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ABSTRACT 43 

cJun NH2-terminal kinase (JNK) inhibition has been suggested as a potential treatment for 44 

insulin resistance and steatosis through activation of the transcription factor PPAR. 45 

However, the long-term consequences have not been evaluated. We found that hepatic 46 

JNK deficiency alters bile acid and cholesterol metabolism, resulting in hepatic expression 47 

of FGF15 and activation of ERK in cholangiocytes, which ultimately promotes their 48 

proliferation. Genetic inactivation of PPARα identifies PPARα hyperactivation as the 49 

molecular mechanism for these deleterious effects. Our analysis indicates that hepatic 50 

PPARα activation is oncogenic: PPARα deficiency protects mice against carcinogen-51 

induced hepatocellular carcinoma under high fat diet (HFD) condition. These surprising 52 

results urge the re-consideration of using JNK inhibitors or PPAR agonists for the 53 

treatment of metabolic syndrome. 54 
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INTRODUCTION 61 

Liver cancer is the fifth most common cancer and the second leading cause of cancer 62 

deaths worldwide (El-Serag, Davila et al., 2003, Parkin, Bray et al., 2005). Metabolic 63 

syndrome is a newly recognized, but important risk factor thought to contribute to the 64 

increased incidence of hepatocellular carcinoma (HCC) (Klein, Dawson et al., 2014). 65 

Steatosis contributes to HCC development due to its association with oxidative stress and 66 

inflammation (Smedile & Bugianesi, 2005). Metabolic disorders are common among obese 67 

and diabetic patients, and hepatocellular injuries can occur due to increased fat 68 

accumulation in the liver. Non-alcoholic fatty liver disease (NAFLD) is extremely frequent 69 

in these patients (Caldwell, Crespo et al., 2004), and body weight excess is commonly 70 

associated with advanced disease (Neuschwander-Tetri, Brunt et al., 2003). Recent 71 

studies have led to the identification of hepatic cJun NH2-terminal kinase (JNK) as a signal 72 

transduction pathway that is critically required for obesity-induced insulin resistance and 73 

steatosis (Manieri & Sabio, 2015). The cJun NH2-terminal kinase (JNK) signaling pathway 74 

contributes to the development of obesity and insulin resistance (Sabio & Davis, 2010). 75 

Indeed, mice deficient for Jnk in hepatocytes are resistant to high fat diet (HFD)-induced 76 

insulin resistance and steatosis (Vernia, Cavanagh-Kyros et al., 2014); therefore, this 77 

signaling pathway represents a potential target for therapeutic intervention. Biochemical 78 

studies demonstrate that JNK suppresses PPAR activation in hepatocytes, affecting lipid 79 

metabolism and steatosis through the hepatokine FGF21 (encoded by a PPAR target 80 

gene) (Vernia, Cavanagh-Kyros et al., 2016, Vernia et al., 2014). 81 

The transcription factor PPAR plays a pivotal role in intracellular free fatty acid (FFA) and 82 

triglyceride metabolism by regulating genes involved in fatty acid transport and 83 

degradation in mitochondria and peroxisomes (Evans, Barish et al., 2004, Gulick, Cresci et 84 

al., 1994, Unger & Zhou, 2001). PPAR is expressed primarily in liver, heart, and muscle 85 
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and is a major regulator of fatty acid transport, catabolism and energy homeostasis 86 

(Memon, Tecott et al., 2000). PPAR activation in the liver is increased in metabolic 87 

diseases and obesity (Memon et al., 2000), and PPAR agonists appear to be 88 

therapeutically beneficial in diabetes. In fact, PPAR protects against steatosis in the 89 

mouse (Ip, Farrell et al., 2003) and suppresses hepatic inflammation (Teoh, Williams et al., 90 

2010). However, PPAR deficiency in mice increases susceptibility to diethylnitrosamine 91 

(DEN)-induced HCC (Zhang, Chu et al., 2014), but long-term studies in rodents showed an 92 

association of PPAR agonists with hepatic carcinogenesis (Holden & Tugwood, 1999). 93 

These findings conflict with the growth inhibitory effects reported for PPAR agonists in 94 

cancer cell lines, including HCC cell lines (Maggiora, Oraldi et al., 2010, Panigrahy, 95 

Kaipainen et al., 2008, Yamasaki, Kawabe et al., 2011). PPAR may therefore cause 96 

context-specific actions on liver cancer development. 97 

The activation of PPAR modifies bile acid (BA) synthesis, conjugation and transport (Li & 98 

Chiang, 2009). Altered regulation of BA may protect against steatosis but could increase 99 

liver cancer development due to changes in FGF protein levels. Although FGF19 improves 100 

the glycemic response and reduces liver steatosis, it also induces liver cancer (Shapiro, 101 

Kolodziejczyk et al., 2018). These contrasting potential functions of BAs prompted us to 102 

examine whether lack of JNK in hepatocytes, and the resulting hyperactivation of PPAR, 103 

could alter BA homeostasis with subsequent deleterious effects. Elucidation of the 104 

contribution of JNK and PPAR to liver carcinogenesis may help the development of 105 

effective treatments against this malignancy. 106 

 107 

 108 
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RESULTS 110 

Hepatic JNK-deficiency alters bile acid homeostasis 111 

We have previously shown that hepatic JNK deficiency results in the activation of the 112 

nuclear transcription factor PPAR and protection against diet-induced insulin resistance 113 

and steatosis (Vernia et al., 2014). The activation of PPAR caused altered BA 114 

metabolism (Li & Chiang, 2009). We therefore examined BA in hepatic JNK deficient mice 115 

(LDKO) and control mice (LWT) at 6 months of age. We found that total BA concentration in 116 

the blood of LDKO mice were significantly increased compared with LWT mice (Fig 1A). The 117 

increase in circulating BA concentration is consistent with the possibility that LDKO mice 118 

may suffer from cholestasis. 119 

The analysis of bile collected from the gallbladder of LDKO and LWT mice revealed 120 

significantly increased amounts of BA relative to the amount of cholesterol and 121 

phosphatidylcholine (PC) (Fig 1B). Hepatic expression of genes related to hepatic PC 122 

synthesis (Scd2, Chpt1, and Chkb) or hepatocyte-mediated transport of PC (Abcb4 and 123 

Atp8b1) and BA (Abc11 and Slc10a1) was markedly increased in LDKO mice 124 

(Supplementary Fig EV1A, B). Similarly, increased expression of genes related to 125 

cholesterol synthesis (Hmgcs1, Hmgcr) and BA synthesis (Baat, Cyp8b1 and Cyp27a) was 126 

detected in LDKO mice (Fig 1C). These data are consistent with altered biosynthesis and 127 

secretion of both cholesterol and BA through PPAR activation. 128 

 129 

Hepatic JNK-deficiency causes cholestasis and liver damage 130 

It is established that cholangitis is a major risk factor for the development of 131 

cholangiocarcinoma (de Groen, Gores et al., 1999). We therefore examined the liver of 132 

mature adult LDKO and LWT mice. No evidence of hepatic disease was found in LWT mice. 133 

Similarly, analysis of hepatic sections prepared from young adult LDKO mice (age 4 months) 134 
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did not indicate the presence of liver pathology (Figure EV1C). However, at age 10 135 

months, 82% of LDKO mice displayed multifocal bile duct hyperplasia together with fibrosis 136 

and inflammatory cell infiltrates (Fig 1D). Cholangiocytes stained positively with PCNA, a 137 

marker for proliferation (Fig 1D). These changes were associated with increased 138 

expression of myeloid genes (Cd68 and Lyz) and inflammatory cytokines (Ifng, Tnf, Il10, 139 

and Il12a) in the liver (Fig 1E), and increased liver damage, as suggested by the high 140 

levels of liver enzymes (ALT, AST, and -GT) in the blood of LDKO mice (Fig 1F). The 141 

remaining LDKO mice exhibited cholangiocarcinoma (6%) or appeared to be healthy (12%). 142 

At age 14 months, 95% of LDKO mice displayed cholangiocarcinoma (Fig 2A) associated 143 

with fibrosis (Fig 2B) and a large increase in liver mass together with a significant increase 144 

in ALT and AST (Fig 2C). The remaining LDKO mice (6%) exhibited cystic livers with bile 145 

duct hyperplasia. Histological analysis indicated increased staining of glutamine 146 

synthetase (GS) in liver tumor lesions, together with neoplastic nodules with positive 147 

staining of the ductular markers CK19 and Sox9 (Fig 2D). Together, these data confirm 148 

that the majority of mature mice with compound deficiency of JNK1 and JNK2 149 

progressively develop cholangiocarcinoma. 150 

The development of bile duct hyperplasia and cholangiocarcinoma in LDKO mice was 151 

associated with increased hepatic expression of Cytokeratin 19 (Krt19), a cholangiocyte-152 

specific epithelial marker, the G protein-coupled BA receptor 1 (Gpbar1) and the apical 153 

sodium-dependent BA transporter (Asbt, gene symbol Slc10a2) both expressed in 154 

cholangiocytes (Keitel, Reinehr et al., 2007) (Dawson, Lan et al., 2009) (Figure 2E). The 155 

Notch receptor ligand Jagged-1 promotes the formation of intrahepatic bile ducts (Piccoli & 156 

Spinner, 2001), and was overexpressed in the liver of LDKO mice (Fig 2E). Moreover, Bone 157 

morphogenetic protein 4 (Bmp4) mediates cholestasis-induced fibrosis (Fan, Shen et al., 158 

2006) and cooperates with FGF to promote the development of cholangiocytes from 159 
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hepatoblasts (Yanai, Tatsumi et al., 2008); expression of hepatic Bmp4 was increased in 160 

LDKO mice compared with LWT mice (Fig 2E). Hepatoblasts maturate to cholangiocytes 161 

through activation of ERK pathway (Yang, Wang et al., 2017) and BA can increase 162 

proliferation by ERK activation through FXR/FGF15/FGR4 pathway (Li & Chiang, 2015). 163 

We evaluated this pathway in 6 months-old mice, before cancer has developed. In 164 

concordance with elevated BA production, we found high FXR activation as suggested by 165 

the high levels of its target genes (Shp and Fgr4) observed in LDKO mice (Fig 2F). 166 

Moreover, while control mice did not expressed Fgf15, we could detect Fgf15 in LDKO livers 167 

(Fig 2F). In agreement with these results, histological analysis indicated increased staining 168 

of ERK phosphorylation in cholangiocytes from LDKO mice compared with LWT mice (Fig 169 

2G). Together, these changes in FXR/FGF15/FGR4/ERK pathway may contribute to 170 

cholangiocyte maturation and proliferation from hepatoblast resulting in bile duct 171 

hyperplasia and development of cholangiocarcinoma detected in LDKO mice. 172 

 173 

PPAR deficiency reduces liver cancer in JNK1/2 deficient liver 174 

To confirm that hyperactivation of PPAR is involved in the development of 175 

cholangiocarcinoma in LDKO mice, we ablated the Ppara gene in LDKO mice. In the resulting 176 

JNK1/2 plus PPAR liver-deficient-mice (LPPARαDKO), both tumor burden and incidence 177 

were clearly reduced (Fig 3A) compared with LDKO mice. The major changes in BA were 178 

also reversed (Fig 3B). This is consistent with reduced hepatic expression in LPPARαDKO 179 

mice of genes involved in cholesterol and BA synthesis (Hmgcr, Baat, Cyp8b1 and 180 

Cyp27a) and hepatocyte-mediated BA transport (Abc11, Abc4, Abcg5, Abcg8) (Fig 3C). 181 

Histological analyses indicated that PPAR deficiency increased liver steatosis, but 182 

reduced hallmarks of carcinogenesis (anisokaryosis, apoptosis, ductogenesis, dysplasia 183 

and mitosis) in LPPARαDKO compared with LDKO mice (Fig 3D). Moreover, CK19 and SOX9 184 
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staining were increased in LDKO mice compared with LPPARαDKO in agreement with 185 

cholangiocyte proliferation. Furthermore, although liver tumor lesions in LDKO mice became 186 

prominently stained for glutamine synthetase (GS), reduced staining for glutamine 187 

synthetase was observed in the liver of LPPARαDKO mice (Fig 3D). In addition, RT-qPCR 188 

analysis indicated that both inflammation and cholangiocarcinoma markers were reduced 189 

in LPPARαDKO mice compared with LDKO mice (Fig 3E, F). This evidence suggests that 190 

PPAR deficiency protected against the promotion of cholangiocyte proliferation in mice 191 

lacking hepatocyte JNK1/2. To evaluate whether PPAR deficiency and subsequent 192 

normalization of BA production blunted the FXR/FGF15/FGR4/ERK pathway, we 193 

evaluated FXR target gene expression. Hepatic RT-qPCR analysis indicated that Fgf15, 194 

Shp and Fgr4 expression were reduced in LPPARαDKO mice compared with LDKO mice (Fig 195 

3G). This is consistent with the observation of lower levels of ERK activation, detected by 196 

immunohistochemistry, in LPPARαDKO cholangiocytes (Fig 3H). 197 

 198 

PPARα deficiency protects against DEN-induced HCC development in HFD-fed mice 199 

Our analysis suggests that activation of PPAR may promote liver tumor development by 200 

altering BA physiology. Increased BA induces the synthesis and secretion of inflammatory 201 

cytokines in liver, which consequently results in liver injury (Miyake, Wang et al., 2000). 202 

Recently, it has been shown that increased hepatic BA controls HCC development in HFD-203 

fed mice (Xie, Wang et al., 2016). To evaluate the role of PPAR in this context, we 204 

administered DEN to WT and PPARKO mice on postnatal day 14, and 6 weeks later 205 

placed the animals on either a normal chow diet or a high-fat diet (HFD) in which 60% of 206 

calories are fat-derived (Park, Lee et al., 2010). Livers were examined for signs of HCC 8 207 

months after DEN injection (Fig 4A). On normal chow diet, the two genotypes showed no 208 

significant differences in tumor number or size (Figu EV2). In contrast, on HFD, the mean 209 
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number of tumors per animal was lower in PPARKO mice compared with WT 210 

counterparts (Fig 4B). Moreover, tumors were smaller in PPARKO mice than in WT mice 211 

(Fig 4B). This protection against HCC development in HFD-fed PPARKO mice explained 212 

the better survival (Fig 4C). RT-qPCR analysis of tumor and non-tumor tissues from WT 213 

and PPARKO mice revealed reduced expression of the cell-cycle genes Cdk2, Ccna1, 214 

Foxm1, and Cdc25c in non-tumor samples from PPARKO mice and enhanced 215 

expression of the cell-cycle regulatory genes p21, Trp53, p19 and p57 in PPARKO tumor 216 

tissue (Fig 4D). Collectively, these data indicate that the absence of PPAR protects 217 

against DEN-induced HCC in HFD-fed mice. 218 

 219 

PPAR deficiency protects from liver damage on HFD 220 

DEN induces hepatocyte death associated with enhanced compensatory proliferation and 221 

augmented HCC development (Das, Garlick et al., 2011, Hui, Bakiri et al., 2007, Maeda, 222 

Kamata et al., 2005). DEN-induced apoptosis in liver tissue, measured by caspase 3 223 

cleavage, was reduced in HFD-fed PPARKO mice (Fig 4E). Moreover, analysis of ALT 224 

and AST levels induced by acute DEN treatment in HFD-fed mice revealed less liver 225 

damage in PPARKO mice than in WT counterparts (Fig 4F). Additionally, ERK and 226 

STAT3, targets of FGF15/19 that modulate HCC development (Uriarte, Fernandez-227 

Barrena et al., 2013, Uriarte, Latasa et al., 2015, Zhou, Luo et al., 2017), were less 228 

activated in livers of PPARKO mice (Fig 4G). 229 

However, there was no significant reduction in blood levels of the cytokines IL6, TNF, 230 

IL1, CCL2, and IFN in HFD-fed PPARKO mice, suggesting that the lower acute DEN-231 

induced liver damage was not associated with reduced inflammation (Fig EV3). After acute 232 

DEN injection, HFD-fed PPARKO mice showed higher levels of the chemokines CXCL2 233 

and CCL3 (Fig EV3), correlating with higher levels of markers of infiltration by immune 234 
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cells (Fig EV4). These results suggest that PPAR in the liver, and not in hematopoietic 235 

cells, promotes HCC development in HFD-fed WT animals. 236 

To confirm the role of PPAR in hepatocytes, we tested HCC development in chimeras 237 

created by transplanting WT or PPARKO bone marrow (BM) into lethally irradiated WT or 238 

PPARKO recipients. Chronic-DEN-induced HCC development was strongly suppressed 239 

in reconstituted PPARKO mice compared with reconstituted WT mice, irrespective of 240 

donor BM genotype. On HFD, reconstituted PPARKO mice also developed significantly 241 

smaller tumors than their WT counterparts, again irrespective of donor BM genotype (Fig 242 

4H). Despite the established role of PPAR as an immune-modulator (Daynes & Jones, 243 

2002), our bone marrow transplantation experiments show that loss of PPAR in immune 244 

cells does not contribute to the protection observed in PPARKO mice. Our analysis 245 

indicates that that the protection against HCC in HFD-fed PPARKO mice is not primarily 246 

mediated by bone-marrow-derived cells. 247 

 248 

DISCUSSION 249 

The growing occurrence of liver cancer is due, in part, to an increasing prevalence of 250 

established risk factors, such as obesity and physical inactivity (Torre, Bray et al., 2015). 251 

HCC, in particular, is strongly associated with obesity and often appears after years of liver 252 

steatosis (Caldwell et al., 2004). In addition, long-term elevated BA levels are a risk factor 253 

for liver cancer development (Zhang, Zhou et al., 2015) and patients having elevated BA 254 

concentration and diabetes have a higher risk of developing HCC (Cui, Martin et al., 2018, 255 

Wu, Ge et al., 2010). Indeed, increased BA can lead to inflammation, apoptosis and 256 

necrosis of hepatocytes (Allen, Jaeschke et al., 2011, Jansen, Ghallab et al., 2017). 257 

PPAR is an important modulator of liver metabolism controlling lipid and BA homeostasis, 258 

and its activation has been shown to decrease fatty liver disease (Abdelmegeed, Yoo et 259 
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al., 2011, Li & Chiang, 2009, Yeon, Choi et al., 2004). We report that JNK mediated 260 

repression of PPAR causes changes in BA homeostasis which suppress cholangiocyte 261 

proliferation. Consequently, JNK-deficiency stimulates cholangiocyte proliferation and 262 

promotes the development of cholangiocarcinoma. This increased proliferation is mediated 263 

by the altered BA metabolism and the elevated hepatic expression of FXR/FGF15/FGR4 264 

that triggers ERK activation in cholangiocytes. Our results have strong translational 265 

implications for obesity treatment. Activation of FXR by BA triggers the secretion of 266 

FGF15/FGF19 in humans (Inagaki, Choi et al., 2005), and the beneficial effects of FGF 267 

family on the obese metabolic profile has been well characterized (Nies, Sancar et al., 268 

2015). However, their clinical use has been debated due to their implication in promoting 269 

liver cancer formation by stimulating proliferation (Cui et al., 2018, Zhou et al., 2017). In 270 

fact, it has been recently suggested that this deleterious effect of FGF15/FGF19 is more 271 

evident under HFD conditions (Cui et al., 2018). Our results support this observation as we 272 

describe a tumorigenic effect of PPAR under HFD condition and predict a deleterious 273 

effect of using FGF analogs for the treatment of obese patients. 274 

Hepatic PPAR is an important mediator of this regulatory cascade. In fact, PPAR 275 

deficiency dramatically suppresses the phenotypes induced by JNK deficiency. The role of 276 

PPAR in liver cancer is still unclear. While some studies have demonstrated that PPAR 277 

activation might promote liver cancer (Hays, Rusyn et al., 2005, Nishimura, Dewa et al., 278 

2007, Peters, Cattley et al., 1997), others indicate that PPAR activation may be neutral or 279 

suppress liver cancer development (Cheung, Akiyama et al., 2004, Heindryckx, Colle et 280 

al., 2009, Morimura, Cheung et al., 2006, Takashima, Ito et al., 2008). This could be due to 281 

different experimental conditions used in these studies. It is established that the 282 

consumption of a HFD causes PPAR activation (Soltis, Kennedy et al., 2017). The HFD 283 

also causes enhanced BA production and secretion which leads to cell damage and 284 
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apoptosis, and the compensatory proliferation of surrounding cells (Sun, Beggs et al., 285 

2016, Yoshitsugu, Kikuchi et al., 2019). Here we demonstrate that in WT mice PPAR 286 

promotes tumor development in a HFD DEN-induced model of liver cancer. These results 287 

contrast with the lack of effects of PPAR over tumor progression in WT mice fed with ND. 288 

The pro-tumorigenic effect of PPAR activation in WT mice is due, in part, to an alteration 289 

in BA metabolism that drives ERK activation. These conclusions are consistent with a 290 

recent report demonstrating that another nuclear receptor, PPAR, is activated by HFD 291 

and promotes intestinal stem cells hyperproliferation driving to colon cancer (Beyaz, Mana 292 

et al., 2016). The data presented here identify obesity-induced PPAR activation as a 293 

critical factor in HCC development and progression. Moreover, our study provides 294 

evidence that in obesity the effect of PPAR is bone-marrow independent, and that a 295 

major inductor of liver cancer is the inhibition of the hepatic JNK. 296 

Because of the role of JNK/PPAR/FGF signaling in lipid metabolism and carcinogenesis 297 

and their possible use for steatosis and obesity treatment, it is fundamental to understand 298 

the mechanism and conditions in which these signaling pathways might contribute to 299 

carcinogenic progression. JNK inhibition and PPAR activation are both potential 300 

therapeutic targets in obesity but our results urge to consider the risk of HCC development 301 

and other secondary effects during long-term treatments. 302 

  303 
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MATERIALS & METHODS 304 

Animals 305 

PPAR knock out mice (PPARKO) (B6;129S4-Pparatm1Gonz/J; RRID:IMSR_JAX:008154) 306 

and Albumin cre mice (B6.Cg-Speer6-ps1Tg(Alb-cre)21Mng/J; RRID:IMSR_JAX:003574) were 307 

purchased from the Jackson Laboratory and backcrossed for 10 generations to the 308 

C57BL/6J background (Jackson Laboratory; RRID:IMSR_JAX:000664). Mice with 309 

compound JNK1/2 deficiency in hepatocytes (LDKO) have been described (Das et al., 2011, 310 

Das, Sabio et al., 2009). Genotypes were identified by PCR analysis of genomic DNA 311 

isolated from mouse tails. All experiments were performed in male mice. For tumor 312 

studies, PPARKO mice at postnatal day 14 received a single i.p. injection of 50 mg/kg 313 

body weight diethylnitrosamine (DEN, Sigma-Aldrich, N0258) dissolved in saline. Six 314 

weeks after DEN treatment, mice were put on a high-fat diet (HFD, Research Diet Inc.) or 315 

standard chow diet ad libitum until sacrifice 8 months after DEN injection. One group of 316 

HFD-fed mice was used for Kaplan-Meier analysis. For acute response studies, 6-week-317 

old PPARKO mice and WT mice were fed the HFD for 13 weeks, given a single 100 318 

mg/kg body weight i.p. injection of DEN, and sacrificed after 48 hours. Radiation chimeras 319 

were generated by exposing 2-month-old DEN-injected recipient mice to 2 x 650 Gy 320 

ionizing radiation and reconstituting with 2x107 cells from donor bone marrow by tail vein 321 

injection. Two weeks after bone marrow transplant, mice were fed the HFD ad libitum until 322 

sacrifice 8 months after DEN injection. Before sacrifice, blood samples were taken for 323 

analysis of ALT/AST and cytokines. In all cases, mice were euthanized after overnight 324 

starvation. Mice were housed in a pathogen-free animal facility and kept on a 12-hour 325 

light/dark cycle at constant temperature and humidity. All animal experiments conformed to 326 

EU Directive 2010/63EU and Recommendation 2007/526/EC, enforced in Spanish law 327 

under Real Decreto 53/2013 and the Institutional Animal Care and Use Committee 328 

(IACUC) of the University of Massachusetts Medical School. 329 
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 330 

Serum analysis 331 

Plasma activities of ALT and AST were assessed with the ALT and AST Reagent Kit 332 

(Biosystems Reagents) using a Benchmark Plus microplate spectrophotometer (Bio-Rad). 333 

Plasma concentration of non-sulfated bile acids were measured with the Bile Acid Assay 334 

Kit (Sigma-Aldrich) using a Fluoroskan Ascent fluorescence multiwell plate reader (Thermo 335 

Labsystems). Serum cytokine concentrations were measured by multiplexed ELISA 336 

(Millipore) with a Luminex 200 analyzer. 337 

Biochemical analysis 338 

Total liver proteins were extracted in lysis buffer (50 mM Tris-HCl pH 7.5, 1 mM EGTA, 339 

1 mM EDTA pH 8.0, 50 mM NaF, 1 mM sodium glycerophosphate, 5 mM pyrophosphate, 340 

0.27 M sucrose, 1% Triton X-100, 0.1 mM PMSF, 0.1% 2-mercaptoethanol, 1 mM sodium 341 

ortovanadate, 1 µg/ml leupeptin, 1 µg/ml aprotinin). Extracts were separated by SDS–342 

PAGE and transferred to 0.2 µm pore size nitrocellulose membranes (Bio-Rad). Blots were 343 

probed with primary antibodies to caspase-3 (#9662), cleaved caspase-3 (#9661), 344 

phospho ERK (#9101; RRID:AB_330744), ERK (#9102), phospho STAT3 (#9145; 345 

RRID:AB_2491009), and Vinculin (V4505, Sigma; RRID:AB_477617). All antibodies were 346 

used at 1:1000 dilution. After washes, membranes were incubated with an appropriate 347 

horseradish peroxidase-conjugated secondary antibody (GE Healthcare), and signal was 348 

detected using an enhanced chemiluminescent substrate for the detection of horseradish 349 

peroxidase (Clarity Western ECL substrate; Bio-Rad). 350 

Histochemistry 351 

Histology was performed using tissue fixed in 10% formalin for 24h, dehydrated and 352 

embedded in paraffin. Sections (7 μm) were cut and stained using hematoxylin and eosin 353 

(American Master Tech Scientific). Sections were also incubated with Bouin´s fluid 354 

overnight, counter-stain with hematoxylin (Sigma), and then stained with Masson-355 
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Trichrome stain (American Master Tech Scientific). Immunohistochemistry was performed 356 

by staining tissue sections with antibodies against PCNA (biotinylated from thermofisher 357 

MS-106-B; RRID:AB_64272), SOX9 (Abcam ab3697; RRID:AB_304012), glutamine 358 

synthetase (Abcam ab73593; RRID:AB_2247588), cytokeratin 19 (Abcam ab15463; 359 

RRID:AB_2281021) or phospho-p44/42 MAPK (Thr202/Tyr204) (Cell Signaling 360 

Technology #9101). Streptavidin- conjugated horseradish peroxidase (Biogenex), and the 361 

substrate 3,3’-diaminobenzidene (Vector Laboratories) were used followed by brief 362 

counter-staining with Mayer’s hematoxylin (Sigma).  363 

Analysis of biliary lipids 364 

Bile was collected from the gall bladder following cholecystectomy. We determined 365 

cholesterol and phospholipids using an enzymatic assay (Wako). Total bile acids were 366 

measured using Hall's Bile Stain Kit (American MasterTech). Bile acid species were 367 

examined by a modification of the method described by (Ye, Liu et al., 2007) using an 368 

HPLC-MS/MS (6410 Triple Quad LC/MS, Agilent Technologies). Chromatographic 369 

separation was achieved with gradient elution using a Zorbax Eclipse XDB-C18 column 370 

(150 mm x 4.6 mm, 5 µm) kept at 35ºC and a flow rate of 500 µl/min. Initial mobile phase 371 

was 80:20 methanol/water, both containing 5 mM ammonium acetate and 0.01% formic 372 

acid, pH 4.6, and it was changed to 97:3 methanol/water over 9 min and then returned to 373 

80:20 in 1 min. Electrospray ionization (ESI) in negative mode was used, with the following 374 

conditions: gas temperature 350ºC, gas flow 8 l/min, nebulizer 10 psi, capillary voltage 375 

2500 V. MS/MS acquisition was performed in multiple reaction monitoring (MRM) mode 376 

using the specific m/z transitions: [M-H]- ion to 80,2 for taurine-conjugated bile acids and 377 

[M-H]- ion to 74 for glycine-conjugated bile acids. Free bile acids did not generate 378 

characteristic ion fragments, as reported by others (Ye et al., 2007), and transition from 379 

un-fragmented precursor molecular ions 407.1 to 407.1, 391.3 to 391.3 and 375.3 to 375.3 380 

were selected for trihydroxylated, dihydroxylated and monohydroxylated free bile acids, 381 
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respectively. 382 

Real time q-PCR 383 

Total RNA was isolated from liver and tumor tissue using the RNeasy Mini Kit (Qiagen) 384 

with on-column DNase I-digestion. Complementary DNA was synthesized with the High-385 

Capacity Complementary DNA Reverse Transcription Kit (Applied Biosystems). Taqman© 386 

assays were performed using the probes listed in Table 1 (Applied Biosystems). 387 

Sequences of primers used for quantitative real-time-polymerase chain reaction (qRT-388 

PCR) are provided in Table 2. Expression levels were normalized to Gapdh and Actb 389 

mRNA. qRT-PCR was performed using the Fast SYBR Green system (Applied 390 

Biosystems) in a 7900HT Fast Real-time PCR thermal cycler (Applied Biosystems). A 391 

dissociation curve program was employed after each reaction to verify purity of the PCR 392 

products. The expression of mRNA was examined by quantitative PCR analysis using a 393 

7500 Fast Real Time PCR machine. 394 

 395 

QUANTIFICATION AND STATISTICAL ANALYSIS 396 

Statistical analysis 397 

Differences between groups were examined for statistical significance using 2-tailed 398 

unpaired Student’s t test (with Welch’s correction when variances were different) or 399 

ANOVA coupled to Bonferroni’s post-test. Kaplan-Meier analysis was performed using the 400 

log-rank test. Statistical details and experimental n are specified in figure legends. 401 

Statistical analysis were performed with the GraphPad Prism 7 software 402 

(RRID:SCR_002798). 403 

  404 
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FIGURES  630 

 631 

Figure 1 - Hepatic JNK-deficiency alters bile acid production and causes the 632 

development of cholestasis. 633 

A LWT and LDKO mice at 6 months of age were fasted overnight and blood was collected. 634 

The amount of bile acids in the blood was measured (mean ± SEM; n = 6-11). Statistically 635 

significant differences between LDKO and LWT are indicated (**, P < 0.01). 636 

B The composition of bile fluid collected from the gall bladder was examined by 637 

measurement of the ratio of bile acids (BA) to cholesterol (Chol) or phosphatidylcholine 638 

(PC) and the different type of BA. The data presented are the mean ± SEM (n = 4-5). 639 

Statistically significant differences between LDKO and LWT are indicated (*, P < 0.05; **, P < 640 

0.01). 641 

C LKO and LWT mice (age 6 months) were fasted overnight prior to removal of the liver. The 642 

expression of genes related to cholesterol synthesis (Hmgcr and Hmgcs1) and bile 643 

synthesis (Cyp7a1, Cyp7b1, Cyp27a1, Baat, Cyp27a, Cyp8b1) was measured by 644 

quantitative RT-PCR (mean ± SEM; n = 5-6). The expression was normalized to the 645 

amount of 18S RNA in each sample.  Statistically significant differences between LDKO and 646 

LWT are indicated (*, P < 0.05; **, P < 0.01). 647 

D Representative liver sections stained with hematoxylin and eosin (H&E), an antibody to 648 

PCNA, and Masson Trichrome (Trichrome) are presented. Scale bar = 100 µm. 649 

E The expression of genes related to inflammation was evaluated by RT-qPCR. (mean ± 650 

SEM; n = 5-6). The expression was normalized to the amount of 18S RNA in each sample.  651 

Statistically significant differences between LDKO and LWT are indicated (*, P < 0.05). 652 

F Liver damage was assessed from serum measurements of ALT, AST and -GT. (mean 653 

± SEM; n = 11-24). Statistically significant differences between LDKO and LWT are indicated 654 

(*, P < 0.05; **, P < 0.01, ***, P < 0.001). 655 
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 656 
Figure 2 - Hepatic JNK-deficiency progress to cholangiocarcinoma through ERK 657 

activation. 658 

A Representative livers of LWT and LDKO mice at age 14 months are shown. 659 

B Representative sections of the liver of 14 month old chow-fed LDKO mice were stained 660 

with hematoxylin and eosin (H&E) and Masson Trichrome (Trichrome). Scale bar = 100 661 

µm. 662 

C The liver mass and liver damage measured by levels of ALT and AST (mean ± SEM; n = 663 

11-20) is presented. Statistically significant differences between LDKO and LWT are 664 

indicated (**, P < 0.01, ***, P < 0.001). 665 

D Representative liver sections of 10 months old LDKO and LWT mice stained with glutamine 666 

synthetase (GS), Cytokeratin 19 (CK19) and Sox9. Scale bar = 50 µm. 667 

E The expression of genes related to cholangiocytes proliferation was evaluated by RT-668 

qPCR in 14-month-old LWT and LDKO mice (mean ± SEM; n = 5-6). Statistically significant 669 

differences between LDKO and LWT are indicated (*, P < 0.05; **, P < 0.01). 670 

F The expression of genes related to the nuclear factor FXR (Fxr, Fxrb, Shp, Fgr4) and 671 

Fgf15 was measured by quantitative RT-PCR in LWT and LDKO liver from mice at age 6 672 

months (mean ± SEM; n = 5-6). Statistically significant differences between LDKO and LWT 673 

are indicated (*, P < 0.05; **, P < 0.01, ***, P < 0.001). 674 

G Representative liver sections of 10-month-old LDKO and LWT mice stained with Phospho-675 

ERK. Scale bar = 100 µm. 676 

 677 

Figure 3 - PPARα deficiency reduces liver cancer induced by hepatic JNK-678 

deficiency. 679 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 29, 2019. ; https://doi.org/10.1101/783761doi: bioRxiv preprint 

https://doi.org/10.1101/783761


  Elisa Manieri et al., Page 27 

 

27 
 

A Representative livers, tumor burden and incidence in 11 month old LWT, LDKO and 680 

LPPARDKO mice (mean ± SEM; n = 14-25). 681 

B The amount of bile acid in the blood was measured (mean ± SE; n = 7-11). The 682 

composition of bile fluid collected from the gall bladder was examined. Statistically 683 

significant differences between LPPARDKO, LDKO and LWT are indicated (*, P < 0.05; **, P < 684 

0.01). 685 

C The expression of genes related to cholesterol synthesis (Hmgcr and Hmgcs1), bile 686 

synthesis and transporters (Cyp27a1, Baat, Cyp27a, Cyp8b1, Abcb11, Abcb4, Abcg5, 687 

Abcg8), were measured by quantitative RT-PCR (mean ± SEM; n = 5-8). The amount of 688 

mRNA was normalized to the amount of Gapdh mRNA in each sample. Statistically 689 

significant differences between LDKO and LPPARDKO are indicated (*, P < 0.05; **, P < 0.01, 690 

***, P < 0.001). 691 

D Representative liver sections of 10-month-old LWT, LDKO and LPPARDKO mice stained with 692 

glutamine synthetase (GS), Cytokeratin 19 (CK19) and Sox9. Scale bar = 100 µm. 693 

E, F The expression of genes related to inflammation and cholangiocarcinoma was 694 

evaluated by quantitative RT-PCR. (mean ± SEM; n = 4-8). The expression was 695 

normalized to the amount of Gapdh mRNA in each sample. Statistically significant 696 

differences between LDKO and LPPARDKO are indicated (*, P < 0.05; **, P < 0.01, ***, P < 697 

0.001). 698 

G The expression of genes related to nuclear factor FXR pathway (Fxr, Fxrb, Shp, Fgr4 699 

and Fgf15) was evaluated in LKO and LPPARDKO livers by quantitative RT-PCR. (mean ± 700 

SEM; n = 6-8). The amount of mRNA was normalized to the amount of Actin mRNA in 701 

each sample. Statistically significant differences between LDKO and LPPARDKO are indicated 702 

(*, P < 0.05; **, P < 0.01). 703 
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H Representative sections of the liver of 10-month-old LDKO, LPPARDKO and LWT mice stained 704 

with Phospho-ERK. Scale bar = 100 µm. 705 

 706 

Figure 4 - Effect of PPARα deficiency on HCC in HFD-fed animals. 707 

A Representative livers and H&E stained liver sections from diethylnitrosamine (DEN)-708 

injected WT and PPARKO mice fed a high fat diet (HFD) during 8 months. Scale bars = 1 709 

cm / 0.5 mm. 710 

B Quantification of tumor number and size in HFD-fed DEN-injected WT and PPARKO 711 

mice. The maximum diameter of individual tumor nodules (central panel) and the mean 712 

width of tumor nodules (right panel) are presented. (mean ± SEM; n = 25). Statistically 713 

significant differences between WT and LPPARKO are indicated (*, P < 0.05; **, P < 0.01, 714 

***, P < 0.001). 715 

C Kaplan-Meier analysis of HFD-fed DEN-injected WT and PPARKO mice (Mantel-Cox 716 

log-rank test; n = 9-10). 717 

D qRT-PCR analysis of cyclin and cell cycle regulator expression in liver samples from WT 718 

and PPARKO mice. mRNA expression was normalized to Gapdh and WT liver 719 

expression (mean ± SEM, n = 5-6). Statistically significant differences between WT and 720 

PPARKO mice are indicated (**, P < 0.01, ***, P < 0.001). 721 

E-G WT and PPARKO mice were fed HFD from 6 weeks of age. At 19 weeks, mice were 722 

injected i.p. with DEN (100 mg/kg) and sacrificed 48 h later. 723 

E Immunoblot analysis of caspase3 and cleaved caspase3 in liver samples from untreated 724 

and acutely DEN-treated HFD-fed WT and PPARKO mice. Vinculin protein expression 725 

was monitored as a loading control. 726 
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F Liver damage was assessed from serum measurements of ALT and AST; (mean ± SEM; 727 

n = 3-7). Statistically significant differences between WT and PPARKO mice are 728 

indicated (**, P < 0.01, ***, P < 0.001). 729 

G Immunoblot analysis of signaling pathways in liver samples from untreated and acutely 730 

DEN-treated WT and PPARKO mice; blots were probed with antibodies to p-ERK, ERK, 731 

and p-STAT3. Vinculin expression was monitored as a loading control. 732 

H WT and PPARKO mice were injected i.p. on postnatal day 14 with DEN (50 mg/kg). At 733 

8 weeks of age mice were lethally irradiated and inoculated i.v. with bone marrow cells 734 

from WT or PPARKO mice. After 2 weeks, mice were place on the HFD and then 735 

sacrificed at 8.5 months of age. DEN-induced liver cancers in WT and PPARKO mice 736 

transplanted with WT or PPARKO bone marrow (BM genotype is indicated as super 737 

index of recipient mice). The bar chart shows mean tumor size, and photographs show 738 

representative images of livers from each condition. (mean ± SEM; n = 12-22); Statistically 739 

significant differences between WT and PPARKO mice are indicated (**, P < 0.01, ***, P 740 

< 0.001). 741 

 742 

 743 

 744 

  745 
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TABLES 746 

TABLE 1 - Taqman© assays probes – Related to RT-qPCR 747 

Gene ID Gene Name Probe ID (Applied Biosystems) 

Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme 

A reductase 

Mm01282501_m1 

Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme 

A synthase 

Mm00524111_m1 

Cyp7a1 cytochrome P450, family 7, subfamily 

a, polypeptide 1 

Mm00484152_m1 

Cyp7b1 cytochrome P450, family 7, subfamily 

b, polypeptide 1 

Mm00484157_m1 

Baat bile acid-Coenzyme A: amino acid N-

acyltransferase 

Mm00476075_m1 

Cyp27a cytochrome P450, family 27, 

subfamily a, polypeptide 1 

Mm00470430_m1 

Cyp8b1 cytochrome P450, family 8, subfamily 

b, polypeptide 1 

Mm00501637_s1 

Gpbar1 G protein-coupled bile acid receptor 1 

(TGR5) 

Mm00558112_s1 

Shh sonic hedgehog Mm00436528_m1 

Smo smoothened homolog Mm01162710_m1 

Bmp4 bone morphogenetic protein 4 Mm00432087_m1 

Scd1 stearoyl-Coenzyme A desaturase 1 Mm00772290_m1 

Scd2 stearoyl-Coenzyme A desaturase 2 Mm01208542_m1 

Chpt1 choline phosphotransferase 1 Mm00522694_m1 

Chka choline kinase alpha Mm00442760_m1 

Chkb choline kinase beta Mm00432498_m1 

Cpt1 choline-phosphotransferase Mm00550438_m1 

Abcb11 ATP-binding cassette, sub-family B 

(MDR/TAP) , member 11 

Mm00445168_m1 

Atp8b1 ATPase, class I, type 8B, member 1 Mm01257688_m1 

Slc10a1 solute carrier family 10 (sodium/bile 

acid cotransporter family) member 1 

Mm00441421_m1 
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Slc10a2 solute carrier family 10, member 2 Mm00488258_m1 

Abcb1a ATP-binding cassette, sub-family B 

(MDR/TAP) 

member 1A Mm00440761_m1 

Abcb1b ATP-binding cassette, sub-family B 

(MDR/TAP) member 1A 

Mm01324120_m1 

Abcc2 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 2 

Mm00496899_m1 

Abcc3 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 3 

Mm00551550_m1 

Abcc4 binding cassette, sub-family C 

(CFTR/MRP), member 4 

Mm01226380_m1 

Cd68 CD68 Mm00839636_g1 

Ifng Interferon gamma Mm00801778_m1 

Tnf Tumor necrosis factor Mm00443258_m1 

 748 

TABLE 2 - qPCR primers - Related to RT-qPCR 749 

GENE Forward Primer Reverse Primer 

Abcb11 TCTGACTCAGTGATTCTTCGCA CCCATAAACATCAGCCAGTTGT 

Abcb4 CAGCGAGAAACGGAACAGCA TCAGAGTATCGGAACAGTGTCA 

Abcg5 AGGGCCTCACATCAACAGAG GCTGACGCTGTAGGACACAT 

Abgc8 GTAGCTGATGCCGATGACAA GGGGCTGATGCAGATTCA 

Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 

Baat AGGTAAAGGAAAGCCGCATC AGTCAATGACCCCTGGAAAA 

Ccl2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT 

Ccl3 TTCTCTGTACCATGACACTCTGC CGTGGAATCTTCCGGCTGTAG 

CcnA1 GCCTTCACCATTCATGTGGAT TTGCTGCGGGTAAAGAGACAGAG 

Cdc25c ATGTCTACAGGACCTATCCCAC ACCTAAAACTGGGTGCTGAAAC 

Cdk2 CCTGCTCATTAATGCAGAGGG GTGCTGGGTACACACTAGGTG 
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Cyp7a GTCCGGATATTCAAGGATGCA AGCAACTAAACAACCTGCCAGTACT

A 

Cyp7b1 AATTGGACAGCTTGGTCTGC TTCTCGGATGATGCTGGAGT 

Cyp8b1 CAGGAAGTTCCGTCGATTTG GGCCCCAGTAGGGAGTAGAC 

Cyp27a1 CCTCACCTATGGGATCTTCATC TTTAAGGCATCCGTGTAGAGC 

Elane AGCAGTCCATTGTGTGAACGG CACAGCCTCCTCGGATGAAG 

f4/80 CCCCAGTGTCCTTACAGAGTG GTGCCCAGAGTGGATGTCT 

Fgfr4 TTGGCCCTGTTGAGCATCTTT GCCCTCTTTGTACCAGTGACG 

Foxm1 CTGATTCTCAAAAGACGGAGGC TTGATAATCTTGATTCCGGCTGG 

FxR GCTTGATGTGCTACAAAAGCTG CGTGGTGATGGTTGAATGTCC 

FxRb ACTCTCAGAGGTATCAGTCCTGC CAGAGGTTGAGTCTTTCCCAC 

Gapdh TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGA 

Hmgcr AGCTTGCCCGAATTGTATGTG TCTGTTGTGAACCATGTGACTTC 

Hmgcs1 CAGGGTCTGATCCCCTTTG GCAACGATTCCCACATCTTT 

Il10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG 

Il1b GCAACTGTTCCTGAATCAACT ATCTTTTGGGGTCCGTCAACT 

Il6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC 

Lyz2 ATGGAATGGCTGGCTACTATGG ACCAGTATCGGCTATTGATCTGA 

Nr5a2/LRH TGAGGAACAACTCCGGGAAAA CAGACACTTTATCGCCACACA 

p19 CTGAACCGCTTTGGCAAGAC GCCCTCTCTTATCGCCAGAT 

p21 CCTGGTGATGTCCGACCTG CCATGAGCGCATCGCAATC 

p57 CGAGGAGCAGGACGAGAATC GAAGAAGTCGTTCGCATTGGC 

Shp TGGGTCCCAAGGAGTATGC GCTCCAAGACTTCACACAGTG 

Gpbar1/TGR5 GCTAGGGCTCTCACCTGGA CCCCAACACAGCAAGAAGAG 

Tnf CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG 
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Trp53 CTCTCCCCCGCAAAAGAAAAA CGGAACATCTCGAAGCGTTTA 

 750 

EXPANDED VIEW FIGURES 751 

 752 

 753 

Figure S1 - Effects of Hepatic JNK-deficiency liver. 754 

LDKO and LWT mice (age 4 months) were fasted overnight prior to removal of the liver. 755 

A, B The expression of genes related to phosphatidylcholine (PC) synthesis, hepatocyte-756 

mediated transport of PC and BA was measured by quantitative RT-PCR. (mean ± SEM; n 757 

= 6-12). Gene expression was normalized to the amount of 18S RNA in each sample. 758 

Statistically significant differences between LDKO and LWT are indicated (*, P < 0.05; **, P < 759 

0.01). 760 

C Representative liver sections stained with hematoxylin and eosin (H&E). Scale bar = 200 761 

µm. 762 

 763 

Figure EV2 - PPARα deficiency does not prevent HCC in mice fed a chow diet. 764 

WT and PPARKO mice (14 day old) were injected with DEN and maintained on a 765 

standard chow diet (normal diet; ND). Tumor number and size were quantified after 766 

sacrifice 13 months post DEN injection. (mean ± SEM; n = 8-14). ns = No statistically 767 

significant difference. 768 

 769 

Figure EV3 - PPARα deficient mice on HFD exhibit defects in serum cytokines. 770 

Luminex analysis of cytokines and chemokines in blood from WT and PPARKO mice. 771 

Mice were fed a HFD during 13 weeks and left untreated or acutely treated with DEN for 772 

48 h (100 mg/kg). Circulating cytokines were measured. Data are shown as means ± SEM 773 
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(n=4-7). Statistically significant differences between WT and PPARKO mice are indicated 774 

(*, P < 0.05; **, P < 0.01, ***, P < 0.001). 775 

 776 

Figure EV4 - Effect of PPARα-deficiency on liver cytokine expression. 777 

RT-qPCR analysis of liver and hepatic tumor cytokine and chemokine expression in WT 778 

and PPARKO mice. Mice were treated with DEN and maintained on the HFD for 8 779 

months after DEN injection. The expression of genes coding for cytokines was measured 780 

by quantitative RT-PCR. mRNA expression was normalized to Gapdh and to WT liver. 781 

Data are shown as means ± SEM (n = 4-6). Statistically significant differences between 782 

WT and PPARKO mice are indicated (*, P < 0.05; **, P < 0.01). 783 

 784 
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