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SUMMARY 

Tobacco smoke exposure has been found to impact 
immune response, leukocyte subtypes, DNA methylation, 
and gene expression in human whole blood. Analysis 
with single cell technologies will resolve smoking 
associated (sub)population compositions, gene 
expression differences, and identification of rare 
subtypes masked by bulk fraction data. To characterize 
smoking-related gene expression changes in primary 
immune cells, we performed single-cell RNA sequencing 
(scRNAseq) on >45,000 human peripheral blood 
mononuclear cells (PBMCs) from smokers (n=4) and 
nonsmokers (n=4). Major cell type population 
frequencies showed strong correlation between 
scRNAseq and mass cytometry. Transcriptomes 
revealed an altered subpopulation of Natural Killer (NK)-
like T lymphocytes in smokers, which expressed elevated 
levels of FCGR3A (gene encoding CD16) compared to 
other CD8 T cell subpopulations. Relatively rare in 
nonsmokers (median: 1.8%), the transcriptionally unique 
subset of CD8 T cells comprised 7.3% of PBMCs in 
smokers. Mass cytometry confirmed a significant 
increase (p = 0.03) in the frequency of CD16+ CD8 T cells 
in smokers. The majority of CD16+ CD8 T cells were 
CD45RA positive, indicating an effector memory re-
expressing CD45RA T cell (TEMRA) phenotype. We expect 
that cigarette smoke alters CD8 T cell composition by 
shifting CD8 T cells toward differentiated functional 
states. Pseudotemporal ordering of CD8 T cell clusters 
revealed that smokers’ cells were biased toward later 
pseudotimes, and characterization of established 
markers in CD8 T cell subsets indicates a higher 
frequency of terminally differentiated cells in smokers 
than in nonsmokers, which corresponded with a lower 
frequency in naïve CD8 T cells. Consistent with an end-
stage TEMRA phenotype, FCGR3A-expressing CD8 T cells 
were inferred as the most differentiated cluster by 
pseudotime analysis and expressed markers linked to 
senescence. Examination of differentially expressed 
genes in other PBMCs uncovered additional senescence-
associated genes in CD4 T cells, NKT cells, NK cells, and 
monocytes. We also observed elevated Tregs, inducers of 
T cell senescence, in smokers. Taken together, our 
results suggest smoking-induced, senescence-
associated immune cell dysregulation contributes to 
smoking-mediated pathologies. 

INTRODUCTION 

As a risk factor for human diseases, the global disease 

burden attributed to tobacco smoke exposure remains 

substantial. The World Health Organization (WHO) estimates 

approximately six million deaths per year from tobacco smoke 

exposure, resulting from both chronic and communicable 

diseases (Stampfli and Anderson, 2009; WHO, 2015). In 

smokers, a decline in immunity and increased risk of 

inflammatory diseases, such as atherosclerosis, argues that 

smoking-associated diseases are mediated by immune 

dysfunction. The development and progression of 

atherosclerotic lesions serves as an example of a complex 

immune-mediated pathology because T cells, monocytes, 

macrophages, dendritic cells (DCs), and B cells have all been 

reported to be involved (Hansson, 2005; Ilhan and Kalkanli, 

2015). Refining smoking-associated changes in specific cells 

within immune populations will enhance our understanding of 

how dysfunctional immune subsets arise from exposure to 

tobacco smoke. This will facilitate prevention of diseases by 

identifying immune cells to target for clinical intervention. 

In addition to DNA damage, smoking alters the epigenome 

and transcriptome of human blood leukocytes (Reynolds et 

al., 2017; Su et al., 2016; Wan et al., 2018). In Su et al. (2016), 

we demonstrated that many changes identified in isolated cell 

fractions, which correspond to major immune populations, 

were distinct from each other and whole blood. For example, 

ITGAL, which is expressed in T cells and involved in 

inflammation (Wang et al., 2014), had significantly decreased 

methylation in smokers’ T cells but not in whole blood or 

isolated cell fractions. It follows that bulk data from isolated 

fractions, which are comprised of multiple subtypes, would 

similarly mask meaningful changes, especially when 

differences arise in low frequency subsets. As such, 

interpretation of bulk genomic approaches is limited because 

changes could indicate altered distribution of cell 

(sub)populations or changes in expression within 

(sub)populations. The recent development of single cell 

methods provides the technology to resolve smoking-

associated (sub)population composition changes, gene 

expression differences, and identification of rare subtypes 

obscured by bulk fraction data. Additionally, the 

multiparameter data allows us to concordantly study multiple 

cell types from the same individuals. 

To identify cell (sub)populations affected by smoking and 

possibly connect observed immune cell changes with 

smoking-associated diseases, we characterized gene 
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expression profiles and cell surface marker phenotypes from 

primary peripheral blood mononuclear cells (PBMCs) from 

four nonsmokers and four smokers by single cell RNA 

sequencing (scRNAseq) and mass cytometry. The 

combination of transcriptome profiling and 

immunophenotyping provides higher confidence in the validity 

of our findings than one single cell method alone. Major cell 

type population frequencies showed strong correlation 

between scRNAseq and mass cytometry. In addition to 

resolving PBMCs into major immune cell types, we used 

single-cell transcriptome profiling to separate cell populations 

into multiple subsets according to differentiation, activation, or 

functional states. We discovered a rare population of CD16+ 

CD8 T cells that was increased in smokers and exhibited NK-

like transcriptional programs. Pseudotime analysis and 

examination of canonical markers revealed that these NK-like 

CD8 T cells likely represent a terminally differentiated state. 

Not unique to CD8 T cells, other immune populations also 

displayed genes characteristic of senescence in smokers.  

By discovering an altered abundance of a rare population, 

single cell methodologies revealed a novel immune target that 

can be isolated and explored for connections between 

smoking and chronic diseases. Combined with increased 

(pre-)senescent CD8 T cells, elevated regulatory T cells (Tregs) 

and induction of senescence-linked genes in multiple cell 

types provide evidence that smokers show signs of premature 

aging of their immune systems. The potential immune function 

defects and inflammatory subsets demonstrated here mirror 

characteristics of pathologies commonly found in smokers. 

Further studies of smoking-associated dysregulation of 

immune transcriptional programs and candidate dysfunctional 

T cells linked to accelerated aging of the immune system, 

uncovered here, will lead to mechanistic insights to advance 

disease prevention strategies for smoking-mediated 

pathologies. 

RESULTS 

scRNAseq and Mass Cytometry Profiling of Human 
Peripheral Blood Immune Cells in Smokers and 
Nonsmokers 
We set out to characterize the effects of cigarette smoke on 

immune cells in peripheral blood using single-cell approaches 

to determine whether smoking-associated gene expression 

changes observed within major immune cell populations 

resulted from altered abundance of specific, identifiable cell 

subsets. We performed scRNAseq and mass cytometry, in 

parallel, on cryopreserved peripheral blood samples from 

eight donors (Figure 1A). The samples were obtained from 

nonsmokers (n = 4) and smokers (n = 4) with no previous 

history of atherosclerosis, chronic obstructive pulmonary 

disease (COPD), or lung cancer. We used serum cotinine, a 

metabolite of nicotine and established biomarker of recent 

cigarette smoke exposure (Florescu et al., 2009), to confirm 

smoking status of donors. Smokers used for single-cell 

analyses had serum cotinine levels ranging from 240 – 511 

ng/ml; all nonsmokers had serum cotinine levels below 2 

ng/ml. Nonsmoking donors were matched to smoking donors 

based on gender and race. Donors’ ages ranged from 31 – 56 

and were not significantly different between smokers and 

nonsmokers (p = 0.23). Demographic and smoking 

information for each individual used in this study is listed in 

Table S1. We obtained single-cell mRNA data from 45,049 

cells and surface protein expression data for 26 markers from 

990,748 cells. 

For each single-cell approach, we assigned cells to 

common immune populations based on mRNA (scRNAseq) 

or surface protein expression (mass cytometry) of well-

characterized markers (Figures 1B-1E and Table S2). For 

scRNAseq, we used Seurat (Butler et al., 2018; Stuart et al., 

2019) to anchor datasets across donors and implement 

shared nearest neighbors (SNN) clustering (see Methods). 

We then used Model-based Analysis of Single-cell 

Transcriptomics (MAST; (Finak et al., 2015)) to identify 

positive and negative marker genes for each cluster and 

combined cells into major immune populations based on 

expression of marker genes (Table S2). Cells in clusters 

expressing CD3D as a positive marker were designated as T 

cells (Figure 1D). T cells were further classified into CD4 T 

cells, CD8 T cells, or NKT cells based on expression of CD4, 
CD8A, or NCR3 (Figure 1D. NK cells were identified based on 

CD3D as a negative marker combined with expression of 

NKG7, GNLY, GZMB, PRF1, and NCR3 as positive markers 

(Figure 1D and Table S2). Monocytes were positive for LYZ 

and either CD14 or FCGR3A (gene encoding CD16 protein), 

characteristic of classical or nonclassical monocytes (Figure 

1D). Dendritic cells were similar to monocytes but could be 

distinguished by expression of FCER1A (Figure 1D). B cells 

were defined by MS4A1 (gene encoding CD20 protein) 

(Figure 1D).  

In parallel, 250,000 PBMCs from each donor were 

assessed by mass cytometry using an immunophenotyping 

panel (see Methods). Viable, single-cell events were manually 

gated to remove normalization beads, doublets and dead cells 

using Cytobank ((Kotecha et al., 2010); Figure S1A) and 

imported into the VorteX Clustering Environment using default 

parameter recommendations (Samusik et al., 2016). Using 

weighted k-nearest neighbor clustering, an elbow point 

validation was performed to determine the optimal clustering 

k value which was then used to create a Force-Directed 

Layout (FDL) graph using the X-shift algorithm (see methods). 

122 PBMC cell cluster identities (IDs) were determined from 

the eight donors representing 983,848 cells (Figure S1B) in 

which the cells could also be visualized by smoking status 

(Figure S1C). Cell surface protein expression profiles were 

used to identify the cell populations (Figures 1C and 1E). Cells 

identified as T cells displayed CD3 (Figure 1E), which could 

then be classified with CD4 and CD8 (Figure 1E) as double 

negative (DNT), double positive (DPT), CD4 T, or CD8 T cells 

(Figure 1C). NKT cells were identified by CD3 and CD56 with 

either CD4 or CD8 protein expression markers. Monocytes 

were identified by protein expression of CD14 and/or CD16 

and dendritic cells had CD123 above background levels 

(Figure 1E). B cells were positive for CD19 (Figure 1E). NK 

cells were positive for CD56 but negative for CD3 (Figure 1E).  

To determine how well the scRNAseq and mass cytometry 

corresponded with each other, we examined the individual 

donor contribution in each cluster for each cell type. Cells 

colored by individual donors are shown for scRNAseq (Figure 

S1D) and mass cytometry (Figure S1E). Cell type frequencies 

were calculated based on cluster identification and plotted to 

compare frequency distributions among individuals (Figures 

1F and 1G). For both methods, all major populations—CD4T, 

CD8T, NKT, B, Monocyte, and DC—were identified in all 

donors. We then compared the frequency of major 

populations in PBMCs by smoking status for scRNAseq and 

mass cytometry using a Mann Whitney U test. We observed 

no differences in the overall frequency of major cell types 

between smokers and nonsmokers by either scRNAseq or 

mass cytometry (Figures S1F and S1G). Comparing the 
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percentage of cells in the major immune populations among 

individuals for scRNAseq and mass cytometry showed 

significant strong correlation (Pearson r = 0.99, r2 = 0.98, 

p<0.0001) between methods (Figure 1H). 

scRNAseq Reveals Increased Tregs and Altered 
Composition of the CD8 T Cell Population Between 
Smokers and Nonsmokers 
In addition to dividing PBMCs into major immune cell types, 

single-cell transcriptome profiling can be used to separate cell 

populations into multiple subsets according to differentiation, 

activation, or functional states. Based on gene expression 

patterns, we clustered peripheral blood cells into thirty-one 

immune cell clusters and one erythroid contaminant cluster, 

labeled based on abundance from 0 (most abundant) through 

31 (Figure 2A and Table S2). We identified twelve CD4 T cell 

(0, 1, 3, 4, 6, 10, 13, 14, 17, 18, 20, and 27), seven CD8 T cell 

(2, 8, 11, 15, 19, 21, and 24), three NK cell (7, 22, and 25), 

four monocyte (5, 23, 26, and 30), and two B cell (9 and 12) 

clusters. NKTs (16), DCs (28), and MKs (31) were each 

contained by a single cluster. Clusters are referred to as major 

immune cell type, followed by original cluster ID (e.g., CD4T-

0). To determine whether smoking altered the subtype 

distribution within the major cell populations, we compared the 

abundance of cells among clusters for each major cell type 

that separated into more than one cluster. Cells colored by 

smoking status are shown in Figure 2B. We did not observe 

any subset frequency shifts in B cells, monocytes, or NK cells 

(Figures S2A-S2F). 

For 11 of 12 CD4 T cell subsets, frequency was not 

significantly altered by smoking (Figures 2B and 2C). 

Although donors exhibited interindividual variation in percent 

of each CD4 T cell subset, smoking status did not appear to 

have a considerable impact on the distribution of CD4 T cells 

(Figure 2D). Only one cluster, CD4T-17, was higher in 

smokers than in nonsmokers (p < 0.05; Figure 2C). This 

cluster had relatively low abundance among CD4 T cell 

subsets: median 3.5% in nonsmokers and 5.4% in smokers. 

We characterized CD4T-17 cells as regulatory T cells (Tregs) 

based on elevated FOXP3 and IL2RA (gene encoding CD25) 

compared to other PBMCs (Figure 2E and Table S2). No other 

CD4T clusters showed either FOXP3 and IL2RA as strong 

positive markers.  

In contrast to CD4 T cells, variation among donors in CD8 

T cells appeared to depend on smoking status as illustrated 

by distinct differences of the dominant population(s) in 

nonsmoking and smoking donor CD8 T cells (Figure 2E). 

Smokers had lower proportions of two CD8 T cell clusters 

(CD8T-24 and CD8T-2) and higher proportions of two CD8 T 

cell clusters (CD8T-8 and CD8T-15) compared to 

nonsmokers (p < 0.05; Figure 2F). We did not observe 

significant differences in proportions of the remaining three 

CD8 T cell clusters (CD8T-19, CD8T-11, CD8T-21). 

Altered Distribution of CD8 T Cell Subsets Indicates Shift 
from Naïve to Differentiated CD8 T Cell States in Smokers 
Smoking had substantial effects on the composition of CD8 T 

cells. Because of this, we further analyzed each of the seven 

CD8 T clusters to identify gene expression patterns that made 

cells in each cluster distinct. We used MAST to identify 

positive and negative markers for each CD8 T cluster relative 

to other CD8 T cells (see Methods). We found 71, 223, 46, 

144, 71, 739, and 105 positive and 86, 978, 10, 68, 59, 214, 

and 52 negative markers (q < 0.05 in both smokers’ and 

nonsmokers’ cells) for CD8T-24, CD8T-2, CD8T-19, CD8T-

11, CD8T-21, CD8T-8, and CD8T-15 clusters, respectively 

(Table S3). We next examined marker gene lists for genes 

associated with T cell differentiation and function to 

distinguish between CD8 T subsets. Several genes frequently 

used to classify CD8 T subsets varied among CD8 T cell 

clusters (Figures 3A and 3B). Elevated CCR7, SELL, and 

IL7R combined with low CCL5 indicate that clusters CD8T-24 

and CD8T-2 represent naïve CD8 T cells. High levels of IL7R, 
SELL, and FOS (associated with proliferation of activated T 

cells (Martins et al., 2008; Shaulian and Karin, 2002)) suggest 

that cluster CD8T-15 consists of cells exhibiting 

characteristics of long-lived memory cells, such as central 

memory T cells (TCM). The reduced levels of CCR7, SELL, and 

IL7R and elevated CCL5 and KLRG1 in CD8T-11, CD8T-21, 

and CD8T-8 are indicative of later T cell differentiation stages 

(e.g., TEM). The lack of CD27 expression and decrease in FOS 

in CD8T-21 and CD8T-8 suggest highly differentiated TEM 

cells (i.e. TEMRA). ZEB2, associated with terminal 

differentiation states (Scott and Omilusik, 2019), was detected 

in approximately one-third of CD8T-8 cells (35.1% in smokers 

and 28.2% in nonsmokers). 

Several clusters exhibited intermediate expression of 

differentiation-state genes. To organize CD8 T cell clusters by 

their likely differentiation trajectories, we used the Slingshot 

algorithm (Street et al., 2018) to perform pseudotemporal 

analysis. Lineage inference ordered CD8 T cells into two 

lineages, which originate from cluster CD8T-24 and terminate 

at either cluster CD8T-8 or CD8T-15 (Figure 3C). Lineage one 

was mostly comprised of cells from CD8T-24, CD8T-2, CD8T-

19, CD8T-8, CD8T-21, and CD8T-8, with minimal cells from 

CD8T-15. Lineage two was mostly comprised of cells from 

CD8T-24, CD8T-2, and CD8T-15, with minimal cells from 

CD8T-19. Based on the altered composition of CD8 T cell 

subsets—lower proportions of CD8T-2 and CD8T-24 and 

higher proportions of CD8T-8 and CD8T-15 cells (Figures 2B, 

2F, and 2G)—we propose that tobacco smoke exposure 

alters CD8 T cell composition by shifting CD8 T cells toward 

differentiated states. Smokers’ cells were biased toward later 

pseudotimes in both lineages (Figure 3D), demonstrating 

smokers’ CD8 T cells are skewed toward differentiated and 

nonsmokers’ CD8 T cells are skewed toward naïve states. 

After ordering cells by pseudotime, we identified temporally 

Figure 1. Profiling of single cell RNA sequencing (scRNAseq) and mass cytometry of human peripheral blood mononuclear cells 
(PBMCs) from smokers and nonsmokers  

(A) Overview of experimental design. Cryopreserved PBMCs from smokers and nonsmokers were thawed for scRNAseq and mass cytometry, in parallel.  

(B) Uniform Manifold Approximation and Projection (UMAP) plot of single cell RNA sequencing (scRNAseq) showing ~45,000 human peripheral blood 

mononuclear cells (PBMCs) colored by major cell types. 

(C) Force Directed Layout (FDL) of mass cytometry showing ~1 million live cells colored by major cell types. 
(D) scRNAseq displaying canonical gene expression markers for major cell types: CD8T cells (CD3D, CD8A), CD4T cells (CD3D, CD4) Natural Killer T 

(NKT) cells (CD3D, NCR3), Natural Killer (NK) cells (NCR3), monocytes (CD14, FCGR3A [CD16]), dendritic cells (DCs; FCER1A) and B cells (MS4A1).  

(E) Mass cytometry displaying cell surface protein expression for major cell types: CD8T cells (CD3, CD8a), CD4T cells (CD3, CD4), NKT cells (CD3, 

CD56), NK cells (CD56), monocytes (CD14, CD16), DCs (CD123) and B cells (CD19).  

(F-G) Major cell type population frequency distributions shown by individual donor (Nonsmokers, NS; Smokers, SM) for scRNAseq (F) and mass 

cytometry (G), colored by cell type. 

(H) Major cell type population frequencies showed strong correlation between scRNAseq and mass cytometry (Pearson r = .99, r2 = 0.98, p<0.0001). 

Shapes represent paired individuals, nonsmokers (unfilled) and smokers (filled), are colored by cell type.  
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associated genes for each lineage. Only 10 genes within the 

top 100 temporally expressed genes (Figures S3A and S3B) 

were shared between the lineages. IL32, which is induced in 

activated T cells (Goda et al., 2006), increased in both 

(Figures 3E). Similarly, most shared genes exhibited the 

same direction of change over pseudotime in both lineages. 

In contrast, LTB, a TNF superfamily ligand (Ware, 2005), 

decreased over pseudotime in lineage one and increased 

over pseudotime in lineage two. In general, temporally 

expressed genes for CD8 T cell lineages were consistent with 

effector memory (lineage one) and central memory (lineage 

two) differentiation. For example, in lineage one, CCL5 and 

NKG7 increased, while SELL and IL7R decreased over the 

differentiation trajectory (Figures S3A and S3C). CMC1 

demonstrated a nonlinear association in lineage one, as it 

peaked in CD8T-21 cells and then decreased through CD8T-

8 cells (Figures S3A and S3C).  

The terminal cluster in the effector memory trajectory, 

CD8T-8, shared many features with the penultimate cluster, 

CD8T-21; however, CD8T-8 increased in smokers but CD8T-

21 did not. Since the low expression of CD27 and CCR7 and 

elevated expression of KLRG1 in both clusters would classify 

these cells as highly differentiated CD8 T cells (i.e. TEMRA-like), 

we sought to find markers within CD8T-8 that did not occur in 

CD8T-21 to detect distinguishing features of this cluster. 

Examination of exhaustion markers—TOX, PDCD1 (gene 

encoding PD-1), CTLA4, and HAVCR2 (gene encoding TIM3) 

did not distinguish the clusters. Whereas smokers’ CD8T-8 

cells had elevated expression of TOX (logFC = 0.22, q = 1.44 

x 10-9), nonsmokers’ CD8T-8 cells did not, and no other 

exhaustion markers were significantly elevated in CD8T-8 

cells (Table S3). We next examined senescence-associated 

genes KLRG1 and B3GAT1 (gene encoding CD57). While 

KRLG1 was considered a positive marker for CD8T-21 

(smokers: logFC = 0.45, q = 8.11 x 10-04; nonsmokers: logFC 

= 0.92, q = 2.23 x 10-22) and CD8T-8 cells (smokers: logFC = 

0.65, q = 6.29 x 10-47; nonsmokers: logFC = 0.89, q = 1.94 x 

10-40), B3GAT1 was unique to CD8T-8 cells (smokers: logFC 

= 0.14, q = 3.83 x 10-14; nonsmokers: logFC = 0.07, q = 0.022). 

We also found that two genes reported as having smoking-

associated methylation changes, GFI1 and PRSS23 

(Joehanes et al., 2016), showed elevated expression in 

CD8T-8 cells (GFI1 smokers: logFC = 0.14, q = 5.58 x 10-7; 

GFI1 nonsmokers: logFC = 0.15, q = 0.046; PRSS23 

smokers: logFC = 0.74, q = 1.5 x 10-143; PRSS23 nonsmokers: 

logFC = 0.63, q = 7.7 x 10-60). Surprisingly, FCGR3A, which is 

commonly found on NK cells and nonclassical monocytes, 

was identified as a strong positive marker of CD8T-8 cells in 

smokers (logFC = 1.13, q = 1.17 x 10-171) and nonsmokers 

(logFC = 1.20, q = 5.17 x 10-119; Figure 1D and Table S3).  

Mass Cytometry Confirms Elevated Proportion of CD16+ 
CD8 T Cells in Smokers 
Relatively rare in nonsmokers (median: 1.8%), the FCGR3A-

expressing CD8 T cell cluster (CD8T-8) comprised 7.3% of 

PBMCs in smokers. Reported as a low-frequency subset (~ 

2% of PBMCs in healthy adults), CD16+ CD8 T cells have 

been described previously (Bjorkstrom et al., 2008; 

Clemenceau et al., 2008; Clemenceau et al., 2011). Based on 

these reports and similarities of cells in the CD8T-8 cluster 

with cells in other effector memory CD8 T cell clusters (CD8T-

11 and CD8T-21), we sought to ascertain whether smokers 

had increased levels of CD16+ CD8 T cells that expressed 

surface proteins for CD3, but not CD56. That is, confirm an 

increase in CD16 expression within CD8 T cells that are not 

NKT cells. To show that smokers had increased surface 

protein expression of CD16 within their CD8 T cells, we first 

ran the X-shift algorithm on all CD8 T and NKT cells (Figures 

3F-H). After visualizing the FDL colored by cluster IDs (Figure 

3F) we examined the protein expression intensities for CD56 

and CD16 (Figures 3G and 3H) for smokers and nonsmokers. 

We did not see any differences between smokers’ and 

nonsmokers’ CD8 T cells for CD56 (Figure 3G), but smokers 

showed an increase in the proportion of CD8 T cells 

expressing CD16 compared to nonsmokers (Figure 3H). In 

order to determine the frequency of CD16+ CD8 T cells in 

smokers and nonsmokers, a biaxial plot for CD3 and CD56 

was created for manual gating (Figure S3D). CD3+CD56- 

negative cells were then gated by CD4 and CD8 to obtain 

single positive CD8 T cells (CD3+CD56-CD8+CD4-, Figure 

S3D), which were then used to determine the frequency of 

CD16+ CD8 T cells (CD3+CD56-CD8+CD4-CD16+, Figure 

S3D). Compared to nonsmokers, smokers had a significant 

increase in the frequency of CD16+ CD8 T cells (p = 0.03, 

Figure 3I) confirming that smokers had elevated proportions 

of CD16+ CD8 T cells.  

In order to phenotype the CD16+ CD8 T cell subset, we 

gated CD3+ T cells by a CD45RA/CD45 biaxial plot to 

establish an accurate CD45RA+ gate that was then applied to 

the CD16+ CD8 T cells (Figure S3E). The majority of CD16+ 

CD8 T cells were positive for CD45RA in both smokers and 

nonsmokers (Figure S3F). Thus, this CD8 T subset is likely 

comprised of effector memory T cells re-expressing CD45RA 

(TEMRA) cells. 

FCGR3A(CD16)-expressing CD8 T Cells Exhibit 
Transcriptome Signatures Characteristic of a Natural 
Killer-like Phenotype 

After confirming an increase in CD16+ CD8 T cells in 

smokers, we further examined how the transcriptomes of 

FCGR3A-expressing CD8 T cells differed from other CD8 T 

cells. In addition to FCGR3A, CD8T-8 cells exhibited elevated 

expression NKG7, GNLY, FGFBP2, GZMB, and PRF1 
(Tables S2 and S3). While these genes can be considered 

expression signatures typical of both cytotoxic T cells and NK 

cells, the presence of CD16 lead us to suspect that this subset 

might express additional genes indicative of NK-like 

attributes. To gain further insight into the functional relevance 

of gene expression profiles for CD8T-8 cells, we performed 

Gene Set Enrichment Analysis (GSEA). Consistent with an 

NK-like transcriptional program, 

LI_INDUCED_T_TO_NATURAL_KILLER_UP had a positive 

Figure 2. An increase in CD4 Tregs and an altered composition in the CD8 T cell population is observed between smokers (SM) and 
nonsmokers (NS) 
(A) scRNAseq UMAP colored by cluster ID number. 

(B) scRNAseq UMAP colored by smoking status (nonsmokers blue, smokers red). Clusters CD8T-24 and CD8T-2 had more cells from nonsmokers and 

CD4T-17, CD8T-15 and CD8T-8 showed more cells from smokers. Dotted circles indicate cluster ID. 

(C-D) Frequency of subsets within CD4 T cells. Smokers (filled) had a significant increase in cluster CD4T-17 compared to nonsmokers (unfilled). Bar = 

median, *p < 0.05 by Mann-Whitney U test (C). Individual donor distribution of CD4 T cell subsets (D). 

(E) Violin plot of FOXP3 gene expression within the CD4 T subsets. 

(F-G) Frequency of subsets within CD8 T cells. Individual donor distribution of CD8 T cell subsets (F). Smokers (filled) had significant decreases in 

clusters CD8T-24 and CD8T-2 and increases in clusters CD8T-8 and CD8T-15 compared to nonsmokers (unfilled). Bar = median, *p < 0.05 by Mann-

Whitney U test (G). 
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normalized enrichment score (NES = 1.88, FWER < 0.05) and 

GSE22886_NAIVE_TCELL_VS_NKCELL_UP had a 

negative NES (-2.13, FWER < 0.05). The 

LI_INDUCED_T_TO_NATURAL_KILLER_UP gene set 

encompasses expression patterns for T cells reprogrammed 

to have NK-like phenotypes: “induced T to NK” (iTNK) cells (Li 

et al., 2010). Here, we found elevated expression of 67 and 

71 genes from the iTNK gene signature as positive markers 

(q < 0.05) of FCGR3A-expressing CD8 T cells in smokers and 

nonsmokers, respectively. Figure 4A shows the 25 highest 

ranked positive markers (based on q-value) for CD8T-8 cells 

within the iTNK gene set. In addition to positive enrichment for 

iTNK genes, CDT8-8 genes were negatively enriched (FWER 

< 0.05) for genes that are higher in naïve CD8 T cells relative 

to NK cells (GSE22886_NAIVE_TCELL_VS_NKCELL_UP). 

Smokers’ and nonsmokers’ CD8T-8 cells had significantly 

reduced expression (i.e. negative markers) of 55 and 45 

genes within the naïve CD8 T vs NK gene set. Figure 4B 

shows the 25 highest ranked negative markers (based on p-

value) for CD8T-8 cells within the naïve CD8 T vs NK gene 

set. 

To examine how smokers’ “NK-like” CD8 T cells differed 

from those of nonsmokers, we compared average expression 

of genes from smokers’ CD8T-8 cells to nonsmokers’ CD8T-

8 cells (see Methods). We found that 63 genes had increased 

and 74 genes had decreased average per cell expression in 

smokers compared to nonsmokers (q < 0.05; Table S4). 

Figures S4A and S4B show 25 genes with increased and 

decreased per cell expression, ordered by difference in 

percentage of cells expressing each gene between smokers’ 

and nonsmokers’ NK-like CD8 T cells. Although cellular 

mRNA levels for effector molecules granzyme B (encoded by 

GZMB) and Perforin (encoded by PRF1) exhibited 

interindividual variation, both increased in frequency of 

expression and average per cell expression in smokers 

compared to nonsmokers (Figures 4C – 4F, S4A, S4C and 

S4D). 

CD8 T Bulk Transcriptomes Reflect Differentiation-State 
Shifts Observed at Single-Cell Level 
To assess the overall impact of smoking on CD8 T cells, we 

identified differentially expressed genes (DEGs) between 

smokers and nonsmokers by comparing the average per cell 

expression for all cells in the seven CD8 T clusters combined. 

Of 2163 genes evaluated in the pseudobulk analysis, we 

found that 1817 genes had higher expression and 344 genes 

had lower expression in smokers versus nonsmokers (q < 

0.05; Table S5). To examine the interindividual variability in 

response to smoking, we performed hierarchical clustering 

using smoking scRNA-DEGs, which separated individual 

donors by smoking status (Figures 5A and S5A). To confirm 

altered CD8 T gene expression profiles in smokers, we used 

RNAseq and microarray on isolated CD8 T cells to examine 

differences in bulk RNA expression between smokers and 

nonsmokers. Isolated CD8 T cells for bulk RNAseq included 

the eight donors used in scRNAseq and seven additional 

donors (seven smokers, eight nonsmokers); samples 

obtained from the donors used in scRNAseq were from a 

previous visit (Table S1). We identified 1268 genes as 

differentially expressed; 692 increased and 576 decreased (q 

< 0.05; Figure 5B). With exception of F061, principal 

component analysis of bulk RNAseq data separated smokers 

from nonsmokers (Figure 5C). We also evaluated microarray 

data from isolated CD8 T cells from 19 donors (9 smokers and 

10 nonsmokers). Isolated CD8T cells included 4 donors used 

in scRNAseq, 4 donors used in bulk RNAseq, and 11 

additional donors (Table S1). We identified 51 genes as 

differentially expressed (see Methods); 46 increased and 5 

decreased (Figure 5D). 

We next compared results from the three methods 

(pseudobulk scRNAseq, bulk RNAseq, and bulk microarray) 

used to identify smoking-associated DEGs in CD8 T cells. 

Bulk RNAseq confirmed 241 smoking DEGs from the 

scRNAseq, 162 with increased and 79 with decreased 

expression in smokers compared to nonsmokers (Figures 5B, 

5E and 5F; Table S5). Microarray analysis confirmed 24 

smoking DEGs that were identified in the scRNAseq with 

increased expression in smokers compared to nonsmokers 

(Table S5; Figures 5A, 5D and 5E). Two genes, FAM129A 

and CD58, were identified as increased in smokers’ CD8 T 

cells by all three methods (Figures 5A – 5B, 5D – 5E, 5G, and 

S5A; Table S5). Several genes found to be altered by at least 

two methods include LGALS1, ADAM8, and CLDND1, which 

were significantly increased in bulk RNAseq and scRNAseq 

data; GPR15, which was increased in the bulk RNAseq and 

microarray data; and NDFIP1, which was significantly 

decreased in the bulk RNAseq and scRNAseq data (Figures 

5A, 5B, 5D, and S5B – S5E). ITGAL, a smoking methylation 

biomarker (Su et al., 2016), was only found to be significantly 

increased by scRNAseq (logFC = 0.25, q = 1.7 x 10-26), and 

was also elevated in NK-like subset (smokers: logFC = 0.45, 

q = 6.53 x 10-29; nonsmokers: logFC = 0.54, q = 1.50 x 10-20). 

Although each method identified smoking DEGs not found 

by other methods, we expect the overall gene expression 

changes observed for each method to represent a similar shift 

in the functional states of CD8 T cells. We used GSEA to 

determine whether CD8 T pseudobulk and bulk 

transcriptomes were enriched for similar functional 

annotations. There were seven positively and eight negatively 

enriched gene sets in common among pseudobulk 

scRNAseq, bulk RNAseq, and bulk microarray (FWER < 0.05; 

Figures 5H, 5SF, and 5SG). CD8 T cells were positively 

enriched for genes with higher expression in memory, central 

memory, effector memory, PD1 low (CD8 T effector memory), 

and PD1 high (CD8 T effector memory) T cells relative to 

naïve T cells (Figure 5H). CD8 T cells were negatively 

enriched for genes that have higher expression in naïve T 

cells relative to memory, central memory, effector memory, 

PD1 low (CD8 T effector memory), and PD1 high (CD8 T 

effector memory) T cells (Figure 5H). Therefore, GSEA of 

CD8 T smoking DEGs identified immunological signatures 

indicative of increased expression of genes associated with 

effector memory and central memory functions and 

decreased expression of genes associated with naïve T cells 

Figure 3. CD8 T cell subsets shift from naïve to differentiated CD8 T cells states 
(A) scRNAseq UMAP of the seven CD8 T cell subsets colored by cluster ID number. 

(B) Violin plots showing expression of genes selected to characterize CD8 T subsets. Color indicates cluster ID. 

(C) Trajectory inference (pseudotime analyses) ordered CD8 T cell clusters into two lineages, which originate from cluster CD8T-24 and terminate at 

either cluster CD8T-8 (lineage 1) or CD8T-15 (lineage2). Black line shows lineage tree and the gray line shows the simultaneous principle curves. 

(D) Violin plots show pseudotime for CD8 T cells by individual nonsmokers (NS) and smokers (SM) in lineage one (left) and lineage two (right). 

(E) Pseudotemporal trajectory of CD8 T cell differentiation in IL32 (top) and LTB (bottom) for lineage one (left) and lineage two (right). 

(F-I) Mass cytometry confirms elevated proportion of CD16+ CD8 T cells in smokers. (F) FDL of CD8 T and NKT cells colored by cluster ID. (G-H) Cell 

surface marker intensity FDL plots of nonsmokers (top) and smokers (bottom) for NK marker CD56 (G) and CD16 (H). (I) Frequency of CD16+ cells 

increases within CD8 T cells in smokers (filled) compared to nonsmokers (unfilled). Bar = median, *p < 0.05 by one-tail Mann-Whitney U test. 
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by all three methods. 

Smoking-associated Gene Expression Changes in PBMC 
Populations 

Since we did not observe substantial changes in subset 

distribution for most of the major PBMC populations, we 

compared average per cell expression of genes for all cells 

within each cell type (CD4 T, NKT, NK, Monocyte, DC, and B) 

to identify smoking DEGs. For CD4 T cells, we found 1563 

DEGs; 1278 showed increased expression and 285 showed 

decreased expression (Table S6). Hierarchical clustering of 

donors by CD4 T smoking DEGs clustered individuals by 

smoking status (Figures 6A). Analysis of bulk gene 

expression in isolated CD4 T cells by microarray identified two 

upregulated (LRRN3 and GPR171) and one downregulated 

(APBA2) gene in common with the CD4 T pseudobulk 

analysis (Figures 6A and S6A). NKT cells had 89 smoking 

DEGs, 45 with increased and 44 with decreased expression, 

and NK cells had 238 smoking DEGs, 129 with increased and 

109 with decreased expression (Table S6). Hierarchical 

clustering of DEGs separated donors by smoking status for 

NKT, but not for NK cells (Figures 6B and 6C). Microarray 

analysis of isolated CD56 cells, which contain NKT and NK 

cells, shared three upregulated genes and one downregulated 

gene with NKT cells and three upregulated and three 

downregulated genes with NK cells (Figures 6B, 6C, and 

S6B). MX1, which was increased in smokers’ CD56 cells, 

showed increased expression in both NKT and NK cells 

(Figures 6B and 6C). KLRB1, which was decreased in 

smokers’ CD56 cells, showed decreased expression in both 

NKT and NK cells (Figures 6B and 6C). For monocytes, we 

found 488 DEGs between smokers and nonsmokers by 

scRNA pseudobulk analysis (Figure 6D and Table S6). Of the 

290 DEGs with higher expression in smokers’ monocytes, 15 

were also shown to be increased in smokers’ isolated CD14 

cells by microarray (Figures 6D and S6C). For DCs, we 

identified 21 smoking DEGs; 5 showed increased expression 

and 16 showed decreased expression (Table S6). 

Hierarchical clustering of DC smoking DEGs separated 

donors into two groups: three smokers and four nonsmokers 

with one smoker (Figure 6E). For B cells, we found 190 DEGs; 

111 with increased and 79 with decreased expression in 

smokers (Table S6). Using microarray in isolated CD19 cells, 

we were able to confirm decreased expression of HLA-DQA1 

in smokers’ B cells compared to nonsmokers’ B cells (Figures 

6F and S6D). Table 1 lists the biological relevance of smoking 

DEGs that were found in major PBMC populations by 

pseudobulk scRNAseq and confirmed by microarray.  

DISCUSSION 

Sharing transcriptome signatures with NK-like cells, our study 

reveals CD16+ CD8 T cells as elevated in smokers. This 

unique CD8 T subset was uncovered by scRNAseq and 

confirmed by mass cytometry in human PBMCs from multiple 

individuals. The NK-like CD8 T cells displayed downregulation 

of genes expressed in naïve CD8 T cells and upregulation of 

genes characteristic of NK cells. They shared transcriptomic 

features with iTNK cells, which acquire NK surface receptors 

and have increased cytotoxic potency (Li et al., 2010). 

Combined with CD16 and CD45RA protein expression, the 

transcriptome of CD8T-8 cells implies an innate-like, 

terminally-differentiated CD8 T subset. CD16, commonly 

associated with NK cells, acts as a receptor that binds IgG 

antibodies to mediate antibody-dependent cellular cytotoxicity 

(ADCC); exogenous or endogenous CD16 expression 

enables T cells to execute ADCC (Clemenceau et al., 2006; 

Clemenceau et al., 2008). Consistent with a heightened 

cytotoxic potential, the CD8T-8 cells had elevated mRNA 

expression of cytolytic effector molecules, GZMB and PRF1; 

these transcripts were also higher in smokers than 

nonsmokers in the NK-like CD8 T subset. Granzyme B and 

perforin expressing CD8 T cells contribute to the development 

of atherosclerotic plaques in mice (Hiebert et al., 2013; Kyaw 

et al., 2013b). As such, our results highlight a potential link 

between smoking-induced functional changes in human CD8 

T cells and atherosclerosis.  

As the first study to apply scRNAseq and mass cytometry 

to PBMCs from tobacco smoke-exposed individuals, we show 

that major immune populations can be discerned, and 

disparate subsets can be identified for CD4 T cells, CD8 T 

cells, NK cells, monocytes, and B cells. We did not observe 

any significant changes in subset distribution for NK cells, 

monocytes, and B cells. However, pseudobulk analysis 

revealed smoking DEGs, several of which were confirmed in 

bulk cell-type fractions. The increase in Tregs in smokers 

identified by scRNAseq data is likely masked in bulk data from 

isolated CD4 T cells because Tregs are a low frequency subset. 

Notably, Tregs have been shown to induce T-cell senescence 

(Ye et al., 2012), highlighting a potential role for the increase 

in Tregs observed in smokers. In addition, we identified one, 

two, four, and five senescence-related genes in CD4 T cells, 

NKT cells, NK cells, and monocytes (Table 1). MX1, a gene 

that is induced in TNFa-mediated senescence (Kandhaya-

Pillai et al., 2017), increased in smokers in NKT cells, NK 

cells, and monocytes. Alluding to shared regulation of pro-

senescent and pro-atherosclerotic signaling, TNFa-induced 

senescence genes are enriched for atherosclerosis signaling 

Figure 5. CD8 T bulk transcriptomes reflect differentiation-state shifts at single-cell level 
(A) scRNAseq heatmap of the top 350 upregulated and downregulated differentially expressed genes (DEGs) between smokers and nonsmokers from 

the seven CD8 T cell clusters. Individual donors were separated by smoking status using smoking scRNA-DEGs for hierarchical clustering. Genes 

labeled were also found to be significantly upregulated in the CD8 T cell microarray results. 

(B) Volcano plot displaying bulk RNAseq expression of isolated CD8 T cells between smokers and nonsmokers. Genes with higher expression in smokers 

are colored red and genes with lower expression in smokers are colored blue. Gene names in black were altered in bulk RNAseq and scRNAseq. Gene 

names in gray were altered in bulk RNAseq and microarray. Gene names in bold were altered in microarray, bulk RNAseq and scRNAseq. 

(C) Principal component analysis (PCA) of bulk RNAseq data from an expanded group of donors. Isolated CD8 T cells from the same donors as included 

in scRNAseq and mass cytometry data were from a previous donor visit and are indicated with both an “F” and “V” patient code. See Table S1 for donor 

information. 

(D) Volcano plot displaying microarray expression of isolated CD8 T cells between smokers and nonsmokers, see Table S1 for details. Genes with higher 

expression in smokers are colored red and genes with lower expression in smokers are colored blue. Gene names in black were altered in microarray 

and scRNAseq. Gene names in gray were altered in microarray and bulk RNAseq. Gene names in bold were altered in microarray, bulk RNAseq and 

scRNAseq. 

(E-F) Venn diagrams comparing DEGs among scRNAseq, microarray and bulk RNAseq for upregulated (E) and downregulated genes (F) in smokers 

compared to nonsmokers. 

(G) Genome browser tracks of bulk RNAseq data for FAM129A, which was significantly increased by all three methods. 

(H) GSEA pathways for immunological signatures and chemical and genetic perturbations that were significantly enriched (FWER < 0.05) for scRNAseq, 

bulk RNAseq and microarray.  
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Table 1. Smoking DEGs altered in both scRNAseq and microarray 
Gene Name DEG Biological Process/Function/Pathway 
CD8 T    
granzyme B ↑ GZMB PD1low (Duraiswamy et al., 2011) 
natural killer cell granule protein 7 ↑ NKG7 PD1low, PD1high (Duraiswamy et al., 2011) 
perforin 1 ↑ PRF1 PD1low, PD1high (Duraiswamy et al., 2011) 
killer cell lectin like receptor D1 ↑ KLRD1 PD1low, PD1high (Duraiswamy et al., 2011) 
sterile alpha motif domain containing 3 ↑ SAMD3 CD8 T tolerance (Schietinger et al., 2012; Uniken Venema et al., 2019) 
G protein-coupled receptor 171 ↑ GPR171 Negative regulation of myeloid differentiation (Rossi et al., 2013) 
calpastatin ↑ CAST PD1low, PD1high (Duraiswamy et al., 2011); Eff Memory, Cent Memory, (Abbas et al., 2009) 
chromosome 1 open reading frame 21 ↑ C1orf21 Cytotoxic T by scRNAseq in Crohn’s Disease (Uniken Venema et al., 2019) 
family with sequence similarity 129, member A ↑ FAM129A PD1low, PD1high (Duraiswamy et al., 2011); Memory, Eff Memory, Cent Memory (Abbas et 

al., 2009)  
TNF superfamily member 10 ↑ TNFSF10 Marker for atherosclerosis plaque formation (Arcidiacono et al., 2018) 
C-X3-C motif chemokine receptor 1 ↑ CX3CR1 Chemokine Receptor Associated with terminally differentiated effector CD8 cells (Gerlach et 

al., 2016) 
pyrin and HIN domain family member 1 ↑ PYHIN1 PD1low, PD1high (Duraiswamy et al., 2011); Memory (Abbas et al., 2009) 
AT-rich interaction domain 5B ↑ ARID5B Cent Memory (Abbas et al., 2009) 
zinc finger E-box binding homeobox 2 ↑ ZEB2 PD1low, PD1high (Duraiswamy et al., 2011) 
CD58 molecule ↑ CD58 PD1low, PD1high (Duraiswamy et al., 2011); Memory, Eff Memory, Cent Memory (Abbas et 

al., 2009)  
protein kinase cAMP-dependent type I regulatory  subunit alpha ↑ PRKAR1A Enhance cytoxicity of Effector T cells (Panya et al., 2018) 
acyloxyacyl hydrolase ↑ AOAH Eff Memory Phenotype, increase in CLL CD3 T cells (Gothert et al., 2013) 
proline rich 5 like ↑ PRR5L PD1low, PD1high (Duraiswamy et al., 2011); Eff Memory, Cent Memory (Abbas et al., 2009) 
MYB proto-oncogene like 1 ↑ MYBL1 PD1low, PD1high (Duraiswamy et al., 2011); Memory, Eff Memory, Cent Memory (Abbas et 

al., 2009) 
ATPase plasma membrane Ca2+ transporting 4 ↑ ATP2B4 PD1low, PD1high (Duraiswamy et al., 2011); Memory, Eff Memory, Cent Memory (Abbas et 

al., 2009) 
synaptotagmin 11 ↑ SYT11 PD1low, PD1high (Duraiswamy et al., 2011) 
killer cell immunoglobulin like receptor, three Ig domains and long 

cytoplasmic tail 2 
↑ KIR3DL2a T cell aging (Chen et al., 2013) 

death domain containing 1 ↑ DTHD1 Unknown function 
fibrinogen like 2 ↑ FGL2a Replicative senescence (Binet et al., 2009); procoagulant (Hu et al., 2016) 
CD4 T    
leucine rich repeat neuronal protein 3 ↑ LRRN3a Smoking methylation (Guida et al., 2015); T cell replicative senescence (Chou et al., 2013) 
G protein-coupled receptor 171 ↑ GPR171 Negative regulation of myeloid differentiation (Rossi et al., 2013) 
amyloid beta precursor protein binding family A member 2 ↓ APBA2 Smoking methylation (Chung et al., 2018) 
NKT    
prokineticin 2 ↑ PROK2 Inflammatory response in smoking (Yun et al., 2017) and diabetes (Castelli et al., 2016) 
MX dynamin like GTPase 1 ↑ MX1a TNF-a induced cellular senescence (Kandhaya-Pillai et al., 2017) 
T cell receptor associated transmembrane adaptor 1 ↑ TRAT1 Leukocyte activation (Taylor et al., 2017) 
killer cell lectin like receptor B1 ↓ KLRB1a Downregulated in human aged CD4+ memory T cells (Chen et al., 2013) 
NK    
MX dynamin like GTPase 1 ↑ MX1a TNF-a induced cellular senescence (Kandhaya-Pillai et al., 2017) 
dedicator of cytokinesis 5 ↑ DOCK5a Upregulated in CD57+ NK (Lopez-Verges et al., 2010) 
chondroitin sulfate N-acetylgalactosaminyltransferase 1 ↑ CSGALNACT1 Positively correlated with smoking (Charlesworth et al., 2010) 
CD160 molecule ↓ CD160a Increased in exhausted T cells (Kasakovski et al., 2018) 
X-C motif chemokine ligand 2 ↓ XCL2 Overexpressed in lung cancer tumors, increases with prognosis (Zhou et al., 2016) 
killer cell lectin like receptor B1 ↓ KLRB1a Downregulated in human aged CD4+ memory T cells (Chen et al., 2013) 
Monocytes    
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Gene Name DEG Biological Process/Function/Pathway 
phospholipid scramblase 1 ↑ PLSCR1 Expression increased with cytokine treatment (Kodigepalli et al., 2015) 
GTPase, IMAP family member 4 ↑ GIMAP4 Regulates INF-gamma in CD4 T cell differentiation (Heinonen et al., 2015) 
MX dynamin like GTPase 1 ↑ MX1a TNF-a induced cellular senescence (Kandhaya-Pillai et al., 2017) 
MX dynamin like GTPase 2 ↑ MX2a TNF-a induced cellular senescence (Kandhaya-Pillai et al., 2017) 
poly(ADP-ribose) polymerase family member 9 ↑ PARP9 Silences pro-inflammatory genes, found in atherosclerotic plaques (Iwata et al., 2016) 
cystatin C ↑ CST3a Atherosclerosis (Chung et al., 2018); cellular senescence (Basisty et al., 2019) 
sterile alpha motif domain containing 9 ↑ SAMD9 Anti-inflammatory factor (He et al., 2019) 
TNF superfamily member 13b ↑ TNFSF13B Reg proliferation and differentiation of atherogenic B cells (Kyaw et al., 2013a) 
cysteine rich secretory protein LCCL domain containing 2 ↑ CRISPLD2 Regulates anti-inflammatory effects (Himes et al., 2014) 
erythrocyte membrane protein band 4.1 like 3 ↑ EPB41L3 Positively correlated smoking gene and associated with cancer (Charlesworth et al., 2010) 
heat shock protein family A (Hsp70) member 1B ↑ HSPA1B Overexpressed in advanced atherosclerosis (Kilic and Mandal, 2012) 
thrombospondin 1 ↑ THBS1 Regulation of monocyte mobility, vascular inflammation (Liu et al., 2015) 
interferon induced protein with tetratricopeptide repeats 5 ↑ IFIT5a Up in TNF-alpha mediated cellular senescence (Kandhaya-Pillai et al., 2017) 
formyl peptide receptor 2 ↑ FPR2 Increased in atherosclerotic lesions and plaque stability (Petri et al., 2015) 
interferon induced with helicase C domain 1 ↑ IFIH1a Up in TNF-alpha mediated cellular senescence (Kandhaya-Pillai et al., 2017) 
B    
major histocompatibility complex, class II, DQ alpha 1 ↓ HLA-DQA1 Presents peptides from extracellular protein in T cells (Zajacova et al., 2018) 

aindicates gene associated with cellular senescence
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genes (Kandhaya-Pillai et al., 2017). CST3, which increased 

in smoker monocytes, is associated with subclinical 

atherosclerosis (Chung et al., 2018) and cellular senescence 

(Basisty et al., 2019). Among the monocyte smoking DEGs, 

we also identified TNFSF13B, a critical regulator of 

atherogenic B cell proliferation and differentiation (Kyaw et al., 

2013a). Other notable genes connected to atherosclerosis 

that increased in smokers’ monocytes include PARP9 (Iwata 

et al., 2016), HSPA1B (Kilic and Mandal, 2012), and FPR2 

(Petri et al., 2015). 

We used established markers and trajectory inference to 

characterize the CD8 T differentiation state shifts between 

smokers and nonsmokers. Both approaches demonstrate that 

smokers lose naïve and gain TCM-like and TEMRA-like cells. 

Composition shifts in CD8 T cells established by scRNAseq 

were reflected in bulk methods. Interestingly, all three 

transcriptomic techniques identified gene expression changes 

associated with PD-1hi CD8 T cells. With persistent antigen 

stimulation, the inhibitory effect of the PD-1 pathway 

contributes to pathologies associated with T-cell dysfunction 

during chronic viral infection and tumor evasion of host 

immune response (Duraiswamy et al., 2011). Duraiswamy et 

al. (2011) demonstrated that PD-1hi CD8 T cells obtained from 

healthy adults had similar gene expression profiles to PD-1lo 

CD8 T cells and did not show either exhausted gene 

signatures or phenotypes characteristic of PD-1hi cells 

obtained from humans or mice with chronic infections. 

Smoking DEGs that were found in CD8 T cells in pseudobulk 

scRNAseq and confirmed in the microarray were included 

within these gene signatures (Figure 5H and Table 1). 

Notably, bulk RNAseq was run on samples from a prior visit 

to that of samples used for scRNAseq, suggesting a chronic 

or recurring state of activation in smokers’ CD8 T cells. 

The NK-like CD8 T cells were found to have the latest 

pseudotimes, consistent with an end-stage TEMRA phenotype. 

The loss of naïve and accumulation of terminally differentiated 

T cells, observed here in smokers, mimics the altered 

distribution of T cell subsets reported in aging and chronic 

infections that is proposed to result from repeated or 

persistent stimulation of immune cells, ultimately leading to 

loss of immune function either due to replicative senescence 

or functional exhaustion (Akbar and Henson, 2011; Larbi and 

Fulop, 2014; Reiser and Banerjee, 2016). Gene expression 

changes in low-frequency subsets may not be discernable in 

pseudobulk and bulk analyses. Therefore, we looked for 

indicators of T cell dysfunction within the smoking-associated 

NK-like CD8 T subset. While TOX, a transcription factor that 

controls fate commitment in exhausted T cells (Khan et al., 

2019), was elevated in smokers’ NK-like CD8 T cells 

compared to other CD8 T cells, it was only detected in 8.9% 

of cells within this cluster. Other exhaustion markers PDCD1, 

CTLA4, and HAVCR2 were not increased. Whereas 

exhausted CD8 T cells lack cytotoxic activity, the high 

expression of genes encoding proteins responsible for 

cytolytic activity in CD8T-8 cells suggests that these cells 

more likely represent a senescent or pre-senescent state. 

Supporting NK-like CD8 T cells as (pre-)senescent, smokers 

and nonsmokers had elevated expression of KLRG1, an 

inhibitory receptor correlated with extensive proliferative 

history (Voehringer et al., 2001), and B3GAT1 (CD57), a 

marker of limited proliferative potential and shortened 

telomeres (Brenchley et al., 2003). Senescence can be 

induced as the result of telomere shortening or non-telomeric 

DNA damage (Akbar and Henson, 2011), both of which have 

been reported to occur in smokers (Song et al., 2010; Valdes 

et al., 2005). Accelerated immune system aging accompanies 

T cell senescence and can manifest as impaired 

immunological memory (Reading et al., 2018), which could 

contribute to attenuated immune responses in smokers. Of 

note, GFI1, a transcriptional repressor of IL-7Ra that drives 

terminal differentiation of CD8 T cells (Ligons et al., 2012), 

was elevated in CD8T-8 cells. GFI1 is a reproducible 

methylation biomarker for tobacco smoke exposure (Bacher 

and Kendziorski, 2016; Joubert et al., 2016; Joubert et al., 

2012; Parmar et al., 2018), and altered methylation persists 

up to at least 30 years after smoking cessation (Joehanes et 

al., 2016). Taken together, this indicates that epigenetic 

modifications likely contribute to smoking-mediated 

reprogramming of CD8 T cells. The acquisition of CD16 and 

NK-like characteristics would imply an underappreciated role 

for CD16 receptor in maintenance of cytotoxic activity in TEMRA 

cells in smokers.  

In conclusion, our discovery uncovers a new immune-cell 

subtype that can be isolated to investigate how NK-like CD8 

T cells contribute to proinflammatory state(s) in smoking-

mediated chronic inflammatory conditions. Our data illustrates 

novel links between smoking-induced gene expression 

changes and both atherosclerosis and senescence, in 

multiple immune populations. Consequently, our use of 

recently developed single-cell technologies to address 

tobacco smoke exposure has great potential to impact global 

health. 

METHODS 

Human Subjects 
All donors were recruited with written informed consent under 

approved human IRB protocols (NIEHS 10-E-0063) by the 

NIEHS Clinical Research Unit between March 2013 to August 

2017 from the Raleigh, Durham and Chapel Hill, NC area (Su 

et al., 2016; Wan et al., 2018). Whole blood was obtained from 

healthy (without acute disease according to self-reported 

medical histories) from nonsmokers, not having smoked >100 

cigarettes in their lifetime, and smokers who reported their 

average daily cigarette consumption for the past 3 months. 

Serum nicotine/cotinine levels were measured by HPLC-MS 

(Quest, Inc.) as an indication of their smoking exposure 

status. Donors were recalled matching nonsmokers/smokers 

on age, sex and ethnicity for additional whole blood collection, 

cotinine levels were measured from the additional sample. 

See Table S1 for additional donor information. 

PBMC Isolation for scRNAseq and Mass Cytometry 
Whole blood was diluted 1:5 v/v with QIAGEN Buffer EL and 

incubated at room temperature (RT) until clarified (~10 min) 

before centrifugation (300g, RT, 10 min). After supernatant 

removal, leukocytes were resuspended in the same volume 

of Buffer EL (5 min) before spinning (300g, 8 min). Leukocytes 

were then washed twice in autoMACS Running Buffer 

(Miltenyi Biotec), counted, and cryopreserved [20% Iscove's 

Modified Dulbecco's Medium (IMDM), 70% Fetal Bovine 

Serum (FBS), 10% Dimethyl sulfoxide (DMSO)] at a 

concentration of 1x107 cells/mL. Cryopreserved cells were 

thawed in nonsmoker/smoker pairs following the10X 

Genomic’s protocol for “Fresh Frozen Human Peripheral 

Blood Mononuclear Cells for Single Cell RNA Sequencing”. 

Briefly, cells were serially diluted dropwise in complete media 

(IMDM,10% FBS) adding 50U/mL Benzonase (Millipore 

Sigma) for the first dilution. After centrifugation (1100 rpm, 8 

min, RT), cells were resuspended in complete media and 

incubated with CD15 Dynabeads (Thermo Fisher Scientific) 

according the manufacturer’s instructions to deplete the 
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neutrophils from the PBMCs. PBMCs were then counted for 

viability and aliquoted for scRNAseq or mass cytometry in 

parallel. 

PBMC Preparation for Purified Cell Fractions 
The mononuclear layer was isolated directly from whole blood 

using density gradient centrifugation with Histopaque-1077 

Ficoll and ACCUSPIN™ Tubes (Sigma Millipore). Purified 

CD4+, CD8+, CD14+, CD19+, CD56+ cell fractions were 

collected using antibody-coated magnetic beads 

(Dynabeads,Thermo Fisher Scientific; CD56, Miltenyi Biotec). 

Antibody purified fractions were then extracted for DNA and 

RNA using the AllPrep DNA/RNA/miRNA Universal Kit 

according to the manufacturer’s instructions (QIAGEN). 

Mass Cytometry 
Thawed PBMCs (~3x106 cells) were spun (300 g, 5 min) and 

resuspended in calcium magnesium-free phosphate buffered 

saline (PBS). 1µM Cisplatin (Fluidigm) was added for viability 

staining for 5 minutes before quenching the reaction with 

MaxPar Cell Staining Buffer (Fluidigm). After centrifugation 

(300 g, 5 min), cells were resuspended in CBS at a 

concentration of 60x106 cells/mL and incubated (RT,10 min) 

with Fc receptor binding inhibitor before adding 25 MaxPar 

metal-conjugated antibodies (Fluidigm) against 

immunophenotypic markers for an additional 30-minute 

incubation at RT. Stained cells were then washed two times 

before resuspension in MaxPar fix and perm buffer with 

125µM 191/193Ir intercalator for either an hour at RT or 4°C 

overnight. Cells were then washed twice with CSB and two 

times with Nuclease-Free water (Thermo Fisher Scientific) 

followed by filtering through 40uM strainers to remove 

aggregates. Cells were then counted and resuspended in 

nuclease-free water at ~ 5x105 cells/mL with 1:10 volume of 

four-element calibration beads (Fluidigm) and analyzed on a 

Helios instrument (Fluidigm) for 250,000 events for each 

donor at the NIEHS Flow Cytometer Center. Following the 

manufacturer’s instructions, downstream processing involved 

normalization by the calibration beads and .fcs files were 

uploaded to Cytobank. 

Events were gated in Cytobank to identify single viable 

cells. Cells gated from spiked-in normalization beads were 

subsequently gated by Iridium (191Ir) and Cisplatin (198Pt) to 

obtain DNA positive cells. Single cells were identified by event 

length and Iridium (193Ir) and viable cells by Cisplatin-198Pt 

and leukocyte marker CD45. Viable cells were exported as fcs 

files and imported into VorteX (Samusik et al., 2016) using all 

events for each donor totaling 990,748 cells. Using the default 

parameter recommendations (Kimball et al., 2018), all data 

were transformed using hyperbolic arcsin (f=5). Applying a 

noise threshold of 1.0, clustering analysis was performed 

using a Euclidean length profile of 1.0 in X-shift and the 

weighted K-nearest neighbor density estimation (K). An elbow 

point validation was performed to determine the optimal 

cluster K value (K=25) which was then used to create a Force-

Directed Layout (FDL) for visualization. 136 clusters were 

identified from the 990,748 events, one cluster was 

determined to be red blood cells (RBCs; positive expression 

profile for CD235a/b) and 13 clusters had multiple lineage 

markers and were determined to be doublets (e.g. positive 

expression profiles for CD19 [B cells] and CD3 [T cells]) which 

was a total of 6900 cells that were removed prior to 

downstream analysis.  

Transcriptomics 
For scRNAseq, libraries were prepared with the Chromium™ 

Single Cell 3' Library & Gel Bead Kit v2 (10X Genomics). For 

bulk RNAseq, RNA from isolated CD8+ cell fractions was 

prepared using the TruSeq Stranded Total RNA Library Prep 

Gold (Illumina). 

scRNAseq data was processed with CellRanger. Uniquely 

aligned reads sharing equal barcode×UMI tags but annotated 

to multiple protein-coding transcripts (i.e. ambiguous UMIs), 

within each replicate were discarded from the analysis. 

Dataset alignment, SNN clustering, and UMAP visualization 

of scRNA data were performed with Seurat v3 (Stuart et al., 

2019); cell cluster marker genes and smoking DEGs were 

identified with Seurat v2 (Butler et al., 2018) implementing the 

MAST algorithm (Finak et al., 2015). Slingshot was used to 

perform pseudotime analysis and identify temporally 

expressed genes (Street et al., 2018).  

For microarray, differentially expressed genes were 

detected using log2-transformed expression fold change 

estimates with respect to the composite average of RMA-

corrected fluorescence log-intensity levels (log2FC) across 

matched fractions (CD14, CD19, CD4, CD56, CD8) from 

multiple individual female donors, both smoking and non-

smoking (N = 53 overall, with N≥5 per cell fraction × smoking 

status group).  Probe-wise log2FC values were tested across 

statistical groups through a resolution-weighed ANOVA; 

resolution weights represented relative metrics of 

fluorescence discrimination in the dynamic range of detection, 

i.e. cumulative hazard of multivariate ANOVA significance 

scores (probe × cell fraction × smoking status) from probe-

wise generalized linear modeling of RMA-corrected 

fluorescence log-intensities using an exponential distribution 

and inverse link function (Lozoya et al., 2018). DEGs were 

detected from the annotation of probes with significance level 

p<0.05 adjusted for multiple comparisons (Benjamini and 

Hochberg, 1995), then filtered against a minimum probe-wise 

effect size δlog2FC>0.3×σlog2FC and post hoc pairwise 

significance (Student’s t-test p<0.05) between log2FC values 

of at least 1 matched comparison between smokers and 

nonsmokers on same cell fraction levels. For probe-level 

effect size filtering, δlog2FC=0.3×σSSR is 5% of the 6σ-spread 

log2FC regression error with respect to a probe’s grand mean 

[where (σSSR)2=(SSRlog2FC)/(N-1)] compared to 5% of the 6σ-

spread in measurement error about the mean log2FC of each 

statistical group in the probe [where (σlog2FC)2=(SSElog2FC)/(N-

1)]. 

We used GSEA (Mootha et al., 2003; Subramanian et al., 

2005) to perform gene set enrichment analysis for Chemical 

and Genetic Perturbations and Immunological Signatures 

(Godec et al., 2016) gene sets for scRNAseq, bulk RNAseq, 

and microarray. The venn diagrams to compare DEGs among 

scRNAseq, bulk RNAseq, and microarray were generated 

with VennDiagramWeb (Lam et al., 2016). 
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