid reactions active in the brain regions 



(details in the Methods section). Since the post-mortem brain samples for the brain 
regions were collected by three independent cohorts having different sequencing 
protocols and depth, the flux results were analyzed separately for these cohorts. The data 
suggest that the cerebellum and temporal cortex have similar sets of bile acid reactions 
that can be active in the personalized metabolic networks (Figure 5).  
 
 
 

 
 
Figure 5: Clustergram for 518 reactions involved in bile acid metabolism in (a) Mayo clinic 
cohort (cerebellum and temporal cortex), (b) ROSMAP cohort (frontal cortex) and (c) 
Mount Sinai Brain Bank (frontal pole, inferior temporal gyrus, superior temporal gyrus and 
parahippocampal gyrus). The rows correspond to bile acid reactions in the network and 
the columns are colored based on the brain regions. 
 
We analyzed the reaction fluxes and found similar set of bile acid reactions carrying fluxes 
in metabolic networks of these independent cohorts. We used this information to carry 
out statistical analysis and identify reactions that are significantly different (p-value < 0.05) 
in brain regions of AD versus the CN individuals as well as identify reactions that were 
significant in males versus females with AD. We found reactions carrying out transport of 
taurine and cholesterol were significant in the dorsolateral prefrontal cortex, temporal 
cortex and parahippocampal gyrus. Taurine is an abundant amino acid present at roughly 
1.2 mM in brain32. SLC6A6 (TAUT) and SLC36A1 (PAT1) function as taurine transporters 
and increased transport of taurine across the blood brain barrier (BBB) has been reported 
for oxidative stress conditions33. We found expression of both these genes in the brain 
transcriptome dataset, suggesting that these genes are expressed in the brain and 
involved in transport of taurine. Table 2 provides details for significant bile acid reactions 
in brain regions identified from our analysis.  



 
Table 2: List of bile acid reactions from our metabolic analysis of brain regions. The 
reactions are represented in their VMH IDs and information related to the genes and 
subsystems are also shown in the table. P-values calculated by Fisher’s exact test are 
indicated in the table and only those reactions with p-value < 0.05 are represented here. 
 

Reaction (VMH 
ID) 

Genes 
associated Subsystem p-value 

Frontal cortex 

AKR1C41 AKR1C4 Bile acid synthesis 0.033 

r2505 ABCC1 Transport, endoplasmic 
reticular 0.030 

r2146 SLCO1A2 Transport, extracellular 0.023 
TAUBETAtc SLC6A6 Transport, extracellular 0.009 

Temporal cortex 

HMR_1685 CYP27A1 Bile acid synthesis 0.0067 

CHSTEROLt 
ABCA1, 
ABCG5, 
ABCG8 

Transport, extracellular 0.0073 

TAUPAT1c SLC36A1 Transport, extracellular 0.0165 

TCHOLABCtc ABCA8 Transport, extracellular 0.0324 

3DHCDCHOLt2 SLC10A1, 
SLC10A2 Transport, extracellular 0.0185 

EBP1r EBP Cholesterol metabolism 0.0433 

HMGLx HMGCL Cholesterol metabolism 0.0293 
DHCR241r DHCR24 Cholesterol metabolism 0.0413 

EBP2r EBP Cholesterol metabolism 0.0277 

PHG 

HSD3B7P HSD3B7 Bile acid synthesis 0.003 

r1051   Transport, endoplasmic 
reticular 0.047 

r1052   Transport, lysosomal 0.047 



r2146 SLCO1A2 Transport, extracellular 0.009 

RE1796R 
HSD3B1, 
HSD3B2 Bile acid synthesis 0.003 

TAUPAT1c SLC36A1 Transport, extracellular 0.015 
 
 

From our analysis, we identified reactions with CYP27A1, required by both the neural 
cholesterol clearance pathway and the alternative bile acid pathway, as being significant 
in AD versus CN brains. Other than bile acid synthesis, reactions involving metabolites 
such as 7a-hydroxycholesterol (Virtual Metabolic Human (VMH, www.vmh.life, REF ID: 
xol7a), 7a-hydroxy-5b-cholestan-3-one (VMH ID: xol7ah), 3a,7a-dihydroxy-5b-
cholestane (VMH ID: xol7ah2) and 7a-hydroxy-cholestene-3-one (VMH ID: xol7aone) 
were also identified as being significantly different between AD and CN (p-values for 
these reactions reported in Table 2). Transport of bile acids such as taurolithocholic acid 
3-sulfate (VMH ID: HC02198), ursodeoxycholic acid (VMH ID: HC02194), taurocholic acid 
(VMH ID: tchola) and 3-dehydroxychenodeoxy cholic acid (VMH ID: 3dhchchol) can also 
be probed further to understand the role of these bile acids in AD. Thus, in silico analysis 
of brain region-specific metabolic models provides insights into reactions that may be 
involved in metabolic changes in AD that can be validated from experimental data. 
 
Identifying transcriptional regulators responsible for altered metabolism in AD 
 
Transcription factors are one important aspect of metabolic regulation that operate 
through adjusting the expression of enzyme-encoding genes. Using a transcriptional 
regulatory network informed from the same Mayo temporal cortex bulk RNA-seq samples 
used for the metabolic reconstruction, we identified candidate TFs that interact with 
metabolic genes in cholesterol and bile acid metabolism. We selectively studied those 
genes that belonged to reactions that were significantly differentially expressed in AD 
versus controls, in order to study their role in AD. For example, one gene that came up 
from our metabolic analysis of AD and controls was emopamil binding protein (EBP) 
(Figure 6). EBP is involved in cholesterol metabolism as it is responsible for one of the 
final steps in the production of cholesterol. Our brain TRN analysis identified POU6F2, 
IRF2, SMAD5, GABPA and TBR1 as the top candidate TF regulators for EBP. Regulation 
by these TFs can help in understanding their role in altered cholesterol metabolism in AD, 
particularly in evaluating the summation of coordinated changes since these TFs of 
course control other genes as well. CYP27A1, as mentioned earlier, is part of the 
alternative bile acid synthesis pathway and CREB3L2 and SOX8 are putative TFs that 
regulate expression of this gene. CREB3L2 (cAMP-responsive element binding protein 
3-like 2) is induced as a result of ER stress and may function in unfolded protein response 
signaling in neurons34. Other than the metabolism related genes, we also evaluated 
interactions of bile acid transporters such as SLC6A6, SLCO1A2, ABCC1, ABCA1, 



SLC36A1, ABCA8 and their transcriptional regulation. As seen in Figure 6, SREBF2 was 
found to interact with ABCA1 and recently there were reports of variants of SREBP2 that 
have been linked with AD25. Increased SREBF2 expression leads to higher cholesterol 
levels and presumably oxysterol and cholestenoic acid levels which are ligands of LXR. 
The peroxisome proliferator-activated receptors (PPARs) regulate various physiological 
processes and are expressed in the central nervous system. PPARA regulates genes 
involved in fatty acid metabolism and has been reported to regulate neuronal ADAM10 
expression, in turn affecting proteolysis of amyloid precursor protein35. PPARA was 
identified as a putative regulator of ABCA1 in our brain transcriptional regulatory network. 
ABCA1 plays a role in cholesterol metabolism and transport and is a candidate risk gene 
for late onset Alzheimer's disease (LOAD)36. SLC6A6, involved in transport of taurine, 
was found to be putatively regulated by STAT1, a TF reported to play an important role 
in spatial learning and memory formation37, and RXRG, that forms heterodimers with 
retinoic acid (RA), LXRs and vitamin D receptors (VDR) 38. Neuronal differentiation 6 
(NEUROD6) functions in neuronal development, differentiation, and survival in AD39 . 
Regulation of SLC36A1 by NEUROD6 indicated that this TF plays a role in controlling 
transport of taurine in the brain. These interactions can be probed further to understand 
their role in AD pathophysiology. 
 
 



 
 
 
Figure 6: Transcriptional regulatory network of brain highlighting transcription factors and 
metabolic genes involved in cholesterol and bile acid metabolism. TFs are represented 
as blue triangles, bile acid metabolism genes as yellow circles and cholesterol 
metabolism genes as pink rectangles. The significant genes are highlighted with red 
border and transcription factors in darker shade of blue. Red edges represent interactions 
between genes and TFs. 
 
In summary, the brain transcriptional regulatory network analysis led to the identification 
of candidate TFs that regulate genes in cholesterol and BA metabolism, providing clues 
towards possible roles in bile acid dysregulation in AD.  
 
 
Discussion 
 
We carried out a systematic study to identify alterations in cholesterol and bile acid 
metabolism in AD versus cognitively normal (CN) controls using patient-derived post-
mortem transcriptomics and metabolomics data.  The primary findings of our study are: 

Cholesterol metabolism genes

Bile acid metabolism genes

Transcription factors

Interaction between gene and TF



(1) alternative and neural cholesterol clearance pathway of  bile acid synthesis pathway 
genes were expressed consistently in the brain samples, indicating that these pathways 
are prevalent in the brain as compared to the classical bile acid synthesis pathway; (2) 
targeted metabolomics analysis of post-mortem brain samples identified primary and 
secondary bile acids and higher ratio of GCDCA:CA and secondary bile acids like DCA, 
LCA, TDCA, CDCA and GDCA in AD vs controls suggests that these bile acids might be 
associated with cognitive decline in AD; (3) the presence of secondary bile acids in 
metabolomics data suggests possible role of gut microbiome in AD and highlights the 
need to study the gut-brain axis to understand changes in AD; (4) transporters associated 
with taurine and cholesterol metabolism showed different usage based on our genome-
scale metabolic network analysis of three independent cohorts; and (5) transcriptional 
regulatory network analysis identified transcription factors including PPARA, RXRG and 
SREBF2 regulating bile acid and cholesterol genes in the brain.  
 
 
Role of bile acids in AD pathophysiology and use of genome-scale metabolic models 
 
Bile acids are derived from cholesterol and their synthesis is regulated by complex 
feedback mechanisms12,18. Recent studies have identified bile acids in brain samples and 
linked them with cognitive decline in AD7,10,19. To understand the physiological role of bile 
acids in the brain of AD and CN individuals, we analyzed transcriptome data from post-
mortem brain samples obtained from three independent cohorts and identified genes 
involved in the alternative bile acid pathway were expressed compared to the classical 
pathway in the brain. The alternative bile acid pathway is initiated by CYP27A1 that 
catalyzes the steroid side-chain oxidation and in the subsequent step forms C24-bile 
acids. It is also known that cholesterol is converted to 24-hydroxycholesterol by sterol 24-
hydroxylase (CYP46A1) in the brain and the gene was found to be expressed in the brain 
samples. The primary bile acids conjugate with glycine and taurine to form secondary bile 
acids. Taurine has a neuroprotective role in the brain and bile acids conjugated with 
taurine are found to be present in brain. Metabolomics data of serum samples showed 
AD patients had higher levels of serum taurine compared to controls, indicating taurine 
transport across the BBB might be affected in AD. The presence of secondary bile acids 
in the post-mortem brain samples suggests that these bile acids are either endogenously 
present in the brain or they are transported through the BBB. Bile acids such as 
ursodeoxycholic acid, taurocholic acid, taurolithocholic acid 3-sulfate and 3-
dehydroxychenodeoxy cholic acid were also identified from our analysis and role of these 
bile acids can be probed further. Based on an association study, taurolithocholic acid was 
predicted to be a cytotoxic bile acid whereas chenodeoxycholic acid and ursodeoxycholic 
acid were predicted as neuroprotective bile acids7. Our analysis of transcriptome data of 
2114 samples mapped into metabolic networks of brain regions implicated reactions 
involved in the production of metabolites such as 7a-hydroxycholesterol, 7a-hydroxy-5b-



cholestan-3-one, 7a-hydroxycholestene-3-one and other derivatives that are formed 
through CYP7A1 being significantly different (p-values for these reactions reported in 
Table 2) between AD vs CN. Although CYP7A1 was not expressed in the post-mortem 
brain samples, the difference in abundance of these metabolites in AD vs CN suggests 
that we should explore the possibility of these metabolites entering the brain through the 
periphery. In this study, we have used transcriptomic data that was available from three 
independent cohorts. Transcriptomics data is insufficient to parametrize the metabolic 
models, but if a denser longitudinal omics data becomes available in the future it will help 
in improvising the predictions from these in silico models.  Although, we identify reactions 
that are significant in these conditions, the directionality of the reactions can be solidly 
determined only if we have additional time-series metabolomics data (and ideally isotopic 
labeling experiments) to support these changes. Methods are now being developed to 
obtain cell type-specific data, so that we can gain additional information into the cells that 
are involved in regulating metabolic changes in AD. Generation of such data will help in 
refining the models and making more accurate predictions. Our brain-tissue metabolic 
models can be used by the community to capture in silico changes and possibly identify 
metabolic biomarkers prior to disease manifestation, making them useful in 
understanding interactions and mechanisms between different classes of metabolites and 
AD pathophysiology. 
 
Transcriptional regulation of bile acid and cholesterol genes 
 
Metabolism is influenced by regulation of transcription factors and metabolic genes. In 
this study, we used a reconstruction transcriptional regulatory network of brain (and 
selected brain regions) to identify candidate TFs that may interact with genes in 
cholesterol and bile acid metabolism. We identified SREBF2, PPARA, RXRG and other 
transcription factors, some of which have been studied and implicated in Alzheimer’s 
disease. SREBF2 expression enhances cholesterol levels40 and presumably oxysterol 
and cholestenoic acid levels which are ligands of LXR41. LXRs and the genes regulated 
by LXRs such as ABCA1, ABCG1 and APOE, modulate intracellular cholesterol content 
and cholesterol efflux and have been associated with AD pathogenesis42. Our analysis 
also identified PPARA as putative regulator of ABCA1 and recent studies have 
demonstrated that PPAR pathway activation increased ABCA1 levels, that in turn lead to 
APOE lipidation and amyloid ß clearance43. We also identified transport of taurine as an 
important factor from the metabolic analysis. SLC6A6 (neurotransmitter transporter, 
taurine) and SLC36A1 (neutral amino acid/proton symporter) play a role in taurine 
transport. Although there was a 1.02 to 1.3-fold change in the expression of these 
transporters in AD compared with control samples of the three cohorts across four tested 
brain regions, this difference was only found to be statistically significant in cerebellum 
(Supplementaryxf file 1). Integration of expression data with metabolic network of brain 
regions identified reactions involving taurine transporters that were statistically significant 



in AD versus controls, further supporting their potential role.  We had also STAT1 is a 
putative TF of SLC6A6, identified from our analysis of brain regulatory network. Studies 
have suggested that the increased STAT1 may be involved in inflammation in AD 
brain37,44. NEUROD6 regulates the activity of SLC36A1, a proton-coupled amino acid 
transporter. NEUROD6 is a basic helix-loop-helix TF and SNPs in NEUROD6 have been 
associated with AD, especially in APOE4+ women45. Our analysis has been able to 
capture metabolic genes and putative TFs that regulate them. These findings can be 
further strengthened by generation of higher quality footprint data from brain samples. 
 
 
Studying the gut-brain axis to understand physiological changes in AD 
 
Increasing evidence from experimental and clinical data suggests influence of gut-brain 
axis and gut microbiota in neurodegenerative diseases46,47. From our metabolic analysis 
we identified taurolithocholic, 3-dehydrochenodeoxycholic, and ursodeoxycholic acid, 
secondary bile acids, significant in AD compared to CN48 suggesting a possible 
connection to the gut microbiome. Recently, the bile acid deconjugation and 
biotransformation pathways have been reconstructed in a resource of genome-scale 
reconstructions of over 800 human gut microbes49,50. Of these, only 23 species could 
synthesize 3-dehydrochenodeoxycholic acid, only four could synthesize lithocholic acid, 
and only three could synthesize ursodeoxycholic acid50. For instance, the species 
Ruminococcus (Blautia) gnavus, and Collinsella aerofaciens synthesize 3-
dehydroxychenodeoxycholic and ursodeoxycholic acid, and Eggerthella lenta 
synthesizes 3-dehydrochenodeoxycholic and several Clostridiales representatives 
synthesize lithocholic acid50, indicating these species may play a role in Alzheimer’s 
disease. Interestingly, increased lithocholic acid in plasma has recently been proposed 
as a potential biomarker for Alzheimer’s disease51. The personalized brain models 
developed in this study could be joined with personalized microbial community models 
established previously50,52. In future efforts, such combined host-microbe metabolic 
modeling will yield more insight into mechanisms underlying altered bile acid metabolism 
in Alzheimer’s disease. 
 
 
 
Methods 
 
1. Transcriptome analysis of post-mortem brain samples  

 
Transcriptome data was obtained from post-mortem brain samples of AD patients and 
cognitively normal individuals from Religious Orders Study and Memory and Aging 
Project (ROSMAP), Mayo Clinic, University of Florida, Institute for Systems Biology and 
Mount Sinai Brain Bank (MSBB). 265 samples of temporal cortex (TC) and cerebellum 



(CER), 632 samples of frontal cortex (FC), 303 samples of frontal pole (FP), superior 
temporal gyrus (STG), inferior frontal gyrus (IFG) and parahippocampal gyrus (PHG) with 
pathologies such as AD, MCI, Parkinson’s and control were analyzed and used for 
construction of brain region-specific metabolic models. ROSMAP data can be requested 
via the Rush Alzheimer’s Disease Center website (https://www.radc.rush.edu/). RNA-seq 
libraries were prepared by different methods such as poly-A enriched, strand-specific and 
ribo-zero. Table 1 has information of number of patients with various pathologies and 
controls and methods used for RNA-sequencing. The data used in the preparation of this 
article were downloaded from Synapse 
(https://www.synapse.org/#!Synapse:syn2580853/). We performed two-tailed t-test with 
Benjamini-Hochberg correction to identify differentially expressed genes with 
corresponding p-values. The differential expression analysis for transcriptome data from 
three independent cohort is presented in Supplementary file 1. 
 
2. Bile acid sample preparation and analysis  
 
Participants of the Religious Orders Study (ROS) are comprised of Catholic brothers, 
nuns, and priests who were cognitively normal at study entry and agreed to annual clinical 
examinations and brain donation at time of death. The Rush Memory and Aging Project 
(MAP) is a companion study that includes community-dwelling older adults that all agreed 
to evaluations similar to ROS. Quantification of bile acid concentration was performed at 
the University of Hawaii cancer center. The bile acid-free matrix (BAFM) was used to 
prepare bile acid calibrators. Extracts of brain tissue along with bile acid reference 
standards were subjected to instrumental analysis53,54. All of the 57 bile acid standards 
were obtained from Steraloids Inc. (Newport, RI) and TRC Chemicals (Toronto, ON, 
Canada) and 9 stable isotope-labeled standards were obtained from C/D/N Isotopes Inc. 
(Quebec, Canada) and Steraloids Inc. (Newport, RI). A Waters ACQUITY ultra 
performance LC system coupled with a Waters XEVO TQ-S mass spectrometer was used 
for all analyses. Chromatographic separations were performed with an ACQUITY BEH 
C18 column. UPLC-MS raw data obtained with negative mode were analyzed using 
TargetLynx™ applications manager to obtain calibration equations and the quantitative 
concentration (uM) of each bile acid. Bile acids were measured from the dorsolateral 
prefrontal cortex of 111 individuals with brain pathology (51 CN, 31 MCI and 27 AD at the 
time of death). Metabolomics data can be accessed with permission at 
https://www.synapse.org/#!Synapse:syn10235594. We calculated the ratio of primary 
and secondary bile acids measured in metabolomics study and performed two-tailed t-
test to calculate p-value for each bile acid. 

 
3. Brain region-specific metabolic reconstruction  
 



We used transcriptome data (https://www.synapse.org/#!Synapse:syn2580853/) derived 
from post-mortem brain samples of three independent cohorts: Mayo clinic, ROSMAP 
and Mount Sinai Brain Bank. These cohorts contained information of different brain 
regions (CER, FC, TC, FP, STG, IFG and PHG) and the data was to generate brain 
region-specific metabolic networks. Transcriptome data was converted to binary by 
considering transcripts with values less than 25th percentile in the matrix as 0 otherwise 
1. We calculated ubiquity scores for genes in each brain region separately and used those 
for implementing mCADRE workflow55. The Recon 3D model31 of human metabolism was 
used as template to reconstruct brain region-specific metabolic networks as this model 
had information of reactions related to the primary and conjugated primary acids 
additionally added to refine the model. Once the draft reconstructions were generated, 
we used functions in COBRA toolbox to identify dead end metabolites and used reactions 
from Recon 3D model for removing gaps in the network. This step was carried out for 
each metabolic network reconstructed for brain regions. We also removed the reactions 
belonging to drug metabolism from the network, as they were not related to functions in 
the brain. Only partial urea cycle is reported to be active in the brain, and so we identified 
enzymes in the urea cycle that are present in brain56 and included the reactions related 
to these genes in the metabolic networks. The list of reactions is provided in 
Supplementary file 4-10. We did manual curation for genes present in the metabolic 
network using information from Human Protein Atlas57 for genes expressed in brain. This 
effort helped in providing further evidence for genes being present in the metabolic 
networks for brain regions. We also included metabolites defined in the cerebrospinal fluid 
(CSF) (by metabolomics data as well as the whole-body metabolism reconstruction52 and 
metabolites that can be taken up across the blood brain barrier (BBB) from blood into the 
CSF58,59,60,61,62,63. The list of metabolites that can pass BBB is provided in Supplementary 
file 19. We tested our models for 16 metabolic tasks (Supplementary file 11) that are brain 
specific and the models passed 50-70% of those tests, except for superior temporal gyrus 
metabolic network. As astrocytes are predominantly involved in maintaining brain 
physiology64, we used objective function of astrocytes for our brain metabolic networks. 
We constrained bounds of exchange reactions using information from a published work 
on metabolic interactions between cell types in brain65. Details of metabolites involved in 
objective function and bounds for constrained reactions are given in Supplementary file 
4-10. We generated context-specific personalized metabolic networks for all samples 
included in our study using iMAT algorithm66 using brain region-specific reconstructions. 
Flux variability analysis67 was carried out to determine bounds for reactions in metabolic 
networks. We used COBRA toolbox v3.068 for metabolic analysis that was implemented 
in MATLAB R2018a and academic licenses of Gurobi optimizer v7.5 and IBM CPLEX 
v12.7.1 were used to solve LP and MILP problems. 

 
4. Reaction and pathway-level analysis 
 



We carried out flux variability analysis67 for each context-specific personalized metabolic 
network and used the values for predicting metabolic changes in AD versus CN 
individuals and sex of the individuals. We created a matrix for reactions present in the 
personalized metabolic networks for each brain region and identified reactions that 
carried either minimum (vmin) or maximum (vmax) flux in the network. If a reaction carried 
flux it was assigned a state of 1, otherwise 0. This resulted in a matrix containing binary 
values for all reactions in 2114 context-specific personalized metabolic networks for 
seven brain regions. We used this scheme to classify the reactions and obtain information 
not only on the basis of flux measurements but also their activity in each network. Using 
Fisher’s exact test, we calculated p-values and those reactions with p-value < 0.05 were 
identified as significant reactions in these groups. 

 
5. Metabolic regulatory network 
 
The transcriptional regulatory network analysis (TReNA) package 
(https://rdrr.io/bioc/TReNA/) was used for identifying transcription factors (TFs) that are 
part of the co-expression modules of interest. Brain-specific transcriptional regulatory 
network was constructed69 using information from ENCODE. We downloaded the DNase 
Hypersensitivity (DHS) fastq files from ENCODE for all available brain samples and 
aligned the sequences using the SNAP method70. We performed two alignments using 
seed size of 16 and 20bp. The length of sequence data was >50 bp. The regions of open 
chromatin were identified using peak calling algorithm, F-Seq71. Footprints were 
generated using default parameters for Wellington72 and HINT73. Our method generated 
individual gene models and those footprints that are within the proximal promoter region 
(+/-5 kb of the transcription start site) are considered as priors in assessing the 
relationship between the expression of the TF and target genes. We prioritized putative 
TF regulators for each gene in the model using LASSO regression techniques, Pearson 
and Spearman correlation and random forest methods and projected the scores from 
these approaches into PCA space. The principal components were summed together to 
obtain a single composite score called pcaMax. This process is part of the trena package 
in Bioconductor (https://rdrr.io/bioc/TReNA/) and we applied the method to the post-
mortem samples from temporal cortex from Mayo Clinic. We used metabolic genes 
identified from reaction-level analysis involved in bile acid and cholesterol metabolism 
and mapped top five transcription factors that interact with these metabolic genes and 
created an interaction network. This interaction networks gave information for 
transcription factors that regulate metabolic genes and are involved in significant 
reactions in AD versus cognitively normal individuals. Cytoscape 3.7.174 was used for 
visualizing the brain transcriptional regulatory network.  
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