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Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin,
reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain
time-dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation
curves using an atomic force microscope to access the dependence of cortex fluidity on pre-stress.
We introduce a viscoelastic model that treats the cell as a composite shell and assumes that
relaxation of the cortex follows a power law giving access to cortical pre-stress, area compressibility
modulus, and the power law (fluidity) exponent. Cortex fluidity is modulated by interfering
with myosin activity. We find that the power law exponent of the cell cortex decreases with
increasing intrinsic pre-stress and area compressibility modulus, in accordance with previous
finding for isolated actin networks subject to external stress. Extrapolation to zero tension returns
the theoretically predicted power law exponent for transiently cross-linked polymer networks.
In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters
independent of indenter geometry and compression velocity.

PACS numbers: 87.15.La, 82.35.Lr, 87.16.Ka, 87.16.Ln

Many cellular processes such as adhesion, motility,
growth, and development are tightly associated with the
mechanical properties of cells and their environment [1–
3]. Vitality and fate of cells are often directly inferred
from their elastic properties [4–6]. In search for effective
and standardized mechanical phenotyping of living cells,
several tools have been developed that permit precise and
fast measurements [7]. The response of cells to external
deformation is primarily attributed to the viscoelasticity
of the cellular cortex [8, 9]. The cortex forms a compos-
ite shell consisting of a compliant but contractile actin
mesh with a large number of actin-binding proteins cou-
pled to the plasma membrane [10, 11]. The thin actin
cortex can be contracted by the action of motor proteins
such as myosin II, resulting in a measurable pre-stress
that provides resistance against deformation at low strain
[8, 12]. It was found that rheological parameters of com-
pliant cells such as the complex shear modulus generally
obey a power law dependency G∗ ∝ ωβ over multiple
decades in frequency ω [13, 14]. The dimensionless power
law coefficient β characterizes the degree of fluidity and
energy dissipation upon deformation, where β = 0 rep-
resents an ideal elastic solid and β = 1 a Newtonian
liquid. Values obtained for the power law exponent of
living cells usually range between 0.2 – 0.4 for adherent
cells suggesting glassy dynamics [4, 13]. In vitro exper-
iments and theory suggest that transiently cross-linked
actin networks generate a broad spectrum of relaxation
times typical for a power law behavior with β = 0.5 be-
low the characteristic frequency (2π/τoff , τoff being the

unbinding time of the cross-linker) [15]. It is still unclear
why rheological properties found for living cells and those
of artificial actin cortices are different. Recently, Mulla
et al. could show that transient cross-linking of actin
filaments combined with external stress lead to lowering
of the power law exponent [16]. Our goal is to exam-
ine how internal stress changes the viscoelastic proper-
ties of living cells. Therefore, we require a viscoelastic
model that permits to relate pre-stress of cells to flu-
idity obtained from deformation-relaxation experiments.
Our viscoelastic model of the cortex is based on power
law rheology and suitable to describe the time-dependent
deformation and relaxation of adherent and suspended
cells. Drugs like blebbistatin [17] and calyculin A [18]
were administrated to arrest and boost myosin activity,
respectively, allowing us to alter the intrinsic pre-stress in
a predictable fashion. We found that cortex fluidity is de-
creased with increasing pre-stress, while extrapolation to
zero tension recovers the predicted power law exponent
of 0.5 found for transiently cross-linked actin networks
[19].
From scrutinizing the cortex thickness and its mesh size
(Fig. 1A-C and SI) with scanning electron microscopy
and fluorescence microscopy, it is safe to treat the cor-
tex as a two-dimensional continuous material neglecting
bending stiffness and area shear modulus [20]. The cor-
tex resists deformation only by its area compressibility
modulus and pre-stress. We refer to this model as the
viscoelastic Evans model throughout the text due to his
seminal and initial work on cortex mechanics [20]. Vis-
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coelasticity of the 2D area compressibility modulus is as-
sumed to follow a power law. Minimizing free energy
assuming constant volume leads to minimal surfaces of
constant curvature. The force f balance at the equato-
rial radius for cells between two parallel plates reads:

f =
2πR0R

2
i

R2
0 −R2

i

(T0 +KAα) (1)

with R0 the equatorial radius, Ri the contact radius,
α = ∆A

A0
the areal strain, T0 the pre-stress, and KA the

area compressibility modulus of the cortex. It is straight-
forward to cast the model into non-dimensional form that
permits to write eq. (1) as g (ξ) = f

RcT
, with ξ = zp/Rc

(Fig. 1A, SI). zp is the distance between the plates, Rc

the initial radius of the cell in suspension and T denotes
the overall homogeneous tension. Hence, g(ξ) and α(ξ)
are generic functions that only need to be computed once.
Both functions can easily be approximated by polynomi-
als g(ξ) ≈

∑3
i=1 ciξ

i and α(ξ) ≈
∑3
i=1 diξ

i permitting
one to obtain an analytical solution of the corresponding
elastic-viscoelastic problem (see SI). The general heredi-
tary integral for the restoring force during parallel-plate
compression (0 < t < tm, eq. (2)) and relaxation (t > tm)
reads [21]:

f = g(ξ)Rc

(
T0 +

∫ s

0

K̃A(t− τ)
∂α(τ)

∂τ
dτ

)
(2)

with s = t for compression and s = tm for relaxation
(α̇ = 0). The integrals can be solved by using ξ ≈ v0t

Rc

for compression with the constant velocity v0 and assum-
ing a power law behavior of K̃A = KA(t/t0)−β with the
time-scaling parameter t0 (see SI). The general scheme
described here can also be used to describe the deforma-
tion of adherent and confluent cells with various indenter
geometries (see SI).
We used an atomic force microscope to examine the vis-
coelastic properties of fibroblasts (3T3) and MDCK II
cells in a confluent and suspended state. For parallel-
plate compression experiments, tipless cantilevers were
used to compress weakly adhering cells (Fig. 1), while
cantilevers equipped with spherical (diameter: 3.5, 6.6,
15 µm) and conical tips (18◦ half cone angle) were em-
ployed for indentation experiments. We used constant
approach and retraction velocities between 0.5 – 25 µm/s
and a relaxation time of several seconds. As indicated,
either blebbistatin or calyculin A were added to cell
medium shortly before cell seeding. Detailed descriptions
can be found in the SI.
Fig. 1D shows a typical compression-relaxation experi-
ment of a single MDCK II cell using parallel-plate geom-
etry. It is divided into the compression phase (i) during
which the cell is loaded at constant velocity until the
yield force is reached at tm and subsequent force relax-
ation (ii) at constant distance between the plates. The

FIG. 1. A) CLSM image (xz plane) of a MDCK II cell (inter-
nal and plasma membrane stained with CellMask) clamped
between cantilever and substrate. White drawing shows the
parametrization of the cell’s contour. B) Left side shows the
STED image (xy plane) of the cellular cortex (green: actin)
of a MDCK II cell. The right side shows the reconstruction
used to determine cortex thickness (see SI). C) SEM image
of a MDCK II cell revealing its cortex structure (right). D)
Typical compression (i) at v0 = 0.5 µm followed by force
relaxation (ii) of a MDCK II cell and fits according to the
Hertz model (blue line, E0 = 450 Pa, β = 0.22) and the
Evans model (red line, T0 = 0.75 mN/m, KA = 0.44 N/m,
β = 0.49). The inset shows the time-evolution of the contour.
E) Varying the compression velocity does not significantly
change the fitting results: T0 = 0.83 mN/m, KA = 0.39 N/m,
β = 0.42 for the MDCK II cell compressed with 0.5 µm/s
and T0 = 0.57 mN/m, KA = 0.24 N/m, β = 0.43 for the
same cell compressed at 5 µm/s. F) Compression-relaxation
curve of a MDCK II cell after blebbistatin treatment show-
ing substantial softening. Blue line: Hertz fit (E0 = 62 Pa,
β = 0.41). Red line: Evans fit (T0 = 0.02 mN/m, KA = 0.002
N/m, β = 0.57) G) MDCK II cell subjected to calyculin A
treatment that increases motor activity. Blue line: Hertz fit
(E0 = 1097 Pa, β = 0.18). Red line: Evans fit (T0 = 1.6
mN/m, KA = 2.36 N/m, β = 0.4).
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FIG. 2. A) Indentation-retraction curve of a confluent
MDCK II cell probed by a conical indenter and subject to
fitting with the viscoelastic Evans model (red line) and Hertz
model (blue line). The insets show a cross section of the
cell and the computed shape after indentation, respectively
(scale bar: 10 µm). B) Young’s modulus E0 of confluent
MDCK II cells obtained from fitting a viscoelastic Hertz
model to indentation-relaxation experiments performed with
different indenter geometries (cone, spheres with various di-
ameters). C/D) T0 and KA of the same cells as in B) obtained
from fitting with the viscoelastic Evans model.

full curve from the contact to the end of the relaxation
curve was modeled with eq. (2) by adapting the three fit-
ting parameters (red line), cortical tension T0, area com-
pressibility modulus KA, and the power law exponent β.
Eq. (2) requires input regarding the size of each cell (Rc),
which was measured using light microscopy prior to com-
pression. For comparison, we also fitted the viscoelastic
Hertz model (blue lines) to the data, which falls short in
describing the curves, especially at low strain where ten-
sion dominates, and directly at the onset of relaxation.
As a consequence, β values obtained from viscoelastic
Hertz mechanics are systematically smaller than those
provided by the Evans model (see SI). Fig. 1E shows rep-
resentative fits of eq. (2) to compression-relaxation curves
of MDCK II cells loaded with 0.5 µm/s and 5 µm/s, re-
spectively. As required, the viscoelastic parameters are
not impacted in this moderate velocity regime. However,
since hydrodynamic drag at the onset of the compression
curve is only negligible at low approach speed, subse-
quent experiments were carried out predominately at low
speed (≤ 1 µm/s). The impact of blebbistatin and ca-
lyculin A on the compression-relaxation curves is shown
exemplarily in Fig. 1F/G, while mean values are provided
in Fig. 3. The softening of cells due to stalling of myosin
motors is mirrored in smaller cortical tension and larger
power law exponents, compared to untreated cells. This
is particularly distinct for MDCK II cells, while fibrob-
lasts in suspension are less affected (see SI). An increase

in β is indicative of cortex fluidization, which we attribute
to a loss of transient cross-links otherwise provided by
myosin bundles. Administration of calyculin A, which
is a phosphatase inhibitor that increases myosin II activ-
ity, generates only slightly larger pre-stress (contractility)
and smaller β values, indicative of cell stiffening. Here,
the drug turned out to be mildly toxic obscuring the effect
of enhanced contractility. Knowledge of cortex thickness
and mesh size (see SI, Fig. 1B/C), allows to estimate

the area compressibility modulus from KA ≈
3kBTl

2
p

ζ2
d
l3c

,

with the distance between cross-links lc ≈ ζ4/5l
1/5
p and

the persistence length lp of 17 µm [19]. With a mesh
size of ζ = 25 − 150 nm and a cortex thickness d in the
range of 100-1500 nm we arrive for KA at values between
0.3 mN/m up to 11 N/m, which is in good accordance
with our results. Notably, the same arguments leave us
with Young’s modules in the range of 3 kPa up to 7 MPa,
which is at least two orders of magnitude higher than val-
ues obtained from fits of the Hertz model (Fig. 2). Ex-
perimentally, the validity of a viscoelastic model can be
verified by testing whether the two models generate vis-
coelastic parameters that are independent of the choice
of indenter geometry or size. For this purpose, we used
confluent MDCK II cells, which are easily probed with
different indenter geometries and adapted the model ac-
cording to the new overall geometry (Fig. 2, SI). Gen-
erally, confluent MDCK II cells are softer than those in
suspension. Importantly, we find that the Young’s mod-
ulus obtained from the Hertz model depends on the size
of the indenter. Larger radii of spherical and conical in-
denters result in systematically smaller Young’s modules.
In contrast, neither cortex tension nor area compressibil-
ity modules depend on the indenter size rendering the
Hertz model unsuitable to provide geometry-invariant
viscoelastic parameters. The Evans model, however, is

FIG. 3. Power law exponents β of MDCK II cells as a func-
tion of pre-stress T0 and area compressibility modulus KA.
Yellow square: mean value for blebbistatin-treated cells; blue
circle: untreated cells; magenta circle: calyculin A-treated
cells; purple triangle: GDA-fixated cells. Dotted lines repre-
sent fits illustrating the predicted logarithmic dependence of
β on the elastic modules and the internal pre-stress [14].

suitable to describe force relaxation curves over the en-
tire experimental timescale independent of compression
speed and indenter geometry. A poroelastic behavior of
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the cells (MDCK II) was proposed to describe the initial
relaxation response after fast loading [22]. Here, we show
that this initial drop is well captured by simple power law
rheology but requires treatment of the actomyosin cor-
tex as a pre-stressed shell. Therefore, the Evans model
paves the way to address a fundamental problem in cell
rheology, the apparent discrepancy between the rheology
of living cells with glassy dynamics providing β values
of 0.2 and the rheology of transiently cross-linked actin
networks expecting β values of 0.5 reflecting the broad
distribution of relaxation times [15]. Firstly, we found
that the power law exponents obtained from the Hertz
model are systematically lower (β̄ ≈ 0.2) than those from
the Evans model (β̄ = 0.4). Secondly, cells with stiffer
cortices display a smaller power law exponent (Fig. 3).
Specifically, β decreases for both cell types logarithmi-
cally with KA (Fig. 3B, SI). The same behavior has also
been predicted by Gardel et al. [23] for the differential
modulus and Kollmannsberger et al. [14] for the compli-
ance of various cell types. Importantly, the model also
allows to correlate internal pre-stress with fluidity. We
found that an increase in internal stress is accompanied
by a reduction of the power law coefficient (Fig. 3A) sug-
gesting that cells with a stiffer, more contractile cortex
are also less fluid. We also artificially increased tension
by addition of glutardialdehyde (GDA) that contracts the
cortex to generate solid-like shells with extremely low β
values (Fig. 3). Recently, Mulla et al. found that ar-
tificial reversibly cross-linked actin networks show a de-
crease of β with increasing stress [16] suggesting that
the glassy dynamics of the cortex are a natural conse-
quence of transient cross-links combined with intrinsic
pre-stress. Here, we can confirm that the source of the
pre-stress are indeed myosin motors. In the absence of
motor activity and therefore low pre-stress T0, β is close
to 0.5, as expected for reversibly cross-linked actin fila-
ments [15]. Notably, Yao et al. examined the rheology
of actin networks cross-linked by α-actinin showing that
external stress delays the onset of relaxation and flow,
essentially extending the regime of solid-like behavior to
much lower frequencies [24]. This was attributed to a
catch-bond behavior of cross-linkers.

In conclusion, we found that a viscoelastic shell model
is capable of describing cell compression and relaxation
experiments over the entire time scale in a consistent
manner. MDCK II cells show a decrease in cortex flu-
idity with increasing pre-stress, thereby closing the gap
between rheological experiments of artificial actin net-
works and living cells.

The work was financially supported by the DFG
(SFB937(A8): AJ and MT; SFB 1027(A9): FL) and the
VW foundation (’Living Foams’: AJ and MT).

∗ ajansho@gwdg.de; mtarant@gwdg.de
[1] B. G. Godard and C.-P. Heisenberg, Curr. Op. Cell Biol.

60, 114 (2019).
[2] J. R. Lange and B. Fabry, Exp. Cell Res. 319, 2418

(2013).
[3] D. A. Fletcher and R. D. Mullins, Nature 463, 485

(2010).
[4] J. Rother, H. Noding, I. Mey, and A. Janshoff, Open

Biol. 4, 140046 (2014).
[5] J. R. Staunton, B. L. Doss, S. Lindsay, and R. Ros, Sci.

Rep. 6 (2016), 10.1038/srep19686.
[6] P. D. Garcia and R. Garcia, Nanoscale 10, 19799 (2018).
[7] P.-H. Wu, D. R.-B. Aroush, A. Asnacios, W.-C. Chen,

M. E. Dokukin, B. L. Doss, P. Durand-Smet, A. Ekpeny-
ong, J. Guck, N. V. Guz, P. A. Janmey, J. S. H. Lee,
N. M. Moore, A. Ott, Y.-C. Poh, R. Ros, M. Sander,
I. Sokolov, J. R. Staunton, N. Wang, G. Whyte, and
D. Wirtz, Nat. Meth. 15, 491 (2018).

[8] P. Chugh, A. G. Clark, M. B. Smith, D. A. D. Cassani,
K. Dierkes, A. Ragab, P. P. Roux, G. Charras, G. Sal-
breux, and E. K. Paluch, Nat. Cell Biol. 19, 689 (2017).

[9] M. P. Stewart, J. Helenius, Y. Toyoda, S. P. Ra-
manathan, D. J. Muller, and A. A. Hyman, Nature 469,
226 (2011).

[10] P. Chugh and E. K. Paluch, J. Cell Sci. 131, jcs186254
(2018).

[11] R. G. Fehon, A. I. McClatchey, and A. Bretscher, Nat.
Rev. Mol. Cell Biol. 11, 276 (2010).

[12] G. Salbreux, G. Charras, and E. Paluch, Trends Cell
Biol. 22, 536 (2012).

[13] B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer,
D. Navajas, and J. J. Fredberg, Phys. Rev. Lett. 87,
148102 (2001).

[14] P. Kollmannsberger and B. Fabry, Ann. Rev. Mater. Res.
41, 75 (2011).

[15] C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak,
D. A. Weitz, and F. C. MacKintosh, Physical Review
Letters 105 (2010), 10.1103/physrevlett.105.238101.

[16] Y. Mulla, F. C. MacKintosh, and G. H. Koenderink,
Phys. Rev. Lett. 122, 218102 (2019).

[17] K. A. Beningo, K. Hamao, M. Dembo, Y. li Wang, and
H. Hosoya, Arch. Biochem. Biophys. 456, 224 (2006).

[18] L. Chartier, L. L. Rankin, R. E. Allen, Y. Kato, N. Fuse-
tani, H. Karaki, S. Watabe, and D. J. Hartshorne, Cell
Motil. Cytoskeleton 18, 26 (1991).

[19] M. L. Gardel, Science 304, 1301 (2004).
[20] E. Evans, R. Waugh, and L. Melnik, Biophys. J. 16, 585

(1976).
[21] R. Christensen, Theory of Viscoelasticity (Elsevier,

1982).
[22] E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris,

D. A. Moulding, A. J. Thrasher, E. Stride, L. Mahade-
van, and G. T. Charras, Nat. Mater. 12, 253 (2013).

[23] M. L. Gardel, F. Nakamura, J. Hartwig, J. C. Crocker,
T. P. Stossel, and D. A. Weitz, Phys. Rev. Lett. 96,
088102 (2006).

[24] N. Y. Yao, C. P. Broedersz, M. Depken, D. J. Becker,
M. R. Pollak, F. C. MacKintosh, and D. A. Weitz,
Physical Review Letters 110 (2013), 10.1103/phys-
revlett.110.018103.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/783613doi: bioRxiv preprint 

https://doi.org/10.1101/783613
http://creativecommons.org/licenses/by-nc-nd/4.0/

