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Abstract 

Single cell electrophysiology remains one of the most widely used approaches of systems 

neuroscience. Real-time feedback during electrophysiology experiments is important to guide 

experimental decisions that eventually determine the quality of recording, duration of the project 

and value of the collected data. We present an open-source tool that enables flexible online 

visualization of action potential alignment to external events, called the peri-event or peri-

stimulus time histogram (OPETH).  Based on the Open Ephys open source data acquisition 

system, we developed a Python interface for real-time plotting of neuronal spike times and 

evoked waveforms with respect to external events represented by digital logic signals. These 

digital inputs may signal photostimulation time stamps for in vivo optogenetic identification of 

cell types or the times of behaviorally relevant events during in vivo behavioral neurophysiology 

experiments. Therefore, OPETH allows real-time identification of genetically defined neuron 

types or behaviorally responsive populations. By allowing ‘hunting’ for neurons of interest, 

OPETH may significantly increase the efficiency of experiments that combine in vivo 

electrophysiology with behavior or optogenetic tagging of neurons. 

 

Introduction 

Neurons are diverse. Often they are categorized based on their neurotransmitters, neuropeptides, 

calcium-binding proteins, ion channels and other markers (Ascoli et al., 2008; Klausberger and 

Somogyi, 2008). These usually entail the specific expression of proteins, which provides a 

genetic handle on these cell types (Harris et al., 2018). This allowed the recent introduction of 

optogenetic cell type identification or optogenetic tagging (Cohen et al., 2012; Kvitsiani et al., 

2013; Lima et al., 2009). In brief, the expression of a restriction endonuclease, most often Cre, is 

controlled by a genomic promoter, and a light sensitive ion channel or pump is introduced in a 

Cre-dependent manner (Boyden et al., 2005). Thus, the cell type defined by the promoter 

becomes photosensitive, allowing their identification on extracellular recording: the cells that 

respond to light with short latency, precisely timed action potentials belong to the given class 

(Hangya et al., 2014; Kvitsiani et al., 2013; Lima et al., 2009). Previously, in vivo cell type 

identification was only possible with juxtacellular recording and labeling or in vivo whole cell 

patch clamp, which were mostly restricted to anesthetized recordings (Pinault, 1996). While still 

often relatively low yield, optogenetic tagging opened the gate for larger scale recording of 

identified neurons in awake behaving animals. However, neurons are often identified during off-

line analysis, which limits the flexibility and planning of the experiments, resulting in lower 

number of tagged cells and longer projects. 

A caveat of optogenetic tagging studies is that light may induced different signals besides action 

potentials, including photoelectric (Becquerel) and photovoltaic effects (Kozai and Vazquez, 

2015), or exciting too many neuronal elements summing up to population spikes that prevent 

proper spike sorting. The uneven dispersion of light in brain tissue may lead to artifacts that are 
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hard to remove by offline referencing techniques, as pointed out in previous studies (Cardin et 

al., 2010; Mikulovic et al., 2016; Park et al., 2014).  Most of these potential confounds can be 

efficiently eliminated by proper control of light intensities delivered into the brain, for which 

precise on-line feedback is immensely useful. 

Additionally to genetically defined types, neurons are often characterized by the relation of their 

firing pattern to external events in vivo. For instance, neurons of sensory cortices are categorized 

by their response to sensory stimuli (Gentet et al., 2012; Hires et al., 2015); in reverse, the 

features of sensory events that activate a given neuron gave rise to the concept of the receptive 

field (Hubel and Wiesel, 1959; Kilgard and Merzenich, 1998; Ko et al., 2011). Neurons thought 

to participate in cognitive processing are analyzed with respect to the salience and motivational 

value of external stimuli (Hangya et al., 2015; Lin and Nicolelis, 2008; Schultz et al., 1997), 

while neurons on the effector side are correlated with muscle activity and movements (DeLong, 

1971). To visualize and quantify the correlation between these external events and neural 

activity, a linear correlation technique called the peri-event or peri-stimulus time histogram is 

usually applied (Endres et al., 2008; Solari et al., 2018). The PETH is a histogram of relative 

action potential times with respect to the event of interest; thus, it is mathematically equivalent to 

the cross-correlation (convolution) of spike and event times. When aiming to study a specific 

group of neurons, e.g. classically tuned neurons of the primary auditory cortex (Hromádka et al., 

2008; Pi et al., 2013), or reward activated neurons of the VTA (Cohen et al., 2012; Schultz et al., 

1997), it is particularly helpful to have a real-time PETH readout during positioning the 

recording electrodes.  

Therefore we developed a real-time ‘online’ PETH or OPETH based on the Open Ephys open 

source data acquisition system (Siegle et al., 2017). This constitutes of a modified ZeroMQ 

plugin for distributed messaging and a Python interface that receives the data and visualizes peri-

event time histograms and evoked waveforms quasi real time. These tools are useful for tracking 

the neuronal responses to light stimulation for optogenetic tagging or to behaviorally relevant 

events during animal training. We find that OPETH helps guide experimental decisions and 

greatly speeds up optogenetic experiments by allowing ‘hunting’ for tagged neurons. 

 

Methods 

In this section we provide a system overview, a description of the Open Ephys ZMQ plugin and 

setting up the signal chain and the detailed presentation of the Python GUI interface for OPETH. 

Source code is available at https://github.com/hangyabalazs/ZMQInterface.git and 

https://github.com/hangyabalazs/opeth.git. 

System overview 

Animals were implanted with custom-built implants that include Omnetics connectors that can 

interface with the Intan RHD2000 chip series, compatible with the Open Ephys system (Siegle et 
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al., 2017; Solari et al., 2018). Data were amplified, digitized and digitally multiplexed by one or 

two 32-channel Intan Headstages RHD2132, providing 32- or 64-channel digital recordings. 

Data were transferred to the Open Ephys acquisition board by Intan Serial Peripheral Interface 

(SPI) cables.  

Neural data were acquired at 30 kHz sampling rate by the open source, plug-in based Open 

Ephys Data Acqusition System. We used a modified ZMQ plug-in 

(https://neuroinformatics.nl/drupal/?q=node/181) to stream data to external programs and 

accessed the ZMQ data stream from Python programming language. The OPETH GUI, 

implemented in Python, visualizes online PETH and evoked waveform plots, providing access to 

spike discrimination thresholds and other parameters. 

We used the BPod Behavior Control System (Sanworks Inc.) for real-time behavioral control 

during animal training. BPod is an open source, microcontroller-based system implementing a 

finite state machine optimized for low latencies that allow the combination of electrophysiology, 

optogenetics and animal behavior (https://sanworks.io/shop/products.php?productFamily=bpod). 

BPod sent TTL pulses at each stimulus onset and reward (water) or punishment (air puff) 

delivery to synchronize behavioral events with neural recordings. 

We used the PulsePal stimulator (Sanworks Inc.) to trigger 1 ms square pulses of a blue laser 

(Sanctity Laser, SSL-473-0100-10TM-D-LED) at 20 Hz with 2 s ON - 3 s OFF duty cycle. The 

laser light was delivered to the target area by a patch cable (Thorlabs), LC-LC type optical 

connectors (Thorlabs) and a 50µm core optical fiber (Laser Components) for optogenetic 

tagging. TTL pulses were sent both to the blue laser and to Open Ephys to synchronize 

photostimulation and recording. 

System components are summarized in Table 1. 

Table 1: List of main components used during the experiments 

Device Company 

Intan Headstage RHD2132 Intan Technologies 

Serial Peripheral Interface cables Intan Technologies 

Open Ephys acquisition board Open Ephys 

Open Ephys Input Output board Open Ephys 

BPod Behavior Control System Sanwork Inc. 

PulsePal Sanwork Inc. 

Blue Laser SSL-473-0100-10TM-D-LED Sanctity Laser 
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Custom-built recording microdrive for 

electrodes and optic fibers 

Multiple companies 

Silicon probes Neuronexus 

 

Open Ephys plug-ins 

Open Ephys is an open source platform for multi-channel electrophysiology experiments (Siegle 

et al., 2017). Its plugin-based workflow is designed to facilitate real-time feedback in 

neuroscience experiments. We used the ZeroMQ interface by Francesco Battaglia (Donders 

Institute, Radboud University) implemented as a filter plug-in to Open Ephys, modified to 

support more recent Open Ephys versions. ZeroMQ is a lightweight network library that 

simplifies setting up some typical network topologies. The plugin broadcasts recorded data and 

events that can be subscribed to by external applications through ZeroMQ sockets created by 

ZmqInterface.cpp. The plugin uses a heartbeat mechanism to track which applications are 

currently connected to the data stream. The data content is dependent on the position of the ZMQ 

plug-in in the signal chain. We suggest sending filtered data appropriate for spike detection using 

the plug-in. For instance, band-pass filtering between 600-6000 Hz enables threshold-based 

action potential detection. Our Python interface implements thresholding itself, therefore a Spike 

Detector plug-in should not be included before the ZMQ interface. We use the following signal 

chain: Rhythm FPGA – Common Average Reference – Bandpass filter – ZMQ Interface – LFP 

viewer (Figure 1). 
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Figure 1: Open Ephys signal chain used to produce the figures of this work. The ZMQ 

interface (yellow box) is positioned after the ‘Bandpass filter’ and before the ‘LFP viewer’. 

The ZMQ Interface plugin opens a ZMQ publisher socket to allow one or more ZMQ clients to 

subscribe (connect) locally or over the network. Though the system is typically used with a 

single client connected locally, it is possible to use multiple clients on multiple PCs analyzing the 

same Open Ephys data source simultaneously with different settings. The ZMQ plugin creates 

JSON format data packets from the digitized data and event metadata (e.g. timestamp, event 

channel, number of data channels and sample count) and sends it over to the client(s). Another 

socket for event messages and responses is used for heartbeat messages to inform the plugin 

about the connected clients. 

Python GUI 

We developed a graphical user interface in Python based on pyqtgraph to visualize PETHs 

aligned to external events during data acquisition in real time. The GUI is compatible with 

Python 2.7 and Python 3 as well. 

Histogram window.  The main GUI window is handled by gui.py, which schedules data reading, 

spike discrimination, performs histogram calculation and enables the adjustment of parameter 

setup. The main window displays histograms, parameters and buttons for handling the 

configuration and the different plots (Figure 2). 

Histogram channels are collected in groups of four by default as for classical tetrode recordings, 

but the ‘Channels per plot’ option can be set from 1 to 8 allowing visualization for single 

electrodes, stereotrodes or silicone probes of different channel configurations. The different 

weight of each channel of the polytrode can be visualized separately in each histogram window 

by setting ‘Histogram color’ (Supplementary figure 1A) to ‘aggregate’ (Supplementary figure 

1B). This way, the resultant graphic displays a combined multicolored histogram, showing each 

channel’s contribution to the histogram in a different color. If the channels of a tetrode are to be 

compared, it is recommended to use the ‘channels’ histogram view. In this case histograms of 

individual channels are not stacked, but instead overlaid in different colors with line plots 

(Supplementary figure 1C).  
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Figure 2: Main GUI of OPETH. The histograms of the different channels or polytrodes are 

displayed on the left side of the window. The menu on the right side allows changing the 

parameters and interacting with the GUI. 

‘Sampling rate’ should be adjusted to match the samples per second of the Open Ephys 

‘RHYTHM FPGA’ module. Changing the ‘channels per plot’ option automatically changes the 

number of histograms displayed.  Briefly, ‘Clear plot’ clears all histograms and ‘Open new spike 

win’ initiates a new spike window (see below). The parameters can be saved and loaded for each 

experimental subject. The threshold options allow selection of a global threshold applied on all 

channels or individual thresholds for each channel. The ‘event trigger channel’ sets which Open 

Ephys I/O board channel is used as trigger for the histograms. The ROI options allow setting the 

time window before and after the trigger. Finally, ‘Disabled channels’ allows inactivating unused 
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or noisy channels.

 

Supplementary figure 1: Different visualization modes of the main GUI window. A) 

Histogram color, B) Aggregate and C) Channels views. 

We implemented a way of storing all settings in configuration files in the ini file format. As it is 

a common use case to have multiple experimental projects running in parallel, there is a ‘Save 

as’ option to store the configuration in a different file. The system remembers the last stored 

config (file path is stored in the ‘lastini.conf’ file) and loads it automatically on startup. Config 

file handling is based on the configparser python module. 

Raw analog data window. A real time data viewer window was implemented to display data 

received directly from Open Ephys, allowing low-level visualization of the output provided by 

the ZMQ plugin. Since the main purpose of this window is to provide feedback for debugging, 

channels are auto-scaled and thus do not provide information on actual voltage levels. The plot in 

the top half of the window is a one-second-long rolling display that plots all channels 

simultaneously (Supplementary figure 2, top). In the interest of CPU time, the plot is updated at 

a low frame rate and the data displayed are downsampled to 1000 Hz for this view. The bottom 

part of the window features a stimulus counter and presents short windows of the same analog 

data, uncompressed and aligned to the trigger stimuli (Supplementary figure 2, bottom). The 
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window boundaries with respect to the trigger are set by the parameters ‘ROI before event’ and 

‘ROI after event’. This window can be closed independently of the main window if not required. 

 

Supplementary figure 2: Raw analog data window 

Spike window. Spike waveforms triggered on TTL can be visualized in separate Spike windows. 

Spike windows can be opened from the main histogram window and are handled by 

spike_gui.py. Each window displays spikes of a single channel; the selected channel can be 

changed real time. The plot displayed in the top part of the window shows the raw input data of 

the channel aligned to the event, with the detected spikes overlaid in color. These detected spikes 

are enlarged separately in the bottom part with the same color code. The raw data display of the 

Spike window presents uncompressed data within the region of interest around the trigger (as set 

in parameters). The spike plots display a short segment of data before and after the peak value 

(red dot) of the spikes (-0.3 ms to +1 ms by default). If the ‘Update only on spike’ option is 

selected, spike windows are updated when new spikes are detected within the ROI of the trigger; 

otherwise, spike windows are updated 5 times per second even when no spikes are present. 

Multiple Spike windows can be displayed simultaneously, however, this is CPU intensive and 

opening too many Spike windows will slow down the application (Figure 3). 
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Figure 3: Spike window. Top, continuous data from the selected channel with spikes detected in 

restricted temporal windows (ROI) around the trigger TTLs, overlaid in color. Horizontal line 

shows the spike detection threshold. Bottom, zoomed-in windows for the same detected spikes. 

Operation overview 

Until the Open Ephys ZMQ plugin connection is established, the GUI displays “Awaiting data”. 

Once the first chunk of data is received, the exact GUI layout is determined based on the number 

of channels and the histogram plots are displayed.  

Input data arriving from Open Ephys is handled by comm.py, which takes care of parsing the 

JSON structures containing the measurement samples and trigger events. Depending on the type 

of the parsed input data, trigger events are stored in OpenEphysEvent objects (defined in 

openephys.py) and sample data are stored directly in a 2D circular (or rolling) buffer 

implemented in circbuff.py; the data flow is managed by the Collector class in colldata.py (see 

Figure 4). The openephys.py and some of the comm.py interface routines are based on the 

python samples created by Francesco Battaglia, while we have developed the circular buffer and 

colldata.py data handling methods from scratch as well as the entire visualization UI.  

The circular buffer allows storing the last few seconds of data for the raw data displays, which 

gets downsampled by the compress method of DataProc class in colldata.py to save CPU time 

when plotting all signals simultaneously. Only minimum and maximum values are displayed for 

every 30 data points. The compressed data is used in the raw analog data window only. The 

spike detection is performed on the original data as discussed in detail later. 
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The data collection, spike detection and all plot updates are scheduled by the main loop in gui.py 

by the update() method that is periodically called by the Qt environment. We note that while the 

current implementation is single threaded except for ZMQ messaging, it is worth exploring 

options for multiprocessing in future updates. Figure 4 shows a schematic version of the data 

flow.  

Figure 4: Simplified diagram of data flow. 

 

Spike detection 

We created a spike discrimination routine independent of Open Ephys spike detectors that 

resides in the DataProc class of colldata.py. The spikedetect() is called by the update() routine 

whenever a new TTL signal or other event is detected on the currently selected trigger channel. It 

performs simple spike discrimination based on voltage levels within the region of interest (ROI) 

around the stimulus or timestamped event. Whenever a spike is detected because of exceeding 

the threshold level, new spikes are not detected until a predefined holdoff time is passed and the 

voltage level drops below threshold again. The implementation works by default with negative 

threshold levels to allow extracellular spike detection on non-inverted raw voltage data. (This 

can be modified via the NEGATIVE_THRESHOLD constant of gui.py). As higher level spike 

source identification was not a target of our tool, spikes are identified per channel and are not 

sorted or verified across multiple channels. Overlapping trigger ROIs may result in repeatedly 

detected spikes in the overlapped region (i.e. some spikes appear twice in the histogram). 
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Spike detection is done in two phases: first the input data is thresholded by comparing the analog 

input levels to the threshold parameter, then the thresholded array is processed channel by 

channel. For each spike on the given channel the starting and final position exceeding the 

threshold is determined, and between them the maximum or minimum value of the input data 

(depending on spike polarity) gives the spike position. 

If the spike detection happens on negative threshold, the falling edge of the input signal is to be 

detected, in which case the positive threshold value of the GUI setting is automatically inverted 

for the spikedetect function. The thresholding is performed in a single step for all channels, with 

possibly unique threshold levels per channel. This results in a 2D array with one row per 

channel, each column containing Boolean values indicating whether the given sample is 

exceeding the rising/falling edge threshold level. Non-disabled channels are searched one by one 

for spikes in a loop. The code excerpts below show the negative threshold case with local 

minimum search as depicted on Figure 5. 

def spikedetect(self, data, timestamps, threshold = SPIKE_THRESHOLD,  

                rising_edge = False, disabled = []): 

          (...) 

    thresholded = data <= threshold 

    for i in range(data.shape[0]): 

        if i not in disabled: 

            (...) 

            ch_thresholded = thresholded[i,:] 

     

To detect a spike we look for the first False→True transition in the thresholded array for the 

starting position (first_over_thresh). The end of the spike is the next nearest True → False 

transition in the thresholded data (next_below_thresh). Search for the next spike starts from 

this end position (offset), following a predefined dead time/censoring period of 0.75 ms by 

default (SPIKE_HOLDOFF_SAMPLES) to avoid repeated detection of the same spikes. The spike 

position (position of the negative peak or minimum value) and timestamps are then collected into 

lists for the spikedetect function return values with one list of spike positions per channel. 

 

offset = 0 

while len(ch_thresholded[offset:])>0: 

  # get the index of the first element exceeding threshold 

  first_over = np.argmax(ch_thresholded[offset:]) 

 

  # check whether the return value of argmax is valid 

  # -> exit from inner loop if nothing over threshold limit left 

  if first_over == 0 and ch_thresholded[offset] == False: 

    break 

 

  first_over += offset 

  next_within = np.argmin(ch_thresholded[first_over:]) 
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  if next_within == 0:  # end of data, still over threshold 

    next_within = len(ch_thresholded) 

  else: 

    next_within += first_over 

 

  # falling edge detection: search for minimum 

  drange = range(first_over, next_within) 

  spike_tip_pos = np.argmin(data[i, drange]) + first_over 

  # store spike in a per-channel list 

  ch_pos.append(spike_tip_pos) 

 

  # Continue processing after current spike 

  offset = max(first_over + SPIKE_HOLDOFF_SAMPLES, next_within) 

Figure 5: Schematics of spike detection.  Key variables for spike detection based on threshold 

crossings are indicated. Note that sample count does not correspond to default 30kS/s. 

Spike thresholds can be adjusted individually for each channel or for all channels at the same 

time, using either µV or mV as unit of measurement. The region of interest around events for 

spike detection is set in milliseconds. It is possible to disable channels or sets of channels from 

spike detection, e.g. in case of broken channels. Such channels can be listed either comma-

separated or with the dash notation (1, 2, 3 or 1-3) in the disabled channels input field. The 

histograms of the disabled channels are not updated. 

In vivo experimental procedures 

Animals. Electrophysiological, optogenetic and behavioral data showed in this study were 

obtained from two adult female mice (BAC-Vglut2-IRES-Cre, C57Bl/6J and ChAT-IRES-Cre, 

B6129F1). All experiments were approved by the Committee for the Scientific Ethics of Animal 

Research of the National Food Chain Safety Office and were performed according to the 

guidelines of the institutional ethical code and the Hungarian Act of Animal Care and 
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Experimentation (1998; XXVIII, section 243/1998, renewed in 40/2013) in accordance with the 

European Directive 86/609/CEE and modified according to the Directives 2010/63/EU. 

Surgery and virus injection. Mice were anesthetized with an intraperitoneal injection of 

ketamine-xylazine (0.166 and 0.006 mg/kg, respectively). The scalp was shaved and disinfected 

(Betadine) and local anesthetics was applied subcutaneously (Lidocaine). The mouse was 

positioned in the stereotaxic frame and the eyes were protected with eye ointment (Laboratories 

Thea). The skin was removed above the calvaria and the skull was cleaned; the head of the 

animal was leveled using Bregma and Lambda (Paxinos et al., 2001) and lateral points 

equidistant from the sagittal suture. 

In the Vglut2-Cre animal, a cranial window was opened in order to access the medial septum 

(MS) with a 10º lateral angle (MS 10º, antero-posterior +0.90 mm, lateral, 0.90 mm). An adeno-

associated virus vector allowing Cre-dependent expression of channelrhodopsin2 [AAV 2/5. 

EF1a.Dio.hChR2(H134R)-eYFP.WPRE.hGH] was injected into the MS at 3.95, 4.45 and 5.25 

mm depth from skull surface (200 nl at each depth). The skin was sutured; local antibiotics 

(Neomycin) and a subcutaneous injection of analgesic (Buprenorphine 0.1 mg kg-1) were 

applied. 

In the ChAT-Cre animal a craniotomy was performed above the horizontal nucleus of the 

diagonal band of Broca of the basal forebrain (HDB, antero-posterior 0.75 mm, lateral 0.60 mm) 

and the same virus was injected into the HDB at 5.00 and 4.70 mm depth from skull surface (300 

nl at each depth). Additional holes were drilled above the parietal cortex for ground and 

reference. The surface of the skull was covered with a thin layer of Super-Bond C&B (Sun 

Medical) and a custom-built microdrive (Hangya et al., 2015; Kvitsiani et al., 2013) with 8 

tetrodes was implanted in the targeted area. The microdrive-skull junction was protected with 

Kwik-Cast sealant (World Precision Instruments). The microdrive was secured to the skull with 

dental acrylic resin (Lang Dental). A titanium headbar was also attached to the skull to allow 

headfixation. Analgesic and antibiotics were applied as above. 

Mice were allowed to recover for ten days, receiving subcutaneous injections of analgesic 

(Buprenorphine 0.1 mg kg-1) and local application of antibiotics (Neomycin) as necessary.  

Anesthetized recordings. Twenty days after the virus injection the Vglut2-Cre animal was 

anesthetized with an i.p. injection of 20% urethane (Sigma-Aldritch, 0.007 ml g-1 body weight). 

The depth of anesthesia was evaluated by pinching the paw or ear of the animal. When there 

were no reflexes elicited by the pinching, the throat was shaved and topical lidocaine was 

applied. A tracheotomy was performed in order to sustain a constant airflow (Moldestad et al., 

2009). The animal was placed in a stereotaxic frame and, after opening the skin and leveling the 

skull, trephine holes were made above the MS (silicon probe MS 10º, antero-posterior, +0.90 

mm, lateral, 0.90 mm; optic fiber MS 5º contralateral, antero-posterior, +0.90 mm, lateral, -0.50 

mm), the hippocampus (silicon probe HPC, antero-posterior, -2.20 mm, lateral, 1.50 mm) and 

two above the cerebellum for reference electrodes. A Neuronexus A1x32-6mm-50-177-CM32 
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silicon probe was placed in the hippocampus at 2.20 mm depth from skull surface, and a 

Neuronexus Buzsaki32-H32_21mm probe was lowered to the dorsal boundary of the MS at a 10º 

lateral angle (3.95 mm from skull surface). Reference electrodes for both probes were placed in 

the cerebellum and ground electrode was placed in the spinotrapezius muscle. A 200 µm core 

optic fiber was lowered 500 µm above the shanks of the MS probe. The MS probe and the optic 

fiber were lowered in 100 µm steps for recording, spanning the entire depth of the MS. 

Extracellular data were collected by the Open Ephys data acquisition system, digitized at 30 

kS/s. Each recording session consisted of an optical tagging period of two minutes, followed by a 

baseline period of five minutes. Three consecutive repetitions of one-minute tail pinch induced 

theta activity followed by one-minute control recording were applied, finishing the recording 

session with another two minutes length optical tagging period. After each recording session, the 

MS probe and optic fiber were lowered 100 µm. 

Head-fixed recordings and behavioral procedures: Once fully recovered, the drive-implanted 

Chat-Cre animal was trained on a head-fixed auditory cued outcome task implemented in a 

go/no-go paradigm. Briefly, the animal was water restricted for three days. On the fourth day, the 

animal was head-fixed in the behavioral environment (Solari et al., 2018), where after a few free 

water delivery trials, a go tone (10 kHz, 50 dB, 1 s) was presented. Licking during the tone 

resulted in the release of a 3 µl water droplet as reward. Once the animal was familiarized with 

this paradigm, a second tone (4 kHz, 50 dB, 1 s) was introduced, predicting the delivery of an air 

puff (duration, 200 ms). In the final task, a balanced mixture of the two tones were randomly 

interleaved in which the 10 kHz tone predicted expected reward in 80% of trials, unexpected 

punishment in the 10% of the trials and omission in the remaining 10% of trials; the 4 kHz tone 

predicted expected punishment the 65% of trials, unexpected reward in the 25% of the trials and 

omissions in the remaining 10%. Extracellular data were collected during task performance by 

the Open Ephys data acquisition system, digitized at 30 kS/s. 

Data analysis: Offline data analysis was performed using built-in and custom-built Matlab 

(Mathworks) scripts. Action potentials were manually sorted into putative neuronal clusters 

based on amplitude (peak-to-valley), waveform energy and first principal component features 

using the MClust software (A. D. Redish). L-ratio (<0.05) and isolation distance (>20) were 

taken as cluster quality measures (Schmitzer-Torbert et al., 2005). 

Vglut2 positive neurons were identified by optogenetic tagging (Kvitsiani et al., 2013; Lima et 

al., 2009; Pi et al., 2013). Significant light activation was assessed by the Stimulus-Associated 

spike Latency Test (SALT), using the code available at http://kepecslab.cshl.edu/salt.m 

(Kvitsiani et al., 2013).  

 

Results 
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In the following, we provide two example applications of OPETH. First, we used OPETH for 

online optogenetic tagging of medial septal glutamatergic neurons in an acute anesthetized 

experiment. Second, we performed chronic recordings from the horizontal nucleus of the 

diagonal band of Broca (HDB) while a mouse performed a head-fixed auditory cued outcome 

task. We demonstrated the presence of punishment-activated HDB neurons during the recording 

online with OPETH, and later confirmed this result by offline analyses.   

Real-time optogenetic tagging 

Optogenetic tagging allows the identification of neuron types in extracellular recordings 

performed in transgenic animals. For instance, we use optogenetic tagging in acute anesthetized 

experiments to investigate the role of different genetically defined types of medial septal (MS) 

neurons in the genesis of neural oscillations and network synchrony (Buzsáki and Moser, 2013; 

Hangya et al., 2009; Wang, 2002). However, the yield of such experiments can greatly be 

increased if the presence of optogenetically tagged neurons can be established online during the 

recording. Additionally, real-time feedback helps reducing artifacts in the recordings introduced 

by photostimulation.  

Therefore, we tested OPETH in this in vivo optogenetic tagging experiment. A BAC-Vglut2-

IRES-Cre mouse previously injected with a viral construct allowing Cre-dependent expression of 

the light sensitive channelrhodopsin2 protein in glutamatergic MS neurons was anesthetized with 

urethane. A 32-channel linear silicone probe was placed in the hippocampus for local field 

potential recordings and a 32-channel four-shank silicon probe was lowered into the MS for 

extracellular recording of MS units. In addition, an optic fiber was placed in the MS above the 

recording probe to deliver laser light for photostimulation. Throughout the experiment, laser-

triggered responses of the MS neurons were monitored by the OPETH Histogram Window (Fig. 

6A). Once putative light-evoked action potentials were detected, the Channel view was used to 

assess the channel with the largest light effect (Fig. 6B). Spike Window for this channel was then 

opened and monitored while adjusting light intensity levels to avoid photoelectric effects (Fig. 

6C-D).  This protocol allowed us to ‘hunt’ for optogenetically identified glutamatergic MS 

neurons with removing the potential confounds arising from photostimulation-related electrical 

artifacts, increasing the efficiency of the experiment.  

After concluding the experiment, we performed offline peri-event time histogram analysis, 

aligned to the onset of the photostimulation pulses. This confirmed the presence of light 

responses on the same tetrodes as shown by OPETH (Fig. 6E). Finally, spike sorting of three 

recording sessions revealed significantly light-activated neurons recorded by the same tetrodes as 

indicated by OPETH (n = 10, p < 0.001, Fig. 6F). 
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Figure 6: In vivo optogenetic tagging experiment for testing OPETH. A) Histogram Window, 

‘aggregate view’ showing neural responses to laser pulses in a Vglut2-Cre mouse expressing 

channelrhodopsin2. B) ‘Channel view’ was used to determine the most responsive channel of the 

tetrode of interest. C) ‘Spike window’ of the selected channel showing a photoelectric artifact 

evoked by high intensity laser stimulation. D) The Spike Window allowed us to tune down the 

light intensity until the putative tagged cell was not masked by artifacts (red arrow). E) The 

offline peri-event time histogram showed strong light-evoked activity on the selected tetrode. F) 

Spike raster and peri-event time histogram of a responsive MS neuron aligned to the onset of the 

laser pulse train, from the channel selected via OPETH. 

 

Real-time peri-event time histogram in behaving mice 

In addition to optogenetic tagging, OPETH enables online tracking of neural responses to 

behaviorally relevant external events such as cue stimuli and reinforcement. To demonstrate this, 

we next tested OPETH’s ability to detect neuronal activity changes during a head-fixed go/no-go 

task in an awake behaving mouse.  
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A mouse was fully trained on a head-fixed auditory cued outcome task, in which two pure tones 

of different pitch signaled different outcome probabilities, predicting either likely reward (water) 

vs. surprising punishment (a puff of air) or vice versa. Two different TTL pulses were sent to the 

Open Ephys I/O board every time reward or punishment was delivered, allowing OPETH to 

visualize the neuronal response to each of the behavioral outcomes. The mouse performed a total 

of 254 trials in a single recording session. Throughout this session, the Histogram Window of 

OPETH clearly showed a neuronal response to punishment on most tetrodes (Fig. 7A), while no 

response to reward delivery could be detected (Fig. 7B). We noted that this punishment response 

was already detectable after the first few punished trials, showing the sensitivity of detection by 

OPETH. 

After the recording session, offline analysis confirmed the presence of neurons that responded 

selectively to punishment, as expected based on the online feedback by OPETH. Fig. 7C-E 

shows a well isolated neuron that responded with an increase of firing after air puff punishment, 

but not after water reward. 
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Figure 7: Neuronal responses to behaviorally relevant events detected real-time by 

OPETH. A) Most of the tetrodes showed an increase in neuronal activity in response to 

punishment delivery (vertical lines indicate artifacts due to valve opening and closing). B) No 

neuronal response was detected after reward delivery. C) Spike shape and cluster projection of 

an example punishment-activated reward-unresponsive neuron after offline spike sorting. D) 

Spike raster and PETH aligned to the onset of punishment delivery. E) Spike raster and PETH 

aligned to the onset of reward delivery. 

 

Discussion 

Real-time feedback while performing electrophysiology recordings is important to guide 

decisions during the experiment. Here we described OPETH, an open source online tool for 

providing such feedback by visualizing peri-event time histograms. In addition, we demonstrated 

its usefulness when conducting optogenetic tagging or behavioral experiments combined with 

single cell or multiunit recording. OPETH is based on Open Ephys, an open source data 

acquisition system including software (Siegle et al., 2017). 

Open source 

There is an increasing number of open source tools in neuroscience, which is also paralleled by 

an increased awareness of the open source movement in general (Gleeson et al., 2017). An 

important example is Open Ephys, enabled by the development of Intan chips that allowed an 

affordable upscaling of electrophysiology experiments. Combined with open source tools for 

behavior control (Sanders and Kepecs, 2012), stimulation (Sanders and Kepecs, 2014) and full 

behavioral environments (Devarakonda et al., 2016; Erlich et al., 2011; Solari et al., 2018), this 

array of recent tools has changed the way electrophysiology experiments are performed. We 

provide OPETH as a new member of this family that parallels the richness of features of 

commercial solutions (e.g. Neuralynx Histogram Display, 

https://neuralynx.com/software/category/sw-acquisition-control), at the same time available to 

the entire neuroscience community. 

Application: real-time in vivo cell type identification 

In neuroscience, many of the key insights were gained by recording the electrical activity of 

neurons (Sviatkó and Hangya, 2017). An instructive example was the mapping of basal ganglia 

neurons while monkeys were engaged in a variety of behavioral tasks (DeLong, 1971; Delong et 

al., 1984). DeLong and colleagues performed basic linear convolution-based data analysis in the 

form of raster plots and peri-event time histograms, which still remains the mainstay of systems 

neuroscience. Eventually, these results lead to the Deep Brain Stimulation surgeries during 

which stimulating electrodes are lowered to the subthalamic nucleus of the basal ganglia in 

Parkinson’s patients, largely alleviating their otherwise often crippling motor impairments. 

However, the lack of proper tools to identify the great diversity of anatomically, histochemically 
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and hodologically defined cell types of the basal ganglia in vivo stalled further progress (Sviatkó 

and Hangya, 2017).  

This was first overcome by glass pipettes that allowed filling of the recorded cells by applying 

current pulses, called juxtacellular recording (Pinault, 1996). Then, the recent advent of imaging 

and optogenetic techniques (Ghosh et al., 2011; Park et al., 2015; Shin et al., 2017) opened the 

way to high-throughput cell type identification in awake, behaving rodents (Al-Hasani et al., 

2015; Miller et al., 2019; Wang et al., 2019). This necessitates the development of new software 

tools aligned to this task, enabling significant increases of experimentation efficiency. OPETH 

provides a way of online tracking cellular responses to light flashes, in order to optogenetically 

identify those neurons that respond by short latency. This allows determining whether the target 

area has been reached, and good quality recordings of identified units can be performed. 

Therefore, by enabling ‘hunting’ for neurons of interest, this tool can efficiently increase the 

yield of optogenetic tagging experiments.  

Application: online tracking of response properties to behaviorally relevant events  

Peri-event time histograms usually represent the first-pass analysis of neuronal activity of 

behaving animals (Endres et al., 2008; Shimazaki and Shinomoto, 2010). We have demonstrated 

here that this first-level analysis can be performed online, providing immediate feedback on the 

responsiveness of the recorded population. This may be especially useful when looking for 

neurons with a particular response profile, or cell types that can be identified by features of their 

responses. Since areas may differ significantly in the proportion of neurons responding to 

different sensory cues, OPETH may also allow the rough identification of target areas. Other 

applications include online receptive field mapping (Froemke et al., 2007) or precise localization 

along the frequency axis of auditory cortical tonotopy maps (Hromádka et al., 2008). 

Conclusions and future directions 

By providing online access to event-aligned linear data statistics, OPETH also opens the door to 

more advanced online analysis. For instance, dopaminergic neurons in VTA may be identified by 

principal component analysis of their PETH aligned to reward and reward-predicting cues, as 

demonstrated by Cohen and colleagues (Cohen et al., 2012) and later applied by other labs 

(Takahashi et al., 2016).  Therefore, adding this analysis to OPETH may allow online 

identification of dopaminergic cells without performing optogenetics. Other examples include 

online analysis of delay activity in working memory tasks, or correlating neuronal firing with 

reward expectations or prediction errors. 

OPETH also allows future implementation of closed-loop protocols. Closed-loop approaches are 

gaining momentum as part of experimental procedures (El Hady, 2016) as well as in clinical 

applications (Ghasemi et al., 2018). Closed-loop neuronal recording in behavioral tasks has been 

used for assessing the role of the mouse primary visual cortex during navigation (Saleem et al., 

2013), enhancing spatial navigation skills of mice by optical manipulation of the hippocampal 
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theta oscillation cycles (Siegle and Wilson, 2014), determining the causal involvement of sharp 

wave ripple events in learning (Rangel Guerrero et al., 2018) and to control Drosophila feeding 

behavior (Moreira et al., 2019). OPETH can be used as a programmable open-source tool for 

closed-loop paradigms based on the detected neuronal activity, allowing high-precision 

automatic control of the desired output.  
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